JPS5822852A - Rankine refrigeration circuit - Google Patents

Rankine refrigeration circuit

Info

Publication number
JPS5822852A
JPS5822852A JP12027881A JP12027881A JPS5822852A JP S5822852 A JPS5822852 A JP S5822852A JP 12027881 A JP12027881 A JP 12027881A JP 12027881 A JP12027881 A JP 12027881A JP S5822852 A JPS5822852 A JP S5822852A
Authority
JP
Japan
Prior art keywords
condenser
rankine
cooling water
refrigeration circuit
expander
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12027881A
Other languages
Japanese (ja)
Other versions
JPS6255585B2 (en
Inventor
小石 勇喜
雀堂 純一
浩 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12027881A priority Critical patent/JPS5822852A/en
Publication of JPS5822852A publication Critical patent/JPS5822852A/en
Publication of JPS6255585B2 publication Critical patent/JPS6255585B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は太陽熱や不規則な発熱など(以下太陽熱と記す
)のいわゆる間欠的な熱源と補助電動機を用いる空気調
和機のだめのランキン冷凍回路に関するものであり、そ
の目的とするところはランキン冷凍回路の小型化・省エ
ネルギ化を図り、ひいては前記空気調和機の商品的完成
度を高めんとするものである。
[Detailed Description of the Invention] The present invention relates to a Rankine refrigeration circuit for an air conditioner using an intermittent heat source such as solar heat or irregular heat generation (hereinafter referred to as solar heat) and an auxiliary electric motor. The aim is to make the Rankine refrigeration circuit smaller and more energy efficient, and to improve the commercial quality of the air conditioner.

