JPS5822956B2 - Armature winding of rotating electrical machine - Google Patents

Armature winding of rotating electrical machine

Info

Publication number
JPS5822956B2
JPS5822956B2 JP52107058A JP10705877A JPS5822956B2 JP S5822956 B2 JPS5822956 B2 JP S5822956B2 JP 52107058 A JP52107058 A JP 52107058A JP 10705877 A JP10705877 A JP 10705877A JP S5822956 B2 JPS5822956 B2 JP S5822956B2
Authority
JP
Japan
Prior art keywords
divided
winding
windings
armature winding
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52107058A
Other languages
Japanese (ja)
Other versions
JPS5439805A (en
Inventor
辻義克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP52107058A priority Critical patent/JPS5822956B2/en
Publication of JPS5439805A publication Critical patent/JPS5439805A/en
Publication of JPS5822956B2 publication Critical patent/JPS5822956B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Brushless Motors (AREA)

Description

【発明の詳細な説明】 本発明はインバータの如きサイリスクを用いた整流器変
換装置と組合わせて電源から給電を受けて運転される三
和式のサイリスク電動機、あるいは整流器変換装置を介
して負荷へ給電する発電機など、電機子に整流器変換装
置を接続して組合せ使用される回転電機の電機子巻線に
関し、該電機子巻線に通流する高調波成分を含む方形波
電流に基づいて発生する脈動トルクを消去ないしは大幅
に低減させるようにしたことにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides power to a load via a Sanwa-type thyrisk motor that is operated by receiving power from a power supply in combination with a thyrisk-based rectifier conversion device such as an inverter, or a rectifier conversion device. Regarding the armature winding of a rotating electrical machine that is used in combination with a rectifier converter connected to the armature, such as a generator that is connected to the armature, a square wave current containing harmonic components that flows through the armature winding is generated. The purpose is to eliminate or significantly reduce pulsating torque.

頭記の如き回転機の例として第1図にサイリスタモータ
を示す。
A thyristor motor is shown in FIG. 1 as an example of the above-mentioned rotating machine.

図において1は同期機としてなる電動機、2は三相電源
回路であり、電動機1の電機子巻線は周知のコンバータ
ーインバータからなる整流器変換装置3を介して電源回
路2より給電を受けるよう接続されている。
In the figure, 1 is a motor serving as a synchronous machine, 2 is a three-phase power supply circuit, and the armature winding of the motor 1 is connected to receive power from the power supply circuit 2 via a rectifier conversion device 3 consisting of a well-known converter/inverter. ing.

かかる回転電機では整流器変換装置3における各整流素
子および直流回路の平滑リアクトルにより、電機子電流
波形は不連続の方形波となる。
In such a rotating electric machine, the armature current waveform becomes a discontinuous square wave due to each rectifying element in the rectifier conversion device 3 and the smoothing reactor of the DC circuit.

この方形波は周知の如く基本波のほかに周波数の異なる
高調波成分を多く含むものであり、このうち特に大きい
割合を占める成分はフーリエ級数分析から明かなように
第5次、第7次の高調波成分である。
As is well known, this square wave contains many harmonic components with different frequencies in addition to the fundamental wave, and among these, the components that occupy a particularly large proportion are the 5th and 7th harmonic components, as is clear from Fourier series analysis. It is a harmonic component.

即ち電機子巻線には周波数fの基本波電流のほかに第5
次。
That is, in addition to the fundamental wave current of frequency f, the armature winding has a fifth wave current of frequency f.
Next.

第7次高調波電流が流れる。A seventh harmonic current flows.

かかる各成分の電流によって生成される回転磁界のうち
、第5次高調波成分による周波数5fの回転磁界φ5は
基本波による回転磁界φ1と逆方向に回転し、第7次高
調波成分による周波数7fの回転磁界φ7は同方向に回
転する。
Among the rotating magnetic fields generated by the currents of each component, the rotating magnetic field φ5 with a frequency of 5f due to the 5th harmonic component rotates in the opposite direction to the rotating magnetic field φ1 due to the fundamental wave, and the rotating magnetic field φ5 with a frequency of 7f due to the 7th harmonic component rotates in the opposite direction to the rotating magnetic field φ1 due to the fundamental wave. The rotating magnetic field φ7 rotates in the same direction.

