JPS5822639B2 - Shihozaino Seizouhouhou - Google Patents

Shihozaino Seizouhouhou

Info

Publication number
JPS5822639B2
JPS5822639B2 JP50070362A JP7036275A JPS5822639B2 JP S5822639 B2 JPS5822639 B2 JP S5822639B2 JP 50070362 A JP50070362 A JP 50070362A JP 7036275 A JP7036275 A JP 7036275A JP S5822639 B2 JPS5822639 B2 JP S5822639B2
Authority
JP
Japan
Prior art keywords
shoring
model
tunnel
unit
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50070362A
Other languages
Japanese (ja)
Other versions
JPS51146737A (en
Inventor
山本稔
長崎克海
木川富男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KUBOTA TETSUKO KK
Original Assignee
KUBOTA TETSUKO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KUBOTA TETSUKO KK filed Critical KUBOTA TETSUKO KK
Priority to JP50070362A priority Critical patent/JPS5822639B2/en
Publication of JPS51146737A publication Critical patent/JPS51146737A/en
Publication of JPS5822639B2 publication Critical patent/JPS5822639B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Lining And Supports For Tunnels (AREA)

Description

【発明の詳細な説明】 本発明は、山岳トンネルの支保工を形成する単位支保材
やシールド工法におけるセクメント等の支保材の製造方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing unit shoring materials forming the shoring structure of mountain tunnels and supporting materials such as segments in the shield construction method.

例えば山岳トンネルの構築に当って、切羽の掘削が完了
した後覆工開始までの問丸地山の変形・崩壊を防止する
ため、通常トンネルの長手方向適当間隔おきに支保工を
建て込み該支保工によりトンネルを支保している。
For example, when constructing a mountain tunnel, in order to prevent the deformation and collapse of the Inmaru ground after the excavation of the face is completed and before the start of lining, shoring is usually erected at appropriate intervals along the length of the tunnel. The tunnel is supported by construction.

かかる支保工として従来は、H型鋼または工型鋼をトン
ネルの断面形状に合わせてアーチ型に形成した鋼アーチ
支保工を一般的に使用している。
Conventionally, steel arch supports are generally used as such supports, in which H-shaped steel or engineering-shaped steel is formed into an arch shape to match the cross-sectional shape of the tunnel.

しかし、かかる鋼アーチ支保工の場合には、トンネルの
断面形状に合わせてH型鋼を冷間加工によって曲げ加工
しなければならず、トンネルの断面形状毎に特別の支保
工を必要とするため資材が高くつく欠点があり、まだト
ンネル断面の曲率半径が小さい場合には曲げ加工が困難
であったり、場合によっては不可能な事も生じていた。
However, in the case of such steel arch shoring, the H-shaped steel must be bent by cold working to match the cross-sectional shape of the tunnel, and special shoring is required for each cross-sectional shape of the tunnel, so materials are required. This has the disadvantage of being expensive, and if the radius of curvature of the tunnel cross section is still small, bending is difficult or even impossible.

これは、大荷重を支持するに当って断面形状の大きい型
鋼を使用ぜざるを得ない時にも同様であり、この様な場
合には、H型鋼をフランジとウェブの境界線に沿って切
断し、一方のT聖断面材を所定の形状に曲げ加工した後
他方のフランジを溶接にて接合するか、熱間曲げ加工に
よって所定形状の支保工を製造していた。
This also applies when a steel section with a large cross section must be used to support a large load; in such cases, the H section steel should be cut along the boundary line between the flange and the web. After bending one T-section material into a predetermined shape, the other flange was joined by welding, or shoring with a predetermined shape was manufactured by hot bending.

しかし、これらの場合製造工程の複雑化はまぬがれない
し、また経済性の面からみてもコストアップが避けられ
ない等の欠点があった。
However, in these cases, the manufacturing process inevitably becomes complicated, and from an economic point of view, there are disadvantages such as an unavoidable increase in cost.