従来ランキン冷凍回路が家庭用の2〜3室冷房のための
空気調和機に採用されることはごくまれであった。その
様な従来例においてはほとんどの場合にランキン冷凍両
回路の凝縮器とも別個に水冷式凝縮器として構成されて
いた8しかしながらその様な従来例においては空気調和
機全体が大型化することやもともと価格の高い前記空気
調和機の償却期間を更に長びかせる要因となっていた0
以下本発明をその一実施例を示す図面を参考に説明する
0 図は本発明の一実施例を示すランキン冷凍回路の回路図
であるOランキン回路は高圧作動流体液を太陽熱で加熱
し高圧作動流体蒸気とする発生器1、高圧作動流体を膨
張させて動力を得る膨張機2、膨張後の低圧作動流体蒸
気を低下作動流体液にするランキン凝縮管3、低圧作動
流体液を給送する作動流体ポンプ4および膨張後のまだ
高温の低圧作動流体蒸気から発生器1人口の低温の高圧
作動流体液へ熱を回収する再生器6からなるO冷凍回路
は冷媒全蒸発させて冷房を行う蒸発器6、蒸発した低圧
冷媒蒸気を高圧冷媒蒸気に圧縮機7、高圧冷媒蒸気を高
圧冷媒液にする冷凍凝縮管8、高圧冷媒液を低圧に膨張
させる膨張弁9を順次環状に配設して構成される。膨張
機2は同膨張機を切り放すだめの電磁クラッチ10を介
して圧縮機70入力軸11に接続し、圧縮機7の補助動
力源としての電動機12は、電磁クラッチ付プーリー1
3とベルト14および入力軸プーリー15を介して入力
軸11に接続する様に構成する。ランキン凝縮管3(ラ
ンキン回路の凝縮器)と冷凍凝縮管8(冷凍回路の凝縮
器)とを同一の凝縮器缶体16内部に構成し、本発明の
ランキン−冷凍回路の凝縮器とする。凝縮器缶体16に
はランキン凝縮管3と冷凍凝縮管8を冷却するために凝
縮器缶体16の内部を流通する冷却水の入口管17、缶
口管18および入口管17と出口管18の中途に第2の
出口管19を構成し、凝縮器缶体16内部の冷却水の流
通を規制しランキン凝縮管3と冷凍凝縮管8との伝熱性
能を高めるための邪魔板2゜を適宜設けである。冷却水
の出口管18と第2の出口管19とを合流させ、冷却水
を出口管18かあるいは第2の出口管19のいづれか一
方から帰環させるために三方弁21を設ける。また冷却
水の入口管17には冷却水流量を減少させるための流量
減少弁22および凝縮器缶体に冷却水を循環ポンプ23
とを設ける。太陽熱によってランキン回路の膨張機2だ
けを用いて圧縮機7を駆動しているときと、太陽熱によ
る膨張機2および電気入力による電動機12の両方によ
って圧縮機7が駆動されている場合には、ランキン凝縮
管3と冷凍凝縮管8の両方で凝縮作用が必要であり凝縮
器缶体16の入口管17から流通する冷却水は前記凝縮
管3,8と熱交換して出口管18から帰環する0この場
合は冷却水に対する熱交換量が大きく、それだけ冷却水
量を多く必要とするので流量減少弁22は動作させない
。圧縮機7が電動機12のみで駆動される場合にはラン
キン回路およびその膨張機2が停止しており、凝縮器缶
体16では冷凍凝縮管8だけの凝縮作用が行われ、入口
管17から流通する冷却水は第2の出口管1eから帰環
する様に三方弁21が動作する。この場合は冷却水に対
する熱交換量が少なく凝縮器缶体16へ入口管17を通
して流通する冷却水量を流量減少弁22を動作させと約
半分に減少させる。冷却水の出口系路を出口管18と第
2の出口管19のいづれかに切り替える手段としては三
方弁21を用いなくても、凝縮器缶体16内の邪魔板2
0による流通路屈曲によって生ずる流通抵抗の違いを利
用し、流通抵抗の少ない上流側の第2の出口管19に電
磁弁を設けて前記電磁弁を開放したときには第2の出口
管19から帰環させる構成であってもよい。
Conventionally, Rankine refrigeration circuits have rarely been used in home air conditioners for cooling two or three rooms. In such conventional examples, in most cases, the condensers of both Rankine refrigeration circuits were configured as separate water-cooled condensers8. However, in such conventional examples, the entire air conditioner became larger and This was a factor that further lengthened the depreciation period of the expensive air conditioners.
The present invention will be explained below with reference to drawings showing an embodiment of the invention. The figure is a circuit diagram of a Rankine refrigeration circuit showing an embodiment of the present invention.The Rankine circuit heats high-pressure working fluid with solar heat and operates at high pressure. A generator 1 that converts fluid into vapor, an expander 2 that obtains power by expanding high-pressure working fluid, a Rankine condensing pipe 3 that converts the expanded low-pressure working fluid vapor into a reduced working fluid liquid, and an operation that feeds the low-pressure working fluid. The refrigeration circuit, which consists of a fluid pump 4 and a regenerator 6 that recovers heat from the still-high-temperature low-pressure working fluid vapor after expansion to the low-temperature high-pressure working fluid liquid of the generator 1, is an evaporator that completely evaporates the refrigerant to perform cooling. 6. Consisting of a compressor 7 that converts evaporated low-pressure refrigerant vapor into high-pressure refrigerant vapor, a refrigeration condensing pipe 8 that converts high-pressure refrigerant vapor into high-pressure refrigerant liquid, and an expansion valve 9 that expands high-pressure refrigerant liquid to low pressure, arranged in a ring shape in order. be done. The expander 2 is connected to the input shaft 11 of the compressor 70 via an electromagnetic clutch 10 that disconnects the expander, and an electric motor 12 as an auxiliary power source for the compressor 7 is connected to a pulley 1 with an electromagnetic clutch.
3, is connected to the input shaft 11 via a belt 14 and an input shaft pulley 15. The Rankine condensing tube 3 (condenser of the Rankine circuit) and the refrigeration condensing tube 8 (condenser of the refrigeration circuit) are configured inside the same condenser can 16 to form the condenser of the Rankine-refrigeration circuit of the present invention. The condenser can body 16 has an inlet pipe 17 and a mouth pipe 18 for cooling water that flows inside the condenser can body 16 in order to cool the Rankine condensing pipe 3 and the frozen condensing pipe 8 , and an inlet pipe 17 and an outlet pipe 18 . A second outlet pipe 19 is formed in the middle, and a baffle plate 2° is provided to regulate the flow of cooling water inside the condenser can 16 and to improve heat transfer performance between the Rankine condensing pipe 3 and the frozen condensing pipe 8. It is provided as appropriate. A three-way valve 21 is provided to merge the cooling water outlet pipe 18 and the second outlet pipe 19 and return the cooling water from either the outlet pipe 18 or the second outlet pipe 19. In addition, the cooling water inlet pipe 17 includes a flow rate reducing valve 22 for reducing the cooling water flow rate, and a circulating pump 23 for circulating cooling water to the condenser can body.
and When the compressor 7 is driven by solar heat using only the Rankine circuit expander 2, and when the compressor 7 is driven by both the solar heat expander 2 and the electric motor 12 using electric input, the Rankine circuit Condensing action is required in both the condensing pipe 3 and the frozen condensing pipe 8, and the cooling water flowing from the inlet pipe 17 of the condenser can 16 exchanges heat with the condensing pipes 3 and 8 and returns from the outlet pipe 18. 0 In this case, the amount of heat exchanged with the cooling water is large and a correspondingly large amount of cooling water is required, so the flow rate reduction valve 22 is not operated. When the compressor 7 is driven only by the electric motor 12, the Rankine circuit and its expander 2 are stopped, and in the condenser can 16, only the refrigerating condensing pipe 8 performs the condensing action, and the flow from the inlet pipe 17 The three-way valve 21 operates so that the cooling water is returned from the second outlet pipe 1e. In this case, the amount of heat exchanged with the cooling water is small and the amount of cooling water flowing into the condenser can 16 through the inlet pipe 17 is reduced by approximately half by operating the flow rate reduction valve 22. As a means for switching the cooling water outlet line to either the outlet pipe 18 or the second outlet pipe 19, the baffle plate 2 in the condenser can body 16 can be used without using the three-way valve 21.
Utilizing the difference in flow resistance caused by the bending of the flow path due to 0, a solenoid valve is provided in the second outlet pipe 19 on the upstream side where the flow resistance is lower, and when the solenoid valve is opened, the flow returns from the second outlet pipe 19. The configuration may be such that the

