JPS5822529B2 - gold refining method - Google Patents

gold refining method

Info

Publication number
JPS5822529B2
JPS5822529B2 JP3583278A JP3583278A JPS5822529B2 JP S5822529 B2 JPS5822529 B2 JP S5822529B2 JP 3583278 A JP3583278 A JP 3583278A JP 3583278 A JP3583278 A JP 3583278A JP S5822529 B2 JPS5822529 B2 JP S5822529B2
Authority
JP
Japan
Prior art keywords
gold
acid
solution
purity
add
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3583278A
Other languages
Japanese (ja)
Other versions
JPS54127833A (en
Inventor
山田慶太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asaka Riken Industrial Co Ltd
Original Assignee
Asaka Riken Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asaka Riken Industrial Co Ltd filed Critical Asaka Riken Industrial Co Ltd
Priority to JP3583278A priority Critical patent/JPS5822529B2/en
Publication of JPS54127833A publication Critical patent/JPS54127833A/en
Publication of JPS5822529B2 publication Critical patent/JPS5822529B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Extraction Or Liquid Replacement (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 本発明は極めて純度の優れた金を得るための精製法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a purification method for obtaining gold of extremely high purity.

従来粗金より純度の高い金を得る方法としては電解精製
によって行われていた。
Conventionally, electrolytic refining has been used to obtain gold with a higher purity than crude gold.

この電解精製法は電解槽中に粗金を陽極として電解を行
なうと純金板よりなる陰極に金が析出し、この析出した
金を得る方法であるが、この電解精製法は電解槽のpH
などの液管理が大変であり、また陽極である粗金の質に
より液層中に多量の不純物が溶は込み、このための電解
液の管理をも必要とされる。
In this electrolytic refining method, gold is deposited on the cathode made of a pure gold plate when electrolysis is carried out using crude gold as an anode in an electrolytic cell, and the deposited gold is obtained.
In addition, due to the quality of the coarse gold used as the anode, a large amount of impurities dissolve into the liquid layer, which requires management of the electrolyte.

このように電解液の管理の必要から、純度の高い金を得
ることがむずかしい。
As described above, it is difficult to obtain gold with high purity due to the necessity of managing the electrolyte.

また精製するに要する時間が長く、そのために時間と経
費がカバリ、単価当りの金の価格が高くなる欠点を有し
ている。
It also has the disadvantage that it takes a long time to refine, which means that the time and costs are covered, and the price of gold per unit price increases.

本発明はこれらの欠点を解消した精製時間も短かく、純
度の高い、安い金を得ることができる金の精製法を提供
しようとするものである。
The present invention aims to provide a gold refining method that eliminates these drawbacks and can obtain gold with a short refining time, high purity, and low cost.

その要旨は粗金を王水にて溶解し、該溶液を加熱蒸発し
た後、放冷し、吸引沖過を行い、王水処理の不溶解残渣
を除き、該炉液にマスキング剤を添加した後、規定調整
し、次で振盪器に入れ、有機溶媒を加えて、金を抽出す
る。
The gist is that crude gold was dissolved in aqua regia, the solution was heated and evaporated, then allowed to cool, filtered under suction, the undissolved residue from the aqua regia treatment was removed, and a masking agent was added to the furnace solution. After that, it is adjusted to the specified specifications, then placed in a shaker, and an organic solvent is added to extract the gold.

抽出分離後、該抽出液を塩酸にて洗浄し、引続きアルカ
リ水溶液を加えて振盪し、溶媒[う金化合物を水層中に
ストリッピングする。
After extraction and separation, the extract is washed with hydrochloric acid, and then an aqueous alkali solution is added and shaken to strip the solvent [metal compound] into the aqueous layer.

このストリッピングにより金は水酸化金として水層にコ
ロイダル状に分散する。
This stripping causes the gold to colloidally disperse in the water layer as gold hydroxide.