本発明方法は、かかる欠点を解消することのできる組立
て式支保工を構成する単位の支保材の製造方法を提案す
るものであって、以下その実施能様を図面に再づいて説
明する。
The method of the present invention proposes a method for manufacturing a unit of shoring material constituting a prefabricated shoring structure that can eliminate such drawbacks, and its implementation will be explained below with reference to the drawings.

まず本発明に係る支保材について説明すると、第1図第
2図に示す様に、単位の支保材1を順次ボルトナツト等
で締結接合して支保すべきトンネル2の断面形状に適応
したアーチ状の支保工3を組立て、該支保工3により地
山4を支保するものである。
First, the shoring material according to the present invention will be explained. As shown in FIG. 1 and FIG. The shoring 3 is assembled and the earth 4 is supported by the shoring 3.

この様な場合、前記単位の支保材1としてトンネル断面
形状に関係なく同一形状同一長さのものを用いることが
できるため、この単位の支保材1を鋳造によって多量生
産できる可能性が生じてくる。
In such a case, it is possible to use the same shape and the same length as the unit of supporting material 1 regardless of the cross-sectional shape of the tunnel, so there is a possibility that this unit of supporting material 1 can be mass-produced by casting. .

すなわち、同一形状の単位の支保材1を用いて種々のト
ンネル断面形状に適応した支保工3を組立てた場合、そ
の支保工3は折線構造となることがあるが、当りのとり
方で支保工を軸力状態に近づけることができるため、特
に支保機能上支障はないからである。
In other words, when shoring 3 adapted to various tunnel cross-sectional shapes is assembled using units of shoring 1 of the same shape, the shoring 3 may have a broken line structure, but the shoring can be shaped differently depending on how it is hit. This is because it can be brought close to the axial force state, so there is no particular problem in terms of support function.

なおまた、単位の支保材1の基本形状も、第1図第2図
の様に直状(曲率半径無限大)であっても、第3図に示
す様に適当な曲率半径Rを有するものであっても良い。
Furthermore, even if the basic shape of the unit support material 1 is straight (infinite radius of curvature) as shown in Figures 1 and 2, it has an appropriate radius of curvature R as shown in Figure 3. It may be.

また、この単位の支保材1の断面形状も、第4図aに示
す様なH型や■型のものや、第4図すに示す様な遊端に
鍔を有するU型やV型のものであっても良いことは云う
までもない。
In addition, the cross-sectional shape of the supporting material 1 of this unit may be H-shaped or ■-shaped as shown in Figure 4a, or U-shaped or V-shaped with a flange at the free end as shown in Figure 4. Needless to say, it is okay to be something.

そして、さらに地山の支持力が不足する場合には、組立
て後の支保工の機能を完全にするため、支保工端の単位
の支保材1を第1図の如き底板の役目を果たすような端
部構造とすることもできる。
If the supporting capacity of the ground is still insufficient, in order to complete the function of the shoring after assembly, the shoring material 1 at the end of the shoring should be used as a bottom plate as shown in Figure 1. It can also be an end structure.

ところで、この単位の支保材1は前記の理由からその曲
率半径R及び長さLは全てのトンネル面状に対して同一
とすることはできても、その両端接合面5a、5bの傾
斜角αはトンネル断面の曲率半径によって決定されるた
め、第5図に示す様に種々に異なったものが必要となり
、この点において単位支保材1を鋳造によって多量生産
する場合に問題となってくる。
By the way, although the radius of curvature R and length L of this unit of supporting material 1 can be made the same for all tunnel surface shapes for the above-mentioned reasons, the inclination angle α of the joint surfaces 5a and 5b at both ends is the same. Since this is determined by the radius of curvature of the tunnel cross section, various different types are required as shown in FIG. 5, and this becomes a problem when unit supporting members 1 are mass-produced by casting.

そこで本発明方法においては、第6図に示す様に、単位
の支保材1の鋳物模型6は、その両端部6b(図に斜線
を施した部分)を本体部6aから着脱可能に構成すると
共に、その両端模型6bとして、単位の支保材1の接合
端面5a、5bに対応する端面7a。
Therefore, in the method of the present invention, as shown in FIG. 6, the casting model 6 of the unit supporting material 1 is configured such that both ends 6b (shaded areas in the figure) are removable from the main body 6a. , the end surface 7a corresponding to the joint end surfaces 5a, 5b of the unit supporting material 1 as the both end models 6b.