従って基本波成分による周波数fの回転磁界に対する前
記第5次、第7次回転磁界の相対速度はいずれも6fと
なり、この結果回転電機には周波数6fの脈動トルクが
発生する。
Therefore, the relative speeds of the fifth and seventh rotating magnetic fields with respect to the rotating magnetic field of frequency f due to the fundamental wave component are both 6f, and as a result, a pulsating torque of frequency 6f is generated in the rotating electric machine.

また同様に第5次、第7次より高次の第11と第13、
第17と第19次の高調波成分により、それぞれ12f
、18fの脈動トルクが発生する。
Similarly, the 11th and 13th, which are higher than the 5th and 7th,
Due to the 17th and 19th harmonic components, each 12f
, 18f pulsating torque is generated.

かかる脈動トルクは軸の振動をもたらすだけで有効トル
クとはなり得ず、このために共振を起した際には構造部
品の破損に至る恐れもあって、できる限り脈動トルクの
発生を防止することが望まれる。
Such pulsating torque only causes vibration of the shaft and cannot be an effective torque. Therefore, when resonance occurs, there is a risk of damage to structural parts, so it is important to prevent the occurrence of pulsating torque as much as possible. is desired.

かかる点にかんがみ、電圧波形改善策として従来より知
られている多重インバータ方式を採用し、この多重イン
バータに多重巻線として構成された電機子の複数組の分
割巻線をそれぞれ接続して高調成分の回転磁界を消滅な
いしは低減させて6fの奇数倍の脈動トルクの発生を防
止ないしは大幅に低減させる方式が試みられている。
In view of this, we have adopted a multiple inverter system, which has been known for a long time, as a measure to improve voltage waveforms, and connect multiple sets of divided windings of the armature configured as multiple windings to this multiple inverter to reduce harmonic components. Attempts have been made to eliminate or reduce the rotating magnetic field to prevent or significantly reduce the generation of pulsating torque that is an odd multiple of 6f.

次にかかる多重インバータと組合わせて脈動トルクの低
減を図るようにした回転電機の電機子巻線の例を図につ
いて述べる。
Next, an example of an armature winding of a rotating electrical machine that is designed to reduce pulsating torque in combination with such a multiple inverter will be described with reference to the drawings.

第2図は従来方式の一例を示す電機子巻線の結線図で第
2図において4は第1図に示した回転電機1の電機子巻
線を示すものであり、電機子巻線4は三相巻線[■い、
■□、WAからなるA分割巻線と、三相巻線UB、VB
、WBからなるB分割巻線とから構成されている。
Fig. 2 is a wiring diagram of an armature winding showing an example of a conventional system. In Fig. 2, 4 indicates the armature winding of the rotating electric machine 1 shown in Fig. 1. Three-phase winding [■i,
■□, A-divided winding consisting of WA, and three-phase windings UB, VB
, WB.

なお各分割巻線は図示のスター結線のほかデルタ結線で
もよい。
In addition to the star connection shown in the figure, each divided winding may be a delta connection.

そして前記分割巻線は、A分割巻線に対しB分割巻線が
空間的に基本波の回転磁界の進行方向へ向けて電気角で
α−30°だけ進んだ位置に巻装配置されている。
The divided winding is arranged such that the B divided winding is spaced apart from the A divided winding by an electrical angle of α-30° in the direction of movement of the rotating magnetic field of the fundamental wave. .

更に各分割巻線はそれぞれ電源2に並列接続された2基
の整流器変換装置3より個別に給電を受けるように接続
されている。
Further, each divided winding is connected to receive power from two rectifier converters 3 connected in parallel to the power source 2, respectively.

一方各整流器変換装置3は、制御角位相制御によりA分
割巻線に対しB分割巻線には基本波電圧を基準として時
間的にθ−30°遅れた位相の電圧が印加されるよう制
御角が設定されている。
On the other hand, each rectifier converter 3 is controlled at a control angle so that a voltage with a phase delayed by θ-30° in time with respect to the fundamental wave voltage is applied to the A-divided winding and the B-divided winding by control angle phase control. is set.

なおA、B分割巻線の巻数比は1:1にされている。Note that the turn ratio of the A and B divided windings is set to 1:1.

