JPS58225303A - Optical type mechanical quantity measuring apparatus - Google Patents

Optical type mechanical quantity measuring apparatus

Info

Publication number
JPS58225303A
JPS58225303A JP10934882A JP10934882A JPS58225303A JP S58225303 A JPS58225303 A JP S58225303A JP 10934882 A JP10934882 A JP 10934882A JP 10934882 A JP10934882 A JP 10934882A JP S58225303 A JPS58225303 A JP S58225303A
Authority
JP
Japan
Prior art keywords
light
target
axis
dimensional
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10934882A
Other languages
Japanese (ja)
Other versions
JPH0141205B2 (en
Inventor
Toshitsugu Ueda
敏嗣 植田
Eiji Ogita
英治 荻田
Yutaka Ono
裕 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Yokogawa Hokushin Electric Corp
Yokogawa Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp, Yokogawa Hokushin Electric Corp, Yokogawa Electric Works Ltd filed Critical Yokogawa Electric Corp
Priority to JP10934882A priority Critical patent/JPS58225303A/en
Publication of JPS58225303A publication Critical patent/JPS58225303A/en
Publication of JPH0141205B2 publication Critical patent/JPH0141205B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2290/00Aspects of interferometers not specifically covered by any group under G01B9/02
    • G01B2290/70Using polarization in the interferometer

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To achieve a three-dimensional measurement by measuring a two- dimensional mechanical quantity utilizing a specle pattern while the mechanical quantity in the axial direction perpendicular to the two-dimensional axis is measured using the specle pattern and light as reference from a light source. CONSTITUTION:Light from the light source 1 enters a polarized beam splitter 21. The light reflected here irradiates a target 4. The light reflected on the target 4 passes through the first PBS1 and enters an x axis light receiver 71 and a y axis light receiver 72. Then, the x-axis displacement and the y-axis displacement of the target 4 are measured from a specle pattern formed on the light receiving surface of these receivers. Light passing through the first PBS from the light source 1 enters the fifth PBS25 as reference light. An interference fringe is created on a Z-axis light receiver 73 by a reflected light from the target 4 whose plane of polarization differs by 90 deg. from each other and the Z-axis displacement of the target 4 is measured.

Description

【発明の詳細な説明】 本発明拡、光の干渉を利用して変位量、変位速度、振動
数等の機械量を知るようKした光°学式機械量測定装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical mechanical quantity measuring device that uses optical interference to determine mechanical quantities such as displacement amount, displacement speed, and vibration frequency.

本発明の目的は、被測定物体とは非接触でその3次元の
各種機械量を高精度で、かつ高分解能で測定する仁との
できる構造簡単な、この種の装置を実現しようとする亀
のである。
The purpose of the present invention is to realize a device of this type with a simple structure that can measure various three-dimensional mechanical quantities of an object to be measured with high accuracy and high resolution without contacting the object. It is.

本発明に係る装置は、光源からの可干渉な光を被測定機
械量が与えられている可動拡散面に照射し、そζから得
られるスペックルパターンを利用して2次元の機械量を
測定するとともに、とのスペックルパターンに光源から
の光を参照光として照射し、その結果得られゐパターン
を利用して可動拡散板の前記2次元の軸と直交する軸方
向の変位等の機械量を測定するようKした点に構成上の
特徴がある。
The device according to the present invention irradiates coherent light from a light source onto a movable diffusing surface on which a mechanical quantity to be measured is given, and measures a two-dimensional mechanical quantity using the speckle pattern obtained from the surface. At the same time, light from a light source is irradiated as a reference light onto the speckle pattern, and the resulting pattern is used to determine mechanical quantities such as the displacement of the movable diffuser plate in the axial direction perpendicular to the two-dimensional axis. There is a structural feature in the point where K is set to measure .