この水層にストリップされた水酸化金に塩酸を加えて塩
化金酸を生成せしめ、該塩化金酸に還元剤を添加して金
を沈澱させ、この金を吸引泥過して金を分離し、乾燥、
溶融した後金塊を製造することにある。
Hydrochloric acid is added to the stripped gold hydroxide in this aqueous layer to produce chloroauric acid, a reducing agent is added to the chloroauric acid to precipitate gold, and the gold is separated by suction and filtration. , drying,
The purpose is to produce gold bullion after melting.

以下本発明について詳細に説明する。The present invention will be explained in detail below.

純度的95%の粗金をHNO3/HCl=1/4の王水
に溶解する。
Crude gold with a purity of 95% is dissolved in aqua regia with HNO3/HCl=1/4.

この溶解した溶液を加熱し、液温1000c〜130°
C位に於いて遊離の塩酸、硝酸を水蒸気と共に蒸散する
Heat this dissolved solution to a temperature of 1000°C to 130°C.
At the C position, free hydrochloric acid and nitric acid are evaporated together with water vapor.

これによって水分が蒸発し、濃縮された体積を減らす。This evaporates water and reduces the concentrated volume.

蒸成後の溶液を数ロット集液し、一つの容器に集液した
ものを放冷する。
Collect several lots of the solution after evaporation and leave the collected liquid in one container to cool.

次いでプフナー等を用いて吸引濾過を行い、王水処理中
の不溶解残渣を除く。
Next, suction filtration is performed using a Puchner or the like to remove undissolved residues during the aqua regia treatment.

前記P液にエチレンジアミン4酢酸(EDTA)塩、酒
石酸塩、あるいはクエン酸塩のマスキング剤を添加する
A masking agent such as ethylenediaminetetraacetic acid (EDTA) salt, tartrate, or citrate is added to the P solution.

ここで塩とはアルカリ金属塩である。この場合に金以外
の不純物である銀、鉛、白金、鉄、銅などの金属の親水
性を高め有機溶媒中に移行しないようにする。
Here, the salt is an alkali metal salt. In this case, the hydrophilicity of impurities such as silver, lead, platinum, iron, copper, etc., which are impurities other than gold, is increased to prevent them from migrating into the organic solvent.

前記マスキング剤添加液を規定調整するため、例えば5
規定〜12規定の塩酸で4規定〜6規定の範囲に調整す
る。
In order to adjust the masking agent additive liquid, for example, 5
Adjust to a range of 4N to 6N with normal to 12N hydrochloric acid.

これはマスキング剤のキレート効果を高めるものである
This enhances the chelating effect of the masking agent.

次いで振盪器に入れ、有機溶媒例えばメチルイソブチル
ケトン(MIBK)、エチルエーテル、及びメチルイソ
ブチルケトンとイソアミルアセテートの混合溶剤などを
加えて金を抽出する。
Next, the mixture is placed in a shaker and an organic solvent such as methyl isobutyl ketone (MIBK), ethyl ether, or a mixed solvent of methyl isobutyl ketone and isoamyl acetate is added to extract the gold.

この工程である有機溶媒の抽出工程は自動化することに
よって効率化を図ることが出来る利点がある。
There is an advantage that efficiency can be improved by automating this step, which is the organic solvent extraction step.

王水溶液中では金は塩化金酸(HAuC14)と成って
溶けているがこの塩化金酸は水溶液中よりも有機溶媒中
の方がHAuCJ?4のイオン会合体で存在するため安
定度が高い。
In an aqua regia solution, gold is dissolved as chloroauric acid (HAuC14), but this chloroauric acid is more active in an organic solvent than in an aqueous solution as HAuCJ? Since it exists as an ionic association of 4, it has high stability.

この抽出工程で用いる有機溶剤は(1)熱分離しにくい
こと、(2)アルカリに強いこと(3)毒性が少ないこ
と、(4)引火点が高いこと、(5)金の選択抽出の巾
が広いことのこれらの特性を有することが望ましく、従
って特にMIBKが特に優れている。
The organic solvent used in this extraction process is (1) difficult to thermally separate, (2) resistant to alkalis, (3) low toxicity, (4) high flash point, and (5) selective extraction of gold. It is desirable to have these properties of a wide range of properties, and therefore MIBK is particularly advantageous.

