JPS58219366A - Cooling device - Google Patents

Cooling device

Info

Publication number
JPS58219366A
JPS58219366A JP10315182A JP10315182A JPS58219366A JP S58219366 A JPS58219366 A JP S58219366A JP 10315182 A JP10315182 A JP 10315182A JP 10315182 A JP10315182 A JP 10315182A JP S58219366 A JPS58219366 A JP S58219366A
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
branch pipe
temperature
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10315182A
Other languages
Japanese (ja)
Other versions
JPS6257905B2 (en
Inventor
等 飯島
裕 瀬下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10315182A priority Critical patent/JPS58219366A/en
Publication of JPS58219366A publication Critical patent/JPS58219366A/en
Publication of JPS6257905B2 publication Critical patent/JPS6257905B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は制御温度が異る複数の保冷室を有する冷蔵庫な
どにおける冷却装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cooling device for a refrigerator or the like having a plurality of cold storage chambers with different control temperatures.

従来、低温、高温の各系統を単独に運転し、冷媒液を時
系列的に高、低温蒸発器に分配し、冷蔵室を冷却する際
の高温蒸発器の蒸発温度(圧力)を高く維持することに
よって圧縮機の成績係数を向上し冷却装置の運転効率を
向上させるという冷却形態は家庭用の冷凍冷蔵庫などに
おいて用いられている。
Conventionally, the low-temperature and high-temperature systems are operated independently, and the refrigerant liquid is distributed over time to the high-temperature and low-temperature evaporators to maintain a high evaporation temperature (pressure) in the high-temperature evaporator when cooling the refrigerator compartment. A cooling system that improves the coefficient of performance of the compressor and improves the operating efficiency of the cooling device is used in household refrigerator-freezers and the like.

第1図は従来の冷蔵庫における冷却装置の構成を示し、
1は冷媒を通流される冷媒管路で、冷媒管路1には冷媒
を圧縮する圧縮機2およびこの圧縮された冷媒を凝縮す
る凝縮器3を設け、冷媒管路1における凝縮器3の下流
側には各分岐管路1aelbを並列に接続する。分岐管
路1aは冷凍室4内に設置された低温蒸発器5およびそ
の上流側に接続された第1の毛細管6から成る。又、分
岐管路1bは冷蔵室7内に設置された高温蒸発器8とそ
の上流側に接続された第2の毛細管9とさらにその上流
側に接続された第2の電磁弁10とから成る。第2の毛
細管9の流路抵抗は第1の毛細管6よシ小さい。
Figure 1 shows the configuration of a cooling device in a conventional refrigerator.
Reference numeral 1 denotes a refrigerant pipe through which refrigerant flows, and the refrigerant pipe 1 is provided with a compressor 2 for compressing the refrigerant and a condenser 3 for condensing the compressed refrigerant. Each branch pipe line 1aelb is connected in parallel to the side. The branch line 1a consists of a low-temperature evaporator 5 installed in the freezing chamber 4 and a first capillary tube 6 connected to the upstream side thereof. Further, the branch pipe line 1b consists of a high-temperature evaporator 8 installed in the refrigerator compartment 7, a second capillary tube 9 connected to the upstream side of the high-temperature evaporator 8, and a second solenoid valve 10 further connected to the upstream side thereof. . The flow path resistance of the second capillary tube 9 is smaller than that of the first capillary tube 6.

上記の従来装置において、まず電磁弁10を閉じて圧縮
機2を運転すると冷媒は圧縮された後に凝縮器3によっ
て凝縮され、分岐管路1aK流人する。さらに冷媒は第
1の毛細管6において減圧されて低温となり、低温蒸発
器5において低温で蒸発して冷凍室4を冷却する。そし
て、冷凍室4が所定の温度以下に冷却されると図示しな
い冷凍室温度制御装置の指令により圧縮機2が停止する
In the conventional apparatus described above, when the solenoid valve 10 is first closed and the compressor 2 is operated, the refrigerant is compressed and then condensed by the condenser 3, and flows into the branch pipe 1aK. Furthermore, the refrigerant is depressurized in the first capillary tube 6 to become low temperature, and is evaporated at low temperature in the low temperature evaporator 5 to cool the freezer compartment 4. When the freezer compartment 4 is cooled to a predetermined temperature or lower, the compressor 2 is stopped by a command from a freezer compartment temperature control device (not shown).