第1図は本発明に係る装置の一例を示す構成説明図であ
る。図において、1は光源で、例えばHeNeレーザ光
源が使用され、ここから可干渉な光力出射される。11
.12はレンズで、光源1から出射した光を拡げて平行
光とするビームエクスノ(ンダBXを構成している。2
1は第1の偏光ビームスプリッタ(以下PB8と略す)
、22は第2のPBS 、 23は第3のpBX 、 
24は第4のPBS 、 25は第5のPBSであゐ。
FIG. 1 is a configuration explanatory diagram showing an example of a device according to the present invention. In the figure, reference numeral 1 denotes a light source, for example, a HeNe laser light source is used, from which coherent light is emitted. 11
.. Reference numeral 12 denotes a lens, which constitutes a beam exonder BX that spreads the light emitted from the light source 1 into parallel light. 2
1 is the first polarizing beam splitter (hereinafter abbreviated as PB8)
, 22 is the second PBS, 23 is the third pBX,
24 is the fourth PBS, and 25 is the fifth PBS.

第1.第2.第1のPBS 、 21.22.23は、
入射する光ビームを2方向に分割する役目をし、第4の
PBS 24は2方向から来るビームを1方向ビームに
する一段目をしている。を九、第5のPBS 25は、
第4のPBSに対して45°回転した位置関係となるよ
うに設置されており、2種の光を干渉させて縞を作る役
目をしている。31.32はそれぞれ焦点距離がfl、
f2のレンズ、30はレンズ31と32との間でありて
、レンズ31からfl、レンズ32カーらf2の距離に
設置した紋り板で、これには、径It4の透孔が設けら
れている。4は拡散面40を有するターゲットで、レン
ズ32から1(1は0〜2f2程度が好ましい)だけ離
れて設置され、これには例えば、図示するようにX、V
s Z方向の3次元の測定機械量が与えられる。51は
レンズ32とターゲット4との間に設置し九^/4板、
61.62はミラーで、第1のPBS 21で分割され
た光源1からの光が、第4のPBS 24に入射すゐよ
うに設置されている。
1st. Second. 1st PBS, 21.22.23,
The fourth PBS 24 serves to split the incident light beam into two directions, and the fourth PBS 24 serves as the first stage to convert the beams coming from the two directions into a one-way beam. 9, 5th PBS 25,
It is installed so as to have a positional relationship rotated by 45 degrees with respect to the fourth PBS, and has the role of causing two types of light to interfere and creating stripes. 31 and 32 have focal lengths fl,
The f2 lens 30 is a crest plate installed between the lenses 31 and 32 at a distance fl from the lens 31 and f2 from the lens 32, and is provided with a through hole having a diameter It4. There is. 4 is a target having a diffusing surface 40, which is installed at a distance of 1 (preferably 1 is about 0 to 2 f2) from the lens 32, and includes, for example, X, V as shown in the figure.
s A three-dimensional measured mechanical quantity in the Z direction is given. 51 is a 9^/4 plate installed between the lens 32 and the target 4,
Mirrors 61 and 62 are installed so that the light from the light source 1 divided by the first PBS 21 enters the fourth PBS 24.

ここで々シー61はその光軸Ceに対してθ、M45°
だけ傾斜しているのに対し、ミラー62は光軸ceに対
して0□−45°十−ΔOだけ傾斜しである。52はミ
ラー61と第1のPBS 21との間に設置した λ/
2板、53は第1のPBS 21と第2のPB13との
間に設けたA7/4板、54は第2、のPBS 22と
第3のPBS 23との間に設ゆた入/4板である。
Here, the optical axis 61 is θ, M45° with respect to the optical axis Ce.
On the other hand, the mirror 62 is tilted by 0□-45°10-ΔO with respect to the optical axis ce. 52 is installed between the mirror 61 and the first PBS 21.
2 boards, 53 is an A7/4 board installed between the first PBS 21 and the second PB13, 54 is the A7/4 board installed between the second PBS 22 and the third PBS 23; It is a board.