7bの傾斜角が異なったものを複数種類用意しておき、
この両端模型6b 、6bの内所要の傾斜角を有するも
のを本体模型6aに取付げることによって、必要な接合
端面の傾斜角を有する模型6を得られる様にしている。
Prepare multiple types of 7b with different inclination angles,
By attaching the two end models 6b, 6b having the required angle of inclination to the main body model 6a, it is possible to obtain the model 6 having the required angle of inclination of the joining end surface.

そして、この模型6を用いて、造型、鋳造すれば所期の
接合端面傾斜角を有する単位支保材1が得られ、傾斜角
の異なったものが必要になれば、端部模型6bを差し換
えて造型鋳造を行なえばよい。
Then, by molding and casting using this model 6, a unit support member 1 having the desired joint end face inclination angle can be obtained, and if one with a different inclination angle is required, the end part model 6b can be replaced. Shape casting may be performed.

しかも、組立て後の支保工端を構成する支保材について
は端模型の形を変えることにより第1図口に示す様に、
底板の機能をもつ支保材を鋳造することもできる。
Moreover, by changing the shape of the end model of the shoring material that makes up the end of the shoring after assembly, as shown in Figure 1,
It is also possible to cast a shoring material that functions as a bottom plate.

これら単位の支保材1の鋳造に際しては、模型6の長さ
Lを500〜2000mとすれば、高圧造型法を採用で
きるため多量にかつ精確な単位の支保材1が得られる。
When casting these units of supporting material 1, if the length L of the model 6 is set to 500 to 2000 m, a high-pressure molding method can be employed, so that a large number of accurate units of supporting material 1 can be obtained.

尚、第6図aは断面形状U型ないしV型の場合を、第6
図すは断面形状H型ないしI型の場合の模型を示したも
のであり、他の断面形状にも同様に適用できる。
In addition, FIG. 6a shows the case where the cross-sectional shape is U-shaped or V-shaped.
The figure shows a model with a cross-sectional shape of H-shape or I-shape, but it can be similarly applied to other cross-sectional shapes.

以上の説明では、支保工3を形成する単位の支保材1に
ついてのみ述べたが、場合によってはシールド工法にお
けるセグメントの製造にも適用できる。
In the above explanation, only the unit shoring material 1 that forms the shoring material 3 has been described, but the present invention may also be applied to manufacturing segments in the shield construction method depending on the case.

すなわち、シールド工法の場合シールドのテール部内径
とセグメントリング外径との間に許される隙間が小さい
だめ、セグメントリングの半径と各セグメントの円弧外
面の曲率半径に大きな差が生ずる場合は不可能であるが
、シールド径の一定範囲内においては、その範囲の中間
値に対応した曲率半径のものを共通にして個々のシール
ド径に応じてその両端接合面の傾斜角を変えたセグメン
トを用いることも可能だからである。
In other words, in the case of the shield method, the gap allowed between the inner diameter of the tail part of the shield and the outer diameter of the segment ring is small, and it is impossible if there is a large difference between the radius of the segment ring and the radius of curvature of the arcuate outer surface of each segment. However, within a certain range of shield diameters, it is also possible to use segments with a common radius of curvature that corresponds to the intermediate value of that range, but with the angle of inclination of the joining surfaces at both ends changed according to the individual shield diameters. Because it is possible.

このことは、前記単位の支保材1の場合にも適用するこ
とができる。
This can also be applied to the case of the unit shoring material 1.

すなわち、どの様なトンネル断面に適用してもその支保
工が極端な折線構造とならない様に、さらに言い換えれ
ば、単位の支保材の両端接合面sa、sbの傾斜角αが
極端に大きくならない様に、適用すべきトンネル径の範
囲の中間値に対応した曲率半径Rの円弧状を基本形状と
すればよい。
In other words, no matter what kind of tunnel cross section it is applied to, the shoring will not have an extremely broken line structure, or in other words, the inclination angle α of the joint surfaces sa and sb at both ends of the unit shoring will not become extremely large. In this case, the basic shape may be an arc having a radius of curvature R corresponding to the intermediate value of the range of tunnel diameters to be applied.