MIBKの代替として前述MIBKとイソアミルアセテ
ートの混合溶剤はMIBKに比較してアルカリに弱くケ
ン化し易いが金、鉄などの3価の金属を選択的に抽出し
、他の白金などの2価金属、銀などの1価金属は殆んど
抽出されない特性を有する。
As an alternative to MIBK, the above-mentioned mixed solvent of MIBK and isoamyl acetate is weaker against alkali and more easily saponified than MIBK, but it selectively extracts trivalent metals such as gold and iron, and extracts other divalent metals such as platinum, Monovalent metals such as silver have the property of being hardly extracted.

そのようにして分離した後の有機溶剤を例えば5規定〜
8規定好ましくは7規定の塩酸を加えて更に不純物を除
去するため有機溶媒を洗浄する。
The organic solvent after separation in this way is, for example, 5N~
8N, preferably 7N hydrochloric acid is added to further wash the organic solvent to remove impurities.

次に30係〜50係好ましくは40%NaOH水溶液を
加えて振盪する。
Next, 30% to 50%, preferably 40% NaOH aqueous solution is added and shaken.

その結果塩化金酸(E−1AuC14)は苛性ソーダに
より反応して水層に水酸化銀(A、u (OH) s
)としてストリップされる。
As a result, chloroauric acid (E-1AuC14) reacted with caustic soda and silver hydroxide (A, u (OH) s
) is stripped as

NaOHの代りにNH4OHを使用すれば選択性が向上
する。
Selectivity is improved by using NH4OH instead of NaOH.

すなわち不純物ははアンモニウムイオンと錯塩を形成し
水に溶は込み、金のみが沈澱するためである。
In other words, impurities form complex salts with ammonium ions and dissolve in water, and only gold precipitates.

しかしこの沈澱した金は雷金(NH3との錯塩)と呼ば
れ爆発性があるためNH4OHはあまり好ましくない。
However, this precipitated gold is called lightning metal (complex salt with NH3) and is explosive, so NH4OH is not very desirable.

このようにしてストリッピングを数回繰り返し溶媒中の
金を完全に沈澱させる。
Stripping is repeated several times in this manner to completely precipitate the gold in the solvent.

しかる後水層と有機溶媒を分離する。Thereafter, the aqueous layer and organic solvent are separated.

この分離した水層中の水酸化金(Au(OH)3)を3
規定〜5規定、好ましくは4規定の塩酸によって下記(
1)の反応を起させる。
Gold hydroxide (Au(OH)3) in this separated aqueous layer was
The following (
1) Let the reaction occur.

この反応によって生成された塩化金酸は水に溶解性とな
る。
The chloroauric acid produced by this reaction becomes soluble in water.

この塩酸を含む溶液を加熱し還元剤である亜硫酸ナトリ
ウム(Na2S03)を添加すると上記(2)式の反応
によって金が沈澱する。
When this solution containing hydrochloric acid is heated and sodium sulfite (Na2S03), which is a reducing agent, is added, gold is precipitated by the reaction of formula (2) above.

この沈澱した金はプフナー等を用いて吸引濾過を行い金
を分離する。
This precipitated gold is filtered by suction using a Puchner or the like to separate the gold.

このようにして生成、分離した金を乾燥し、次いで乾燥
した金を溶融した後鋳型に鋳込み金塊を製造する。
The gold thus produced and separated is dried, and then the dried gold is melted and cast into a mold to produce a gold ingot.

このようにして精製された金の分析結果を主な不純物に
ついて示すと以下の表の如くになる。
The analysis results of the gold purified in this way regarding the main impurities are shown in the table below.

注1 上記の表は抽出法による金の発光スペクトル分析
結果を示す。
Note 1 The above table shows the results of gold emission spectrum analysis using the extraction method.

注2 標準純度99.99 %を基準として不純物であ
る銀、鉛、白金、鉄、銅のプラスが犬なる程不純物を含
み、純度が悪い結果となる。
Note 2 Based on the standard purity of 99.99%, the impurities such as silver, lead, platinum, iron, and copper contain a considerable amount of impurities, resulting in poor purity.