71は第5のPBS 23で分割された一方の光を受光
するX軸受光器、72社第5のT’BSで分割された他
方の光を受光するy軸受光器で、これらには多数個の受
光素子を7レイ状に配列して構成されるCCD′などの
イメージセンサが使用される。なお、各受光器71.7
2において、その受光素子の配列方向は互いに直交する
ように設置されているものとする。73は第5のPBS
から出た光を受光する受光器である。この受光器73と
しては、CCDなどのイメージセンサが用いられる。
71 is an X-axis receiver that receives one of the lights divided by the fifth PBS 23, and 72 is a Y-axis receiver that receives the other light that is split by the fifth T'BS. An image sensor such as a CCD' is used, which is constructed by arranging 7 light receiving elements in a 7-ray pattern. In addition, each light receiver 71.7
In No. 2, it is assumed that the arrangement directions of the light-receiving elements are orthogonal to each other. 73 is the 5th PBS
It is a light receiver that receives the light emitted from the As this light receiver 73, an image sensor such as a CCD is used.

第2図は第1図装置において、電気的な回路を示す構成
ブロック図である。この図において、70は、例えばC
ODで構成された各受光器71..72.73を駆動す
るクロック発振器で、例えば周波数foのクロック信号
を各受光器に印加している。81.82゜83は各受光
器71..72.73からの出力周波数信号fx。
FIG. 2 is a block diagram showing an electrical circuit in the apparatus shown in FIG. In this figure, 70 is, for example, C
Each light receiver 71 configured with an OD. .. A clock oscillator that drives 72 and 73 applies a clock signal having a frequency fo, for example, to each light receiver. 81.82°83 is each light receiver 71. .. Output frequency signal fx from 72.73.

fy、 fzを入力し、これと参照周波数信号fRとを
ミキシングするミキサ、91.92.93はそれぞれ対
応するミキサからの出力信号のなかの特定な周波数信号
を通過させるローパスフィルタ、41.42.43はそ
れぞれローパスフィルタ91.92.93からの周波数
信号を計数するカウンタ、6は各カウンタ41゜42、
43からの計数信号foX* ’Oh fo#を入力す
る演算回路で、この演算回路としては、例えばマイクロ
プロセッサが使用される。60は表示装置で、例えばC
RTが使用され、演算回路6での演算結果を表示する。
91.92.93 is a mixer that inputs fy, fz and mixes it with a reference frequency signal fR; 91.92.93 is a low-pass filter that passes a specific frequency signal among the output signals from the corresponding mixer; 41.42. 43 are counters that count the frequency signals from the low-pass filters 91, 92, and 93, respectively; 6 is each counter 41, 42,
This is an arithmetic circuit which inputs the count signal foX* 'Oh fo# from 43, and a microprocessor is used as this arithmetic circuit, for example. 60 is a display device, for example C
RT is used to display the calculation results of the calculation circuit 6.

このように構成した装置の動作は次の通シである。光源
tから出射された波長λの光は、ビームエクヌパンダB
Xで拡げられ、平行光となって1iX1のPBS 21
に入射する。ここで、入射光線と入射面にたてた法線が
作る入射面に垂直方向に振動する光成分(S波)は反射
し、レンズ31.絞り板30の透孔、レンズ32及びλ
/4板5板金1て、ターゲット4の拡散面40に平行光
となって照射される。ターゲット4の拡散mhoに照射
された平行光は、この拡散面の凹凸によってランダム々
位相変調を受けて反射し、この反射光は、再びλ/4板
51.レンズ32.絞り、板30の透孔、レンズ31を
通って戻り、第1のPBS 21に入射する。ここで、
レンズ31.絞り板、。、V7八、:x、<yllsp
。85.つ、ヤ。
The operation of the device configured as described above is as follows. The light of wavelength λ emitted from the light source t is the beam Eknu Panda B
Expanded by X, becomes parallel light and becomes 1iX1 PBS 21
incident on . Here, the light component (S wave) that vibrates in the direction perpendicular to the incident plane created by the incident light ray and the normal line to the incident plane is reflected and the lens 31. The through hole of the aperture plate 30, the lens 32 and λ
/4 plate 5 sheet metal 1 is irradiated with parallel light onto the diffusing surface 40 of the target 4. The parallel light irradiated onto the diffused mho of the target 4 undergoes random phase modulation due to the unevenness of this diffused surface and is reflected, and this reflected light is reflected again by the λ/4 plate 51. Lens 32. It returns through the aperture, the through hole in the plate 30 and the lens 31 and enters the first PBS 21 . here,
Lens 31. Aperture plate. , V78, :x, <yllsp
. 85. T-ya.