本発明方法は、以上説明した如〈実施し得るものであっ
て、これによれば単位の支保材を鋳造によって多量生産
できるだめ支保材の生産コストを従来に比して格段に低
下させることができ、しかもトンネルの種々の断面形状
に対して、基本的に同一の模型を使用し両端模型を単に
差し換えるだけでその断面形状に適応した両端接合面の
傾斜角を有する支保材を鋳造によって得られるためその
効果が一段と向上する。
The method of the present invention can be implemented as described above, and according to this method, a unit of shoring material can be mass-produced by casting, and the production cost of shoring material can be significantly reduced compared to the conventional method. Furthermore, for various cross-sectional shapes of tunnels, by simply using the same model and simply replacing the models at both ends, it is possible to obtain shoring materials with inclination angles of the joint surfaces at both ends that are adapted to the cross-sectional shape of the tunnel. This further improves its effectiveness.

すなわち、従来の支保工およびセグメントに見られた様
に支保材の形状を個々のトンネルごとに設計し、模型を
製作して鋳造する場合には鋼製のものと比較して問題が
あったのに比べ、製作上ひいては経済上飛躍的な効果を
もたらすことにより、本発明方法によって鋳造の利点を
十二分に発揮し得るに至ったのである。
In other words, there were problems when designing the shape of the shoring material for each individual tunnel, manufacturing a model and casting it, as was the case with conventional shoring and segments, compared to steel shoring. In comparison, the advantages of casting can be fully demonstrated by the method of the present invention by bringing about dramatic effects in terms of manufacturing and economics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第3図は本発明方法を適用される単位の支保
材の使用状態を示し、第1図イは直状の単位支保材を用
いてトンネルを支保した状態を示す横断面図、第1図口
は第1図イのI−I矢視図、第2図はトンネル径が小さ
い場合の支保状態を示す横断面図、第3図は円弧状の単
位の支保材を用いたトンネル支保状態を示す横断面図、
第4図a。 bは断面形状の異なった単位の支保材の例を示す斜視図
、第5図は単位の支保材の接合面傾斜角の変化を示す説
明図、第6図a、bは模型の概略構成を示す斜視図であ
る。 1・・・・・・単位の支保材、2・・・・・・トンネル
、3・−・・・・支保工、4・・・・・・地山、5a、
5b・・・・・・両端接合面、6・・・・・・模型、6
a・・・・・・本体模型、6b・・・・・・両端模型、
α・・・・・・傾斜角。
Figures 1 to 3 show the use of unit shoring materials to which the method of the present invention is applied, and Figure 1A is a cross-sectional view showing a state in which a tunnel is supported using straight unit shoring materials; The entrance in Figure 1 is a view taken along the I-I arrow in Figure 1A, Figure 2 is a cross-sectional view showing the support condition when the tunnel diameter is small, and Figure 3 is a tunnel using arc-shaped units of support. A cross-sectional view showing the support condition;
Figure 4a. b is a perspective view showing an example of unit shoring materials with different cross-sectional shapes, FIG. 5 is an explanatory diagram showing changes in the joint surface inclination angle of unit shoring materials, and FIGS. FIG. 1...Unit shoring material, 2...Tunnel, 3...Shoring, 4...Ground, 5a,
5b...Both ends joint surface, 6...Model, 6
a... Main body model, 6b... Both ends model,
α...Inclination angle.