また凝縮器缶体16の入口管17から流通する冷却水の
流量を切り替える手段として、循環ポンプの流量の異な
る機種2台を設けて循環ポンプの切り替えを行う構成と
してもよい。
Further, as a means for switching the flow rate of the cooling water flowing from the inlet pipe 17 of the condenser can body 16, two models of circulation pumps with different flow rates may be provided to switch the circulation pumps.

上記実施例から明らか左様に本発明のランキン冷凍回路
では、凝縮器を2台別々に設ける従来の構成に比較して
、凝縮器が1台ですみ、本発明の回路を利用する空気調
和機に占る凝縮器占有容積の激減と構造の簡易化とによ
る小型化・軽量化・   ・低価格化を図ることができ
、運転動作゛によって凝縮器缶体へ流入する冷却水量を
切り替えることにより、(1)冷却水量時の冷却水の循
環ポンプの電気入力が減って省エネルギ化を図ることが
でき、運転動作によって凝縮器缶体からの冷却水の出口
系路を切り替えることで、不必要な流通抵抗の増大によ
る循環ポンプの電気入力増加の防止と、例えば冷却塔へ
帰環する冷却水への不要な吸熱損失を防止するなどの効
を奏するものである。
As is clear from the above embodiments, the Rankine refrigeration circuit of the present invention requires only one condenser, compared to the conventional configuration in which two condensers are provided separately. By drastically reducing the volume occupied by the condenser and by simplifying the structure, it is possible to achieve a reduction in size, weight, and cost. 1) Energy can be saved by reducing the electrical input to the cooling water circulation pump when the amount of cooling water is flowing, and by switching the outlet path of the cooling water from the condenser can depending on the operation operation, unnecessary distribution is eliminated. This has the effect of preventing an increase in electrical input to the circulation pump due to an increase in resistance and, for example, preventing unnecessary heat absorption loss to the cooling water returning to the cooling tower.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例を示すランキン冷凍回路の回路図
である。 1・・・・・・発生器、2・・・・・・膨張機、3・・
・・・・ランキン凝縮管、6・・・・・・蒸発器、7・
・・・・・膨張機、8・・・・・・冷凍凝縮管、16・
・・・・・凝縮器缶体。
The figure is a circuit diagram of a Rankine refrigeration circuit showing one embodiment of the present invention. 1... Generator, 2... Expander, 3...
... Rankine condensing tube, 6 ... Evaporator, 7.
...Expander, 8...Refrigerating condensing pipe, 16.
...Condenser can body.