現しここを通過する光の空間周波数を下げるローパスフ
ィルタとして機能する4のである。第1のPB1921
に再入射する光は入射面に対して、振動方向が平行な光
成分(P波)となっており、第1のPBI921を通過
する。ζζを通過したターゲット4の拡散面40からの
反射光は、λ/4板53を通過して円偏光とがり、第2
のPH122で2っに分かれ、一方はλ/4板54を通
って円偏光となり、第3のPH123で分かれて、X軸
受光器71及びy軸受光器72にそれぞれ入射する。そ
して、これらの受光面にスペックルパターンをつくる。
4, which functions as a low-pass filter that lowers the spatial frequency of the light that passes through it. 1st PB1921
The light that enters again becomes a light component (P wave) whose vibration direction is parallel to the incident surface, and passes through the first PBI 921. The reflected light from the diffusing surface 40 of the target 4 that has passed through ζζ passes through the λ/4 plate 53, becomes circularly polarized, and becomes a second circularly polarized light.
The light is split into two at the third PH 122, one passes through the λ/4 plate 54 and becomes circularly polarized, and the light is split at the third PH 123 and enters the X-axis light receiver 71 and the Y-axis light receiver 72, respectively. A speckle pattern is then created on these light-receiving surfaces.

第3図は、X軸受光器71及びy軸受光器72上に得ら
れるスペックルパターンの一例を示す図である。この図
において、スペックルパターンは、ターゲット4が矢印
X方向に移動したときは、X軸方向に移動し、ターゲッ
ト4が矢印y方向に移動したときは、y軸方向に移動す
る。X軸受光器71は、この受光面に照射された第3図
に示すようなスペックルパターンのX軸方向変位を把え
る。また、y軸受光器72は、この受光面に照射された
第3図に示すようなスペックルパターンのy軸方向変位
を把える。
FIG. 3 is a diagram showing an example of a speckle pattern obtained on the X-axis light receiver 71 and the Y-axis light receiver 72. In this figure, the speckle pattern moves in the X-axis direction when the target 4 moves in the arrow X direction, and moves in the y-axis direction when the target 4 moves in the arrow y direction. The X-axis light receiver 71 detects the displacement in the X-axis direction of the speckle pattern shown in FIG. 3, which is irradiated onto the light-receiving surface. Further, the y-axis light receiver 72 detects the displacement in the y-axis direction of the speckle pattern as shown in FIG. 3 irradiated onto this light-receiving surface.

一方、第4のPH124へ入射した拡散面4oからの反
射光は、そのまま通過し、第5のPH125に入射する
。また、光源1から第1のPH121に入射した光の中
で、P波成分はここを透過し、λ/2板52を通過して
90°偏波面が回転され、ミラー61.62を経て、第
4のPBi924に入射し、ことで反射して第5のPH
125に参照光として入射する。第5のPH125は、
第4のPH124に対して45°回転して置かれており
、ここで、互いに偏波面が90°異なるターゲット4か
らの反射光と、光源1からの参照光とのうち、第5図に
示すように456成分のものが透過し、!軸受光器73
上に干渉縞がつくられる。
On the other hand, the reflected light from the diffusion surface 4o that has entered the fourth PH 124 passes through as it is and enters the fifth PH 125. Also, in the light that enters the first PH 121 from the light source 1, the P wave component is transmitted through this, passes through the λ/2 plate 52, the polarization plane is rotated by 90 degrees, and passes through the mirrors 61 and 62. enters the fourth PBi924, is reflected by the fifth PH
125 as a reference light. The fifth PH125 is
It is placed rotated by 45 degrees with respect to the fourth PH 124, and here, among the reflected light from the target 4 whose polarization planes differ from each other by 90 degrees, and the reference light from the light source 1, as shown in FIG. As shown, 456 components pass through! Bearing light receiver 73
Interference fringes are created on top.

なお、第5のPH125は偏光板を用いてもよい。Note that a polarizing plate may be used for the fifth PH 125.