Claims (1)

【特許請求の範囲】[Claims] 1 支保材をその模型を用いて鋳造する方法であって、
前記模型の長手方向両端部を本体部から着脱可能に構成
すると共に、該両端模型として接合面の傾斜角の異なっ
たものを複数種類用意しておき、この両端模型を差し換
えることにより種々の接合面傾斜角を有する模型を得、
該模型を用いて略同−の形状と長さを有しかつその両端
接合面の傾斜角が前記両端模型に応じて種々に異なった
支保材を鋳造することを特徴とする支保材の製造方法。
1 A method of casting shoring material using the model,
Both ends in the longitudinal direction of the model are configured to be removable from the main body, and a plurality of models with different inclination angles of the joint surfaces are prepared as the both end models, and various joints can be made by replacing the both end models. Obtain a model with a surface inclination angle,
A method for manufacturing a shoring material, which comprises using the model to cast shoring materials having substantially the same shape and length, but with different angles of inclination of the joint surfaces at both ends, depending on the model. .
JP50070362A 1975-06-10 1975-06-10 Shihozaino Seizouhouhou Expired JPS5822639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50070362A JPS5822639B2 (en) 1975-06-10 1975-06-10 Shihozaino Seizouhouhou

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50070362A JPS5822639B2 (en) 1975-06-10 1975-06-10 Shihozaino Seizouhouhou

Publications (2)

Publication Number Publication Date
JPS51146737A JPS51146737A (en) 1976-12-16
JPS5822639B2 true JPS5822639B2 (en) 1983-05-10

Family

ID=13429234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50070362A Expired JPS5822639B2 (en) 1975-06-10 1975-06-10 Shihozaino Seizouhouhou

Country Status (1)

Country Link
JP (1) JPS5822639B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59158345U (en) * 1983-04-07 1984-10-24 昭和アルミニウム株式会社 thermoelectric generator
JPS63105352A (en) * 1986-10-22 1988-05-10 Haaman:Kk Burner
JPH0127009Y2 (en) * 1984-11-19 1989-08-11
JPH0225240Y2 (en) * 1983-04-07 1990-07-11

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100450156B1 (en) * 2002-03-06 2004-09-30 라인원개발 주식회사 Automatic positioning device of conta-hole used in digging a tunnel

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5036808B2 (en) * 1971-09-17 1975-11-27

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5223521Y2 (en) * 1973-07-31 1977-05-30

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5036808B2 (en) * 1971-09-17 1975-11-27

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59158345U (en) * 1983-04-07 1984-10-24 昭和アルミニウム株式会社 thermoelectric generator
JPH0225240Y2 (en) * 1983-04-07 1990-07-11
JPH0127009Y2 (en) * 1984-11-19 1989-08-11
JPS63105352A (en) * 1986-10-22 1988-05-10 Haaman:Kk Burner

Also Published As

Publication number Publication date
JPS51146737A (en) 1976-12-16

Similar Documents

Publication Publication Date Title
US2420715A (en) Tube construction
JPS5822639B2 (en) Shihozaino Seizouhouhou
JP2007231663A (en) Composite segment
USRE32621E (en) Frame girder for underground drift and shaft construction
GB2036829A (en) Arches for Galleries, Tunnels or the Like
US4597239A (en) Lining-frame of latticework construction for galleries, tunnels or the like
JP3330664B2 (en) Segment for tunnel lining
US4082120A (en) Method of producing tubular lattice reinforcement for reinforced concrete tubular pipe having a socket at one end thereof
JPH0518192A (en) Construction method for tunnel and lining segment
US3871410A (en) Lattice for the reinforcement of tubular concrete elements
DE3322731A1 (en) Method of producing the lining of a tunnel tube to be driven by the shield driving method, in particular in mining subsidence areas
US3449916A (en) Tunnel liner and method of making same
US2062706A (en) Tunnel liner
JP2741273B2 (en) Multiple shield tunnel
JP4332074B2 (en) Tunnel structure using synthetic segment and its design method
JP3988652B2 (en) Tunnel branch and junction structure
US1881098A (en) Tunnel liner
JPH0330476Y2 (en)
JP6585143B2 (en) Corner structure of concrete structure
JP2572496B2 (en) Method for manufacturing hexagonal concrete segment of curved section of tunnel using formwork
JPS6219759Y2 (en)
JPH03180697A (en) Truss type timbering and tunnel excavation method employing truss timbering
JP2673202B2 (en) Joint structure of main wall of tubular wall for lining of drilling hole
JPS597940Y2 (en) Sheath for rolling steel materials in concrete structures
JP2595310B2 (en) Structure of bifurcation in tubular wall for excavation hole lining