上記構成によれば、空間的に電気角30勉相対的な位相
差が与えられたA分割巻線とB分割巻線のそれぞれに時
間的に30°(基本波基準)だけ位相のずれた電流が通
流する。
According to the above configuration, the A-divided winding and the B-divided winding each have a phase difference of 30 electrical degrees spatially and a current temporally shifted in phase by 30° (based on the fundamental wave). flows.

第3図a、bは高周波成分の回転磁界相殺動作説明のた
めのベクトル図でこの結果A、B各分割巻線に発生する
第5次、第7次の高調波成分に相応する周波数5f。
Figures 3a and 3b are vector diagrams for explaining the rotating magnetic field canceling operation of high frequency components, and as a result, frequencies 5f corresponding to the 5th and 7th harmonic components generated in each of the divided windings A and B.

7fの回転磁界φ5A、φ5Bおよびφ7A、φ7Bの
ベクトル図は第3図a + bの如くなる。
The vector diagram of the rotating magnetic fields φ5A, φ5B and φ7A, φ7B of 7f is as shown in FIG. 3 a + b.

即ち基本波に対して相順が逆である回転磁界φ、Aに対
してφ5Bは、空間的位相差α−30°に加えて時間的
位相差30°X5=150°遅れるから合計30°+1
50°−180°の位相差だけずれる。
That is, the rotating magnetic field φ, whose phase order is opposite to the fundamental wave, φ5B with respect to A is delayed by a temporal phase difference of 30° x 5 = 150° in addition to the spatial phase difference α - 30°, so the total is 30° + 1
Shifted by a phase difference of 50°-180°.

一方、相順が基本波と同方向の回転磁界φ7Aに対して
φ7Bは、空間的位相差α−30°だけ進んでいるのに
対して時間的位相差30°×7=210°だけ遅れるか
ら、φ7Aとφ7Bとの位相差は差し引き180°とな
る。
On the other hand, φ7B leads the rotating magnetic field φ7A whose phase order is in the same direction as the fundamental wave by a spatial phase difference of α-30°, but lags by a temporal phase difference of 30°×7=210°. , the phase difference between φ7A and φ7B is 180°.

しかもA、B分割巻線の巻数比が等しいのでφ5Aとφ
5BFφ7Aとφ7Bの大きさは等しくなり、周波数5
f、7fの回転磁界φ5.φ7は消滅する。
Moreover, since the turns ratio of the A and B divided windings is the same, φ5A and φ
The sizes of 5BFφ7A and φ7B are equal, and the frequency is 5.
f, 7f rotating magnetic field φ5. φ7 disappears.

この結果周波数6fの脈動トルクの発生は防止される。As a result, generation of pulsating torque with a frequency of 6f is prevented.

更に第5次、第7次高調波電流よりも高次の第17次と
第19次による周波数1−8fの脈動トルクなど、6f
の奇数倍となる6(2n+1)f(但しn二0,1,2
・・・)の脈動トルクも、それぞれ第3図a、bと同様
にA、B各分割巻線の相互間で高調波回転磁界の位相差
が180°となり、相殺することができる。
Furthermore, 6f such as pulsating torque with a frequency of 1-8f due to the 17th and 19th harmonics, which are higher than the 5th and 7th harmonic currents.
6(2n+1)f (however, n20, 1, 2
The pulsating torque of .

加えて高調波回転磁界が上記の如く消滅されることによ
り、回転電機に生じる脈動トルク、銅損、鉄損も減少し
、効率を向上させることができる。
In addition, by eliminating the harmonic rotating magnetic field as described above, the pulsating torque, copper loss, and iron loss occurring in the rotating electric machine are also reduced, and efficiency can be improved.

ところで上記した第2図の方式では、電機子の各A、B
分割巻線の相互間に基本波を基準とした30°の時間的
位相差を設定するには2基の整流器変換装置を必要とす
るために、全体としての設備費が極めて高価になる経済
的な不利点がある。
By the way, in the method shown in Fig. 2 described above, each of the armatures A and B
Since two rectifier converters are required to set a 30° temporal phase difference between the divided windings based on the fundamental wave, the overall equipment cost is extremely high, making it an economical method. There are disadvantages.

また回転電機子形のものでは電機子巻線4からの端子導
出のために6個のスリップリングが必要となる。
Further, in the rotating armature type, six slip rings are required to lead out terminals from the armature winding 4.