第4図は、2軸受光器73上に得られたパターンの一例
を示す図であって、スペックルパターンにマイケルソン
、干渉縞が重畳したようなものとなる。
FIG. 4 is a diagram showing an example of a pattern obtained on the two-axis photoreceiver 73, in which Michelson and interference fringes are superimposed on a speckle pattern.

このパターンは、ターゲット4が矢印2方向に移動する
と、2方向に移動する。2軸受光器73は、この受光面
に照射された第4図に示すようなパターンの2軸方向変
位を把える。
This pattern moves in two directions when the target 4 moves in the two directions of the arrows. The two-axis light receiver 73 detects the displacement in the two-axis direction of the pattern shown in FIG. 4, which is irradiated onto the light-receiving surface.

とζで、レンズ31.32の距離がf1+f2であるこ
    ゛とと、ターゲット4に平面波が照射されるよ
うにすれば、所謂純移動状態となり、仁の状態では、各
受光器の受光面に得られるスペックルパターンの、平均
的スペックル径は、(f1λ)/(πd)で与えられる
。したがって、レンズ31から各受光器までの距離や、
レンズ32とターゲット4との間の距離tは、純移動状
態とスペックル径には無関係となる。
and ζ, and the distance of the lenses 31 and 32 is f1 + f2.If the target 4 is irradiated with a plane wave, it will be in a so-called pure moving state, and in the solid state, there will be a light beam on the light receiving surface of each light receiver. The average speckle diameter of the speckle pattern is given by (f1λ)/(πd). Therefore, the distance from the lens 31 to each light receiver,
The distance t between the lens 32 and the target 4 is independent of the pure movement state and the speckle diameter.

各受光器71.72.73は、一端にクロック発振器7
0から周波数fcのクロック信号が印加されて駆動され
ており、各受光器71.72.73からfc日fc/N
 (ただしNは受光器71.72.73のビット数)を
基本周波数とする周波数信号fx、 fy、 fzが出
力される。
Each receiver 71, 72, 73 has a clock oscillator 7 at one end.
It is driven by applying a clock signal of frequency fc from 0 to fc/N to each photoreceiver 71, 72, 73.
Frequency signals fx, fy, and fz whose fundamental frequency is (N is the number of bits of the photoreceiver 71, 72, and 73) are output.

第6図は、各受光器?1.72.73から得られる周波
数信号fx、 fy、 fzの周波数スペクトルを示す
説明図である。この信号の周波数スペクトルは、基本周
波数fOの整数倍の点でピークがあり、かつそのピーク
は、各受光器の全幅の1/(整数)と、干渉縞の間隔が
等しいところが一番大きくなり、ターゲット4の移動と
ともに、移動する。例えば、ターゲット4がX方向KX
だけ移動すれば、受光器71からの周波数信号fxの例
えばm次高調波に相当するピークPmは、その移動速度
dX / dtに比例したΔfmXだけ周波数シフトす
る。同じように、ターゲット4がy方向にYだけ移動す
れば、受光器72からの周波数信号170m次高調波に
相当するピークPm 庁、その移動速度dY / dt
に比例したfmyだけ周波数シフトする。受光器73か
らの周波数信号についても同様である。つまり、Δ、f
mx 、Δfmy 、Δfmzの位相を測定すればx、
 y、 zの変位量を測定できる。
Figure 6 shows each photoreceiver? 1.72.73 is an explanatory diagram showing frequency spectra of frequency signals fx, fy, and fz obtained from 1.72.73. The frequency spectrum of this signal has a peak at a point that is an integer multiple of the fundamental frequency fO, and the peak is greatest where the interval between interference fringes is equal to 1/(integer) of the total width of each photoreceiver, It moves as the target 4 moves. For example, target 4 is
If the light receiver 71 moves by a certain amount, the peak Pm corresponding to, for example, the m-th harmonic of the frequency signal fx from the light receiver 71 shifts in frequency by ΔfmX that is proportional to the moving speed dX/dt. Similarly, if the target 4 moves by Y in the y direction, the frequency signal from the light receiver 72 will have a peak Pm corresponding to the 170m harmonic, and its moving speed dY / dt
The frequency is shifted by fmy proportional to . The same applies to the frequency signal from the light receiver 73. That is, Δ, f
If the phases of mx, Δfmy, and Δfmz are measured, x,
The amount of displacement in y and z can be measured.