注3 表中の比較例は本発明に用いた粗金である。Note 3: The comparative example in the table is the crude gold used in the present invention.

さらに詳しく精製例を示すならば、 ■ 〔溶解〕まず、粗金1kgを反応ベッセルへ入れ、
続いて工業用塩酸361と、工業用希硝酸0.91を徐
に加え、その後、温度を100’Cに昇温する。
To give a more detailed example of purification, ■ [Dissolution] First, put 1 kg of crude gold into a reaction vessel,
Subsequently, 361 parts of industrial hydrochloric acid and 0.9 parts of industrial dilute nitric acid are gradually added, and then the temperature is raised to 100'C.

■ 〔濃縮〕全溶解液を120℃で4時間濃縮して、3
1とする。
■ [Concentration] Concentrate the entire solution at 120°C for 4 hours.
Set to 1.

■ 〔薬調〕金溶解液を放冷し、30℃以下になった時
、EDTA2Na (200El )を純水に溶解して
3.21とした溶液を加えてio分間攪拌する、そして
、12時間放置し、白味がかった茶色の沈澱物をr斗で
沢過する。
■ [Medicinal preparation] Allow the gold solution to cool, and when the temperature drops to below 30°C, add a solution of EDTA2Na (200El) in pure water to make 3.21, stir for io minutes, and then stir for 12 hours. Leave it to stand, and filter off the whitish brown precipitate through a funnel.

瀘過後、一級塩酸を11加えて全体を81とする。After filtration, add 11 parts of primary hydrochloric acid to bring the total to 81 parts.

■ 〔抽出〕上記の全溶解液81を分液ベッセルに採取
し、liのM、1.B、Kを加え、10分間攪拌する。
[Extraction] Collect all the above solution 81 into a separation vessel, and extract M of li, 1. Add B and K and stir for 10 minutes.

その後、10分間静置してから重液を取り除く、(全濃
度は0.0019/l )。
Thereafter, the heavy liquid was removed after leaving it to stand for 10 minutes (total concentration was 0.0019/l).

この場合の分析結果は、重液側金量o、ooB、従って
、抽出率は99.99%であった。
The analysis result in this case was that the gold amount on the heavy liquid side was o, ooB, and therefore the extraction rate was 99.99%.

■ 〔洗浄〕金含有MIBK161を分液ベッセルに入
れ、6 N−HcI81 ((注〕試薬−級塩酸:純水
=1:1)を注加し、10分間攪拌する。
(2) [Washing] Place the gold-containing MIBK161 in a separation vessel, add 6 N-HcI81 ((note) reagent-grade hydrochloric acid:pure water = 1:1), and stir for 10 minutes.

10分間静置後、重液と分離する。この時の重液の金濃
度は0.0349/l!であった。
After standing for 10 minutes, separate from the heavy liquid. The gold concentration of the heavy liquid at this time was 0.0349/l! Met.

この場合の重液金量は0.272g、従って、重液に逆
抽される全量係は0.029%であった。
The amount of gold in the heavy liquid in this case was 0.272 g, and therefore the total amount of gold back-extracted into the heavy liquid was 0.029%.

■ 〔逆抽〕125g/l−級NaOH溶液201を反
応ベッセルに入れ、金含有MIBKを164加えて30
分間、激しく攪拌する。
■ [Back extraction] Put 201 g of 125 g/l-grade NaOH solution into a reaction vessel, add 164 g of gold-containing MIBK, and add 30 g of MIBK containing gold.
Stir vigorously for a minute.

その後、30分間静置後、重液を分離する。Thereafter, after leaving it for 30 minutes, the heavy liquid is separated.

軽液の金濃度を測定したところ、0.01369/lで
あり、逆抽率は99.98%であった。
When the gold concentration of the light liquid was measured, it was 0.01369/l, and the back extraction rate was 99.98%.