本発明は上記の点にかんがみなされたものであり、その
目的は電機子の分割巻線の相互結線に工夫を凝らし、そ
の巧みな相互接続の仕方により、第2図の多重インバー
タを採用した方式では少なくとも分割巻線の組数と同数
基を必要とした。
The present invention has been made in consideration of the above points, and its purpose is to develop a system in which the multiplex inverter shown in Fig. 2 is adopted by devising the interconnection of the divided windings of the armature, and by utilizing the clever interconnection method. In this case, at least the same number of units as the number of split windings was required.

整流器変換装置を1基使用するだけで、しかも第2図方
式と同様に高調波成分の回転磁界を相殺して脈動トルク
を大巾に低減できるようにした回転電機の電機子巻線を
提供することにある。
To provide an armature winding for a rotating electrical machine which uses only one rectifier converter and can greatly reduce pulsating torque by canceling out the rotating magnetic field of harmonic components in the same way as the method shown in FIG. There is a particular thing.

かかる目的は本発明により、電機子巻線をそれぞれ三相
の各相巻線がデルタ結線およびスター結線とされた2組
の分割巻線より構成し、かつこのうちデルタ結線の分割
巻線に対してスター結線の分割巻線を空間的に電気角で
30°だけ進めた相対位置に巻装配置して前記両分割巻
線の相互間に電気角30°の空間的位相差を設定すると
ともに、整流器変換装置との接続を行う回転電機の外部
端子間に前記両分割巻線を並列もしくは直列に相互接続
して結線したことにより達成される。
According to the present invention, the armature winding is composed of two sets of divided windings in which each three-phase winding is configured as a delta connection and a star connection. The divided windings of the star connection are wound and arranged at relative positions spatially advanced by 30 degrees in electrical angle, and a spatial phase difference of 30 degrees in electrical angle is set between the two divided windings, and This is achieved by interconnecting the two divided windings in parallel or in series between the external terminals of the rotating electrical machine that is connected to the rectifier converter.

以下本発明の実施例を図面に基づいて説明する。Embodiments of the present invention will be described below based on the drawings.

第4図および第5図の各実施例において、電機子巻線4
はデルタ結線の三相巻線UA、VA、WAからなるA分
割巻線と、スター結線の三相巻線I八・VB・WBから
なるB分割巻線の2組の分割巻線より構成されており、
このうち第4図では第1図に示した1基の整流器変換装
置3との接続を行う回転電機の外部端子U、V、Wに対
してこの端子間に前記デルタ形とスター形のA、B各分
割巻線が並列接続されている。
In each of the embodiments of FIGS. 4 and 5, the armature winding 4
is composed of two sets of divided windings: an A-divided winding consisting of delta-connected three-phase windings UA, VA, and WA, and a B-divided winding consisting of star-connected three-phase windings I8, VB, and WB. and
Of these, in FIG. 4, the delta type and star type A, B Each divided winding is connected in parallel.

一方、第5図の実施例では外部端子U、V、W間にA、
Bの各分割巻線が直列接続されている。
On the other hand, in the embodiment shown in FIG.
The divided windings of B are connected in series.

かか6A、B分割巻線相互の結線方式により、外部端子
U、V、Wへ三相電圧を加えれば、デルタ形およびスタ
ー形のA。
By connecting the divided windings of 6A and B, if three-phase voltage is applied to external terminals U, V, and W, delta-type and star-type A will be generated.

B各分割巻線に通流する電流の相互間には、基本波を基
準とした電気角30°の時間的位相差が生じる。
B A temporal phase difference of 30 degrees in electrical angle with respect to the fundamental wave occurs between the currents flowing through each divided winding.

一方各実施例ともに、デルタ結線のA分割巻線とスター
結線のB分割巻線の空間的な相対巻装位置関係は、第2
図で述べたと同様にA−分割巻線に対してB分割巻線が
基本波による回転磁界の進行方向に向けて相対的に電気
角で30°だけ進んだ箇所に位置するように巻装配置さ
れている。
On the other hand, in each of the embodiments, the spatial relative winding positional relationship between the A-divided winding of the delta connection and the B-divided winding of the star connection is
As described in the figure, the windings are arranged so that the B-divided winding is located at a position that is 30° electrically advanced relative to the A-divided winding in the direction of movement of the rotating magnetic field caused by the fundamental wave. has been done.