Claims (1)

【特許請求の範囲】[Claims] 膨張機、凝縮器1作動流体ポンプ、発生器を環状に接続
してランキン回路を構成し、圧縮機、凝縮器、膨張弁、
蒸発器を環状に接続して冷凍回路を構成し、前記膨張機
の出力で前記圧縮機を駆動させ前記圧縮機の入力軸に補
助動力源としての電動機を設けて前記膨張機を切シ放す
電磁クラッチを構成し、前記ランキン回路の凝縮器と前
記冷凍回路の凝縮器とを内部に冷却水が流通する同一の
凝縮器缶体内に設けたランキン冷凍回路。
The expander, condenser 1 working fluid pump, and generator are connected in a ring to form a Rankine circuit, and the compressor, condenser, expansion valve,
The evaporator is connected in a ring to form a refrigeration circuit, the compressor is driven by the output of the expander, and an electric motor is provided as an auxiliary power source on the input shaft of the compressor to disconnect the expander. A Rankine refrigeration circuit that constitutes a clutch, and in which a condenser of the Rankine circuit and a condenser of the refrigeration circuit are provided in the same condenser case body through which cooling water flows.
JP12027881A 1981-07-30 1981-07-30 Rankine refrigeration circuit Granted JPS5822852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12027881A JPS5822852A (en) 1981-07-30 1981-07-30 Rankine refrigeration circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12027881A JPS5822852A (en) 1981-07-30 1981-07-30 Rankine refrigeration circuit

Publications (2)

Publication Number Publication Date
JPS5822852A true JPS5822852A (en) 1983-02-10
JPS6255585B2 JPS6255585B2 (en) 1987-11-20

Family

ID=14782273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12027881A Granted JPS5822852A (en) 1981-07-30 1981-07-30 Rankine refrigeration circuit

Country Status (1)

Country Link
JP (1) JPS5822852A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160126167A (en) * 2015-04-22 2016-11-02 경북대학교 산학협력단 Direct compressor operation by organic Rankin cycle power generation using outdoor units waste heat of refrigerating and air-conditioning systems and solar energy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5471453A (en) * 1977-11-17 1979-06-08 Matsushita Electric Ind Co Ltd Controlling device of air conditioner
JPS5551244A (en) * 1978-10-11 1980-04-14 Ebara Corp Cooling/heating apparatus
JPS5649872A (en) * 1979-09-28 1981-05-06 Hitachi Ltd Rankine engine driven refriger ting machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5471453A (en) * 1977-11-17 1979-06-08 Matsushita Electric Ind Co Ltd Controlling device of air conditioner
JPS5551244A (en) * 1978-10-11 1980-04-14 Ebara Corp Cooling/heating apparatus
JPS5649872A (en) * 1979-09-28 1981-05-06 Hitachi Ltd Rankine engine driven refriger ting machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160126167A (en) * 2015-04-22 2016-11-02 경북대학교 산학협력단 Direct compressor operation by organic Rankin cycle power generation using outdoor units waste heat of refrigerating and air-conditioning systems and solar energy

Also Published As

Publication number Publication date
JPS6255585B2 (en) 1987-11-20

Similar Documents

Publication Publication Date Title
CN101614451A (en) Heat pump type air conditioning system and heat recovery system
CN108155439B (en) Air conditioner battery cooling single cooling system and control method
CN201322468Y (en) Novel multi-functional heat pump air conditioner
CN211476194U (en) Refrigerant type circulating fluorine pump and compressor integrated air conditioner system
CN102331042A (en) Energy storage type heat energy air conditioner
CN215529686U (en) Cold water type cold station system
CN214039035U (en) Coupled heat pump unit
CN214009615U (en) Coupled heat pump unit
JPS5822852A (en) Rankine refrigeration circuit
CN211204522U (en) Double-water-tank supercooling system
CN201138023Y (en) High-efficient multifunctional air conditioner device
CN108638794B (en) Comprehensive system for utilizing waste heat of automobile exhaust
CN2267415Y (en) Separated two air conditioners driven by one main machine
CN210004626U (en) ground source heat pump heat recovery unit with high-efficiency throttling system
CN106949668B (en) A kind of IDC computer room heat pump refrigerating power generator and working method
CN201532048U (en) Air-conditioning device for heat pump
CN210463395U (en) Energy-saving environment-friendly air conditioning system
CN218915210U (en) Variable-frequency heat pump heat recovery air conditioning system
CN217110071U (en) Refrigerating system and refrigerator
JP2921213B2 (en) refrigerator
CN219037156U (en) Heat pump and dehumidification system based on single compressor
CN201463386U (en) Dual-cooling water chilling unit
CN216282134U (en) High-temperature heat source driven absorption refrigerator
CN111964188B (en) Thermosiphon-vapor compression composite refrigeration system
CN213599605U (en) Heat source tower heat pump system