例えば第2図の回路において、ミキサ81.82゜83
は、各受光器から出方されるm次高調波pmと、その近
傍周波数fRとをミキシング、すなわちヘテロダイン検
波し、各出力をローパスフィルタ91゜92、93を介
することによって、その出方端に次式に示すような同波
数信号fax、 foy、 fozをそれぞれ得る。
For example, in the circuit shown in Figure 2, the mixer 81.82°83
mixes the m-th harmonic pm emitted from each photoreceiver and its neighboring frequency fR, that is, performs heterodyne detection, and passes each output through low-pass filters 91, 92, 93, and outputs it to the output end. The same wave number signals fax, foy, and foz as shown in the following equations are obtained, respectively.

fox m mfo −fR±Δfmxfoy w m
fo −fR±Δfmyfoz w mfo −fR±
Δfmz各カウンタ41.42.4讃とれらの周波数信
号をそれぞれ計数する。演算回路6は、各カウンタ41
゜42、43からの信号fax、 foy、 fozを
入力し、所定の演算、例えば積分を含む演算をすること
によって、ターゲット4の各矢印x* ’je z方向
の変位量x、 y、 zを知ることができる。またΔf
mx、Δfmy 、Δfmzは、ターゲット4の移動方
向に応じて、正、負に極性が変ることから、移動方向の
判別も同時にできる。
fox m mfo -fR±Δfmxfoy w m
fo −fR±Δfmyfoz w mfo −fR±
Δfmz counters 41, 42, and 4 count their frequency signals, respectively. The arithmetic circuit 6 has each counter 41
By inputting the signals fax, foy, and foz from ゜42 and 43 and performing predetermined calculations, such as calculations including integration, the displacement x, y, z of the target 4 in each arrow x*'jez direction is calculated. You can know. Also Δf
Since the polarities of mx, Δfmy, and Δfmz change between positive and negative depending on the moving direction of the target 4, the moving direction can also be determined at the same time.

このように構成される装置は、ひとつの光源からのビー
ムによって3次元の変位が同時に測定できるもので、全
体構成を簡単にできる。また、各受光器から得られる信
号は周波数信号であることから、演算処理が容易であり
、高分解能で、各種成説明図である。この実施例におい
ては、第1図装置において、第5の1’B823及びλ
/4板5板金4略し、第2のPH122から分かれた光
を受光器70で受光するようにしたものである。この受
光器70の受光面は、第8図に示すように、2個の受光
器71゜72を互いに直交するように配列して構成しで
ある。
The device configured in this way can simultaneously measure three-dimensional displacement using a beam from one light source, and the overall configuration can be simplified. In addition, since the signals obtained from each light receiver are frequency signals, calculation processing is easy and high resolution is provided. In this embodiment, in the apparatus shown in FIG.
/4 plate 5 sheet metal 4 is omitted, and the light separated from the second PH 122 is received by the light receiver 70. As shown in FIG. 8, the light receiving surface of this light receiver 70 is constructed by arranging two light receivers 71 and 72 orthogonally to each other.

この実施例装置によれば、受光器70の受光面に第5図
に示すようなスペックルパターンがつくられ、このスペ
ックルパターンのI方向の移動を受光器71が検出し、
y方向の移動を受光器72が検出する。
According to this embodiment device, a speckle pattern as shown in FIG. 5 is created on the light receiving surface of the light receiver 70, and the light receiver 71 detects the movement of this speckle pattern in the I direction.
The light receiver 72 detects movement in the y direction.