かかる巻線構成によれば、第1図と同じく1基の整流器
変換装置3を組合わせて用いるだけで、二組のA、B分
割巻線相互には電気角で30°の空間的位相差、および
基本波を基準とした電気角で30°の時間的位相差が設
定されることになる。
According to this winding configuration, just by using a single rectifier converter 3 in combination as shown in FIG. , and a temporal phase difference of 30° in electrical angle with respect to the fundamental wave.

かくして第3図a、bで述べると同様に第5次と第7次
、更には第11次と第13次等の高調波成分の回転磁界
がA、B分割巻線相互の間で互に打ち消し合うことにな
る。
Thus, as described in Fig. 3a and b, the rotating magnetic fields of the 5th and 7th harmonic components, as well as the 11th and 13th harmonic components, are mutually transmitted between the A and B divided windings. They will cancel each other out.

なお第4図、第5図の実施例において、理想的にはA分
割巻線とB分割巻線との巻数比をv”r : iに選定
することにより、第3図a、bにおける磁界φ5Aとφ
5Blφ7Aとφ7Bの大きさは等しくなりベクトル和
が完全に0となり、それぞれ相殺できる。
In the embodiments shown in FIGS. 4 and 5, by ideally selecting the turn ratio of the A-divided winding and the B-divided winding to v"r:i, the magnetic field in FIGS. φ5A and φ
The sizes of 5Blφ7A and φ7B are equal, the vector sum becomes completely 0, and they can cancel each other out.

しかしながら前記巻数比を正確にf7;; : 1に選
定することは、実際に巻線を回転電機の鉄心に巻装する
場合に極めて困難である。
However, it is extremely difficult to accurately select the turns ratio to be f7;;:1 when windings are actually wound around the iron core of a rotating electric machine.

この場合にはV″]:1に近い値、例えば2:1に設定
することによっても、高調波成分の回転磁界、従って脈
動トルクの発生を大幅に低減させることができる。
In this case, by setting a value close to V″]:1, for example 2:1, it is possible to significantly reduce the rotating magnetic field of harmonic components, and therefore the generation of pulsating torque.

例えば周波数6fの回転磁界について計算すると、通常
の巻線に較べて6.7%にまで低減させることができる
For example, when calculating a rotating magnetic field with a frequency of 6f, it can be reduced to 6.7% compared to a normal winding.

以上述べたように本発明によれば、第2図で述べたよう
な多重インバータを採用することなく、1基の整流器変
換装置に組合わせるだけで、脈動トルり発生の要因とな
る各次高調波成分の回転磁界を巧みに相殺して消滅ない
しは大幅に低減させ、これにより脈動トルク、特に周波
数6fおよび6fの奇数倍の脈動トルク発生が良好に制
御できる優れた効果が奏せられる。
As described above, according to the present invention, without employing multiple inverters as described in FIG. The rotating magnetic field of the wave component is skillfully canceled out to eliminate or significantly reduce it, thereby producing an excellent effect in which the generation of pulsating torque, particularly pulsating torque at frequencies 6f and odd multiples of 6f, can be well controlled.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の対象となる回転電機例として、示した
ザイリスタモータの回路図、第2図は従来方式の一例を
示す電機子巻線の結線図、第3図a。 bは高調波成分の回転磁界相殺動作説明のためのベクト
ル図、第4図と第5図はそれぞれ本発明の異なる実施例
を示す電機子巻線の結線図である。 1・・・回転電機、2・・・電源回路、3・・・整流器
変換装置、4・・・電機子巻線、UA、Vい、WA・・
・A分割巻線、UB、VB、WB・・・B分割巻線、α
:空間的な位相差、θ・・・時間的な位相差。
FIG. 1 is a circuit diagram of a Zyristor motor shown as an example of a rotating electric machine to which the present invention is applied, FIG. 2 is a wiring diagram of an armature winding showing an example of a conventional system, and FIG. 3a. b is a vector diagram for explaining the rotating magnetic field canceling operation of harmonic components, and FIGS. 4 and 5 are connection diagrams of armature windings showing different embodiments of the present invention, respectively. 1... Rotating electric machine, 2... Power supply circuit, 3... Rectifier converter, 4... Armature winding, UA, V, WA...
・A divided winding, UB, VB, WB...B divided winding, α
: Spatial phase difference, θ...Temporal phase difference.