上記のアルカリ溶液201を反応ベッセルに入れ、試薬
−級塩酸81を徐々に加え、溶液が橙色に変化するまで
攪拌する。
The above alkaline solution 201 is placed in a reaction vessel, and reagent-grade hydrochloric acid 81 is gradually added thereto, followed by stirring until the solution turns orange.

■ 次いで、塩化金酸溶液281を反応ベッセルに入れ
、温度を60°C以上に保ちながら、徐々にN a 2
S 03粉末を加える。
■Next, the chlorauric acid solution 281 is put into the reaction vessel, and while keeping the temperature at 60°C or higher, Na2 is gradually added.
Add S03 powder.

しかして、最終で、1.500gまで加える。Finally, add up to 1.500g.

その後、1時間静置後沖斗により固液分離する。Thereafter, after standing for 1 hour, solid-liquid separation is performed using an Okito.

この時の還元廃液の金含有量は、0.026 g/lj
であって、還元率は99.9%であった。
The gold content of the reduced waste liquid at this time was 0.026 g/lj
The reduction rate was 99.9%.

最後に、還元金を乾燥機に入れ、4時間乾燥した後に計
量した結果は942.2gであり、収率は9992%(
純度は99.996係)となった。
Finally, the reduced gold was placed in a dryer and weighed after drying for 4 hours, and the result was 942.2g, with a yield of 9992% (
The purity was 99.996).

なお、前記した表の如く、本発明の金の精製法によれば
、極めて純度の高い金を得ることができる。
Incidentally, as shown in the table above, according to the gold refining method of the present invention, gold of extremely high purity can be obtained.

すなわち、標準純度である99.99%のものに比較す
るも銀、鉛、鉄、銅等の不純物が少く、従って本発明に
よって得られた金は、標準のものよりも高純度であるこ
とが判明する。
In other words, compared to the standard purity of 99.99%, there are fewer impurities such as silver, lead, iron, copper, etc. Therefore, the gold obtained by the present invention can be said to have a higher purity than the standard gold. Prove.

以上の結果、本発明は従来法に比較して次の利点、効果
がある。
As a result of the above, the present invention has the following advantages and effects compared to the conventional method.

(1)精製時間が極めて短縮できること。(1) Purification time can be extremely shortened.

(2)品位の高い金が容易に製造できること。(2) High quality gold can be produced easily.

(3)自動連続化が可能であり効率化を図ることができ
ること。
(3) Automatic continuity is possible and efficiency can be improved.

(4)使用する有機溶剤は再度回収使用することが出来
ること。
(4) The organic solvent used can be recovered and used again.

(5)電解法による電解槽、整流器などの設備費が不要
となり、極めて安価な設備費で、しかも安価に製造する
ことが出来ること。
(5) There is no need for equipment costs such as electrolytic cells and rectifiers due to the electrolytic method, and the equipment can be manufactured at extremely low cost.

(6)金の精製時間が短いと同時に多くの精製が可能に
なる。
(6) Gold refining time is short and at the same time a large amount of gold refining becomes possible.

以上掲げた如く種々の顕著な効果を発揮し得る発明を提
供することにある。
The object of the present invention is to provide an invention that can exhibit various remarkable effects as mentioned above.

Claims (1)

【特許請求の範囲】[Claims] 1 純度90係以上の粗金を王水にて溶解し、その溶解
液に、マスキング剤としてアルカリ金属塩であるエチレ
ンジアミン4酢酸(EDTA)塩、酒石酸塩、あるいは
クエン酸塩のうち1種あるいは2種以上添加し、金以外
の金属を封鎖して、しかる後エーテルあるいはメチルイ
ソブチルケトンのうち1種あるいはそれとイソアミルア
セテートとの混合溶剤を用いて上記溶解液から塩化金酸
を抽出し、その後塩化金酸を水相に水酸化金としてスト
リップし、これを再び塩化金酸に転化し、この塩化金酸
を還元することにより金を得ることを特徴とする金の精
製法。
1 Dissolve crude gold with a purity of 90 or higher in aqua regia, and add one or two of the alkali metal salts ethylenediaminetetraacetic acid (EDTA) salt, tartrate, or citrate to the solution as a masking agent. After that, chloroauric acid is extracted from the above solution using one of ether or methyl isobutyl ketone, or a mixed solvent of these and isoamyl acetate, and then gold chloride 1. A method for refining gold, which comprises stripping an acid as gold hydroxide in an aqueous phase, converting the acid again into chloroauric acid, and obtaining gold by reducing the chloroauric acid.
JP3583278A 1978-03-28 1978-03-28 gold refining method Expired JPS5822529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3583278A JPS5822529B2 (en) 1978-03-28 1978-03-28 gold refining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3583278A JPS5822529B2 (en) 1978-03-28 1978-03-28 gold refining method