なお、上記の各実施例において、光源1の光パワーに余
裕のある場合は、第2のPH122、第5のPBI92
3 、  λ/4板fs3.54等をハーフミラ−にし
てもよい。また、ミラー61.62はプリズムやキき−
プコーナーを用いてもよい。また、ターゲット4の拡散
面40に、再帰性反射物を貼布するようにし検出感度を
増大させるようにして本よい。また、ことでは、各受光
器として、CODのようなイメージセンサを用、いるこ
とを想定したが、空間フィルタを組合せたよう表パター
ン検出器を用いてもよい。また、ここではターゲット4
0)j+ ’!t z方向の変位量や移動速度を測定す
る場合を説明したが、ターゲット4の振動数や回転数、
あるいは形状変化等、各種の3次元の機械量を測定する
ことができる。
In each of the above embodiments, if the light source 1 has sufficient optical power, the second PH122 and the fifth PBI92
3. The λ/4 plate fs3.54 or the like may be used as a half mirror. In addition, the mirrors 61 and 62 are used for prisms and keys.
A corner may also be used. Furthermore, it is preferable to attach a retroreflective material to the diffusion surface 40 of the target 4 to increase the detection sensitivity. Furthermore, although it is assumed that an image sensor such as a COD is used as each light receiver, a surface pattern detector combined with a spatial filter may be used. Also, here target 4
0)j+'! Although we have explained the case of measuring the displacement amount and moving speed in the tz direction, the vibration frequency and rotation speed of the target 4,
Alternatively, various three-dimensional mechanical quantities such as changes in shape can be measured.

以上説明したように、本発明に係る装置によれば、被測
定機械量が与えられるターゲットとは非接触で、このタ
ーゲットの3次元の変位量など各種機械量を高分解能で
測定することができる。
As explained above, according to the device according to the present invention, various mechanical quantities such as three-dimensional displacement of the target can be measured with high resolution without contacting the target to which the mechanical quantity to be measured is given. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る装置の一例を示す構成説明図、第
2図は電気的な回路を示す構成プpツク図、第3図及び
第4図は第1図装置においてX軸受光器(γ軸受光器)
及び2軸受光器の受光面につくられるスペックルパター
ンの一例を示す説明図、第5図は受光器73付近の光の
偏波面の説明図、第6図は各受光器から得られる信号の
周波数スペクトルを示す説明図、第7図は本発明に係る
装置の他の実施例を示す構成説明図、第8図は第7図装
置に用いられている受光器の受光面の構成説明図である
。 1・・・光源、21.22.23.24.25・・・偏
光ビームスプリッタs 11.12.31.32・・レ
ンズ、30・・・絞り板、4・・・ターゲット、4o・
・・拡散面、51.53.54・・・λ/4板%52・
・・λ/2板、61.62・・・ミラー、71.72.
73・・・受光器。 箪3図 一一× 第4図 −〉z 篤5図 第6図
FIG. 1 is a configuration explanatory diagram showing an example of the device according to the present invention, FIG. 2 is a configuration diagram showing an electrical circuit, and FIGS. 3 and 4 are X-axis light receivers in the device shown in FIG. (γ-axis receiver)
5 is an explanatory diagram showing an example of a speckle pattern created on the light receiving surface of a dual-axis optical receiver, FIG. 5 is an explanatory diagram of the polarization plane of light near the optical receiver 73, and FIG. FIG. 7 is an explanatory diagram showing the configuration of another embodiment of the device according to the present invention, and FIG. 8 is an explanatory diagram of the configuration of the light receiving surface of the light receiver used in the device shown in FIG. 7. be. 1...Light source, 21.22.23.24.25...Polarizing beam splitter s 11.12.31.32...Lens, 30...Aperture plate, 4...Target, 4o...
...Diffusion surface, 51.53.54...λ/4 plate%52.
...λ/2 plate, 61.62...Mirror, 71.72.
73... Light receiver. 3 Figure 11 × Figure 4-〉z Atsushi Figure 5 Figure 6

Claims (3)