Claims (1)

【特許請求の範囲】[Claims] 1 整流器変換装置と組合わせて運転される回転電機の
電機子巻線が、互に空間的にある角度をずらせて配置し
た2組の分割巻線よりなり、各組の分割巻線には相互間
に基本波を基準とするある時間的位相差を設定して通電
するものにおいて、電機子巻線を構成する2組の分割巻
線が相互に電気角30°の空間的位相差を定めて配置さ
れ、かつ相互に並列もしくは直列に接続されたデルタ形
結線の分割巻線とスター形結線の分割巻線とよりなるこ
とを特徴とする回転電機の電機子巻線。
1. The armature winding of a rotating electric machine operated in combination with a rectifier converter consists of two sets of divided windings arranged spatially shifted by a certain angle, and each set of divided windings has a In a device that conducts current with a certain temporal phase difference between them with the fundamental wave as a reference, the two sets of divided windings that make up the armature winding have a spatial phase difference of 30 degrees electrical angle between them. An armature winding for a rotating electric machine characterized by comprising a divided winding of delta connection and a divided winding of star connection arranged and connected to each other in parallel or in series.
JP52107058A 1977-09-06 1977-09-06 Armature winding of rotating electrical machine Expired JPS5822956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52107058A JPS5822956B2 (en) 1977-09-06 1977-09-06 Armature winding of rotating electrical machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52107058A JPS5822956B2 (en) 1977-09-06 1977-09-06 Armature winding of rotating electrical machine

Publications (2)

Publication Number Publication Date
JPS5439805A JPS5439805A (en) 1979-03-27
JPS5822956B2 true JPS5822956B2 (en) 1983-05-12

Family

ID=14449421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52107058A Expired JPS5822956B2 (en) 1977-09-06 1977-09-06 Armature winding of rotating electrical machine

Country Status (1)

Country Link
JP (1) JPS5822956B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58116052A (en) * 1981-12-28 1983-07-11 Minoru Miyauchi 3-phase induction motor
JP3633494B2 (en) 2001-02-20 2005-03-30 株式会社デンソー Rotating electric machine
US7291954B2 (en) 2004-04-28 2007-11-06 Mitsubishi Denki Kabushiki Kaisha Dynamoelectric machine
CN101331668B (en) 2006-02-01 2011-01-12 三菱电机株式会社 Rotating electric machine
JP5510703B2 (en) * 2009-08-21 2014-06-04 株式会社デンソー Rotating electric machine and control system thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4839919A (en) * 1971-09-23 1973-06-12

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4839919A (en) * 1971-09-23 1973-06-12

Also Published As

Publication number Publication date
JPS5439805A (en) 1979-03-27

Similar Documents

Publication Publication Date Title
JP3489106B2 (en) Brushless three-phase synchronous generator
JP5391541B2 (en) Power conversion apparatus and method, and multiphase AC motor system
Jordan et al. Winding configurations for five-phase synchronous generators with diode rectifiers
KR910003297B1 (en) Rectifier transformer
JP2929694B2 (en) Three-phase multiple voltage PWM inverter
JP3489105B2 (en) Brushless self-excited three-phase synchronous generator
Benachour et al. DTC-SVM control of induction machine fed by three level NPC matrix converter
JP3591548B2 (en) Multiple rectifier circuit
CN216133753U (en) Multi-phase transformer and rectifier system
JPS5822956B2 (en) Armature winding of rotating electrical machine
JPS6353788B2 (en)
EP0286267A2 (en) Converter-fed ac machine without damper winding
JP2016178291A (en) Multi-phase autotransformer
US3396324A (en) Dynamoelectric machine a. c. -d. c. converter system
Seck et al. Automatic generation of optimal phase currents for five-phase PMSG control under open phase condition
JPS5822957B2 (en) Armature winding of rotating electrical machine
JPH1084700A (en) Generator
JPS6111560B2 (en)
JPH04208098A (en) Large capacity variable speed apparatus
JPH03245755A (en) Brushless self-excitation synchronous electric motor
JPS63234872A (en) Transformer for rectifier
SU369659A1 (en) ZNAYAVS - ^ "t: kch - SKA * ^ bib-a ^^^ M. Kl.N 02k 3 / 20N 02k 19 / 16UDK 621.313.322 (088.8)
SU879710A1 (en) Synchronous electric machine
JPS6137875B2 (en)
US2254247A (en) Electric conversion