Publications (2)

Publication Number Publication Date
JPS54127833A JPS54127833A (en) 1979-10-04
JPS5822529B2 true JPS5822529B2 (en) 1983-05-10

Family

ID=12452926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3583278A Expired JPS5822529B2 (en) 1978-03-28 1978-03-28 gold refining method

Country Status (1)

Country Link
JP (1) JPS5822529B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03234936A (en) * 1990-02-05 1991-10-18 Mitsubishi Heavy Ind Ltd Lining abrasion amount detecting device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5693836A (en) * 1979-12-27 1981-07-29 Asaka Riken Kogyo Kk Gold recovering method
JPS59179723A (en) * 1983-03-28 1984-10-12 マ−・インダストリ−ズ・インコ−ポレ−テツド Gold recovering process and device
JPS6056030A (en) * 1983-09-08 1985-04-01 Nippon Mining Co Ltd Method for recovering high purity gold
JPH02310326A (en) * 1989-05-23 1990-12-26 Tanaka Kikinzoku Kogyo Kk Method for separating and recovering gold from noble metal solution

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03234936A (en) * 1990-02-05 1991-10-18 Mitsubishi Heavy Ind Ltd Lining abrasion amount detecting device

Also Published As

Publication number Publication date
JPS54127833A (en) 1979-10-04

Similar Documents

Publication Publication Date Title
JP5766305B2 (en) Method for non-incineration and non-cyanation treatment of waste printed circuit boards
CN113215412B (en) Method for selectively leaching and recovering silver on surface of waste silver-plated part or silver-containing solid waste
CN101338368A (en) Method for preprocessing anode sludge and recovering dissipated metal
CN102041393A (en) Silver anode mud treatment process
CN103305699A (en) Method for extracting platinum-palladium out of copper anode mud
CN109704295B (en) Method for preparing refined tellurium
JP2009035808A (en) Method for separating tin from coexistence metal
CN102660683B (en) Method for preparing barium plumbate powder by coprecipitation of copper anode mud silver separating residue of circuit board
CA1197986A (en) Process for refining gold
JPS5822529B2 (en) gold refining method
JP2013181181A (en) Method for recovering gold
CN105256147A (en) Technique for recovering palladium in waste circuit board by means of supercritical fluid
JP3806258B2 (en) Ga, In solvent extraction method
CN112708763B (en) Method for recovering valuable metal from ITO waste target
US11814699B2 (en) Recovery of precious metals from copper anode slime
CN114959291A (en) Method for selectively leaching and recovering palladium in waste palladium-plated part
CN114350971A (en) Method for recovering rhodium from rhodium-containing ammonium chloroplatinate precipitation slag
JPS6119718B2 (en)
JP3753554B2 (en) Silver recovery method
CN115710641A (en) Method for recovering noble metal gold in gold film wet etching liquid
TWI841095B (en) Method for recovering metal-containing substances from silver-copper tin mud, method for recovering metal, and metal composite material and preparation method thereof
JPH0375223A (en) Recovery of indium
JP3862705B2 (en) Palladium aggregating and precipitating agent and palladium separation and recovery method using the same
JPH0375224A (en) Method for purifying aqueous solution of indium
CN115000239B (en) Method for preparing copper zinc tin sulfur selenium film solar cell precursor solution by acid leaching brass