【特許請求の範囲】[Claims] (1)  光源からの可干渉な光を、被測定機械量が与
えられるターゲットの拡散面に照射し、そとからの反射
光がつくるパターンの移動を検出して前記ターゲットの
1次元あるいは2次元方向の機械量をそれぞれ測定する
とともに、前記反射光を分割したものに前記光源からの
可干渉光を分割した参照光を照射してつくられるパター
ンの移動を検出して前記1次元又は2次元方向の軸と直
交する軸方向の機械量を測定するようにした光学式機械
量測定装置。
(1) Coherent light from a light source is irradiated onto the diffusive surface of the target, which is given the mechanical quantity to be measured, and the movement of the pattern created by the reflected light is detected to determine whether the target is one-dimensional or two-dimensional. In addition to measuring the mechanical quantities in each direction, the movement of the pattern created by irradiating the divided reflected light with a reference light obtained by dividing the coherent light from the light source is detected, and the movement of the pattern is detected in the one-dimensional or two-dimensional direction. Optical mechanical quantity measuring device designed to measure mechanical quantities in the axial direction perpendicular to the axis of
(2)パターンの移動を検出する手段としてイメージセ
ンサ、2オドダイオードアレイ、空間フィルタのいずれ
かを使用し、これらのセンナからの信号を利用して所定
の演算を行ないターゲットに与えられている機械量を測
定する特許請求の範囲第1項記載の光学式機械量測定装
置。
(2) Use an image sensor, a two-odd diode array, or a spatial filter as a means to detect movement of the pattern, and use the signals from these sensors to perform predetermined calculations to detect the machine being applied to the target. An optical mechanical quantity measuring device according to claim 1, which measures a quantity.
(3)拡散面として再帰t’flf、反射のある拡散面
を使用した特許請求の範囲第1項記載の光学式機械量測
定装置。
(3) The optical mechanical quantity measuring device according to claim 1, which uses a reflexive t'flf and reflective diffusing surface as the diffusing surface.
JP10934882A 1982-06-25 1982-06-25 Optical type mechanical quantity measuring apparatus Granted JPS58225303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10934882A JPS58225303A (en) 1982-06-25 1982-06-25 Optical type mechanical quantity measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10934882A JPS58225303A (en) 1982-06-25 1982-06-25 Optical type mechanical quantity measuring apparatus

Publications (2)

Publication Number Publication Date
JPS58225303A true JPS58225303A (en) 1983-12-27
JPH0141205B2 JPH0141205B2 (en) 1989-09-04

Family

ID=14507943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10934882A Granted JPS58225303A (en) 1982-06-25 1982-06-25 Optical type mechanical quantity measuring apparatus

Country Status (1)

Country Link
JP (1) JPS58225303A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01320411A (en) * 1988-06-22 1989-12-26 Hamamatsu Photonics Kk Measuring method for deformation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01320411A (en) * 1988-06-22 1989-12-26 Hamamatsu Photonics Kk Measuring method for deformation

Also Published As

Publication number Publication date
JPH0141205B2 (en) 1989-09-04

Similar Documents

Publication Publication Date Title
US5187543A (en) Differential displacement measuring interferometer
EP0250306A2 (en) Angle measuring interferometer
US10429171B2 (en) Laser multibeam differential interferometric sensor and methods for vibration imaging
EP0244275B1 (en) Angle measuring interferometer
US4995726A (en) Surface profile measuring device utilizing optical heterodyne interference
US6954273B2 (en) Laser-based measuring apparatus for measuring an axial run-out in a cylinder of rotation and method for measuring the same utilizing opposing incident measuring light beams
JP2007163479A (en) Interferometer
US3635552A (en) Optical interferometer
US4807997A (en) Angular displacement measuring interferometer
JPH0339605A (en) Optical surface shape measuring instrument
US4395123A (en) Interferometric angle monitor
US20090147265A1 (en) Detection system for detecting translations of a body
JPS58225303A (en) Optical type mechanical quantity measuring apparatus
JPH045122B2 (en)
JPH0134082Y2 (en)
JPS58225304A (en) Optical type mechanical quantity measuring apparatus
JPS59162405A (en) Optical-type mechanical-quantity measuring device
JP2779497B2 (en) Interferometer
JPS58225302A (en) Optical type mechanical quantity measuring apparatus
JPH01142401A (en) Optical displacement measuring apparatus
JPS60216207A (en) Optical measuring instrument for mechanical amount
JPH04155260A (en) Rotational speed measuring apparatus
JP2000018918A (en) Laser interference apparatus for detecting moving quantity of movable body
JPS58225301A (en) Optical type displacement measuring apparatus
JPS62200209A (en) Shape measuring apparatus