又、電磁弁10を開くと凝縮器3によシ凝縮された冷媒
は分岐管路1bに流入し、第2の毛細管9において減圧
され低温となる。ただし、第2の毛細管9は流路抵抗が
小さいので冷媒は比較的高温高圧であり、従って高温蒸
発器8において比較的高温で蒸発し、冷蔵室7を冷却す
る。冷蔵室7が所定の温度以下に冷却されると冷蔵室温
度制御装置の指令によシミ磁弁10が閉じられ、冷媒の
流れが止められる。こうして冷凍室4および冷蔵室7は
所定温度に冷却されるが、ここで冷媒量を低温蒸発器5
によシ冷凍室4を冷却するために最適な量にすると高温
蒸発器8によシ冷蔵室7を冷却する際には冷媒量が不足
して冷媒が必要量流れず、圧縮機2に吸入される冷媒の
過熱度が増加するとともに、吸入圧力が低下して冷却能
力が低下する。
Further, when the solenoid valve 10 is opened, the refrigerant condensed by the condenser 3 flows into the branch pipe line 1b, is depressurized in the second capillary tube 9, and becomes low temperature. However, since the flow path resistance of the second capillary tube 9 is small, the refrigerant is at a relatively high temperature and pressure, and therefore evaporates at a relatively high temperature in the high temperature evaporator 8 to cool the refrigerator compartment 7. When the refrigerator compartment 7 is cooled to a predetermined temperature or lower, the stain magnetic valve 10 is closed by a command from the refrigerator compartment temperature control device, and the flow of refrigerant is stopped. In this way, the freezer compartment 4 and the refrigerator compartment 7 are cooled to a predetermined temperature.
When the amount of refrigerant is set to the optimum amount for cooling the freezer compartment 4, the amount of refrigerant is insufficient when cooling the refrigerator compartment 7 by the high-temperature evaporator 8, and the required amount of refrigerant does not flow, and the refrigerant is sucked into the compressor 2. As the degree of superheating of the refrigerant increases, the suction pressure decreases and the cooling capacity decreases.

又、冷媒量を高温蒸発器8によυ冷蔵室7を冷却するた
めに最適な量にすると、低温蒸発器5によシ冷凍室4を
冷却する際に冷媒量が過多になり、冷媒流量が過多とな
って液冷媒が圧縮機2に戻9、やはシ冷却能力が低下し
た。
Furthermore, if the amount of refrigerant is set to the optimum amount for cooling the refrigerator compartment 7 by the high-temperature evaporator 8, the amount of refrigerant will be excessive when cooling the refrigerator compartment 4 by the low-temperature evaporator 5, and the refrigerant flow rate will be reduced. The amount of liquid refrigerant returned to the compressor 2, resulting in a decrease in cooling capacity.

本発明は上記従来の欠点を除去するために成されたもの
であり、冷蔵庫のように制御温度の異る複数の保冷室を
有する場合において、各保冷室を夫々冷却運転する際に
冷媒量を最適に調整することができ、これによって冷却
能力を向上して運転効率を向上することができる冷却装
置を提供することを目的とする。
The present invention has been made in order to eliminate the above-mentioned conventional drawbacks, and when a refrigerator has a plurality of cold storage chambers with different control temperatures, it is possible to reduce the amount of refrigerant when cooling each cold storage chamber. It is an object of the present invention to provide a cooling device that can be optimally adjusted and thereby improve cooling capacity and operational efficiency.

以下本発明の実施例を図面とともに説明する。Embodiments of the present invention will be described below with reference to the drawings.

第2図において、ICは低温蒸発器5とその上流側に設
けられた第1の毛細管6とさらにその上流側に設けられ
た第1の電磁弁11と低温蒸発器5の下流側に設けられ
た逆止弁12を直列に接続した分岐管路で、分岐管路1
 b + 1 cは冷媒管路1における凝縮器3の下流
側に並列に接続されるが、凝縮器3と各分岐管路1b、
1cとの間には冷媒の液溜め13が設けられ、分岐管路
1bは液溜め13の底部に接続され、分岐管路1cの端
部は液溜め13の底部から挿入されて−L部まで立上っ
ている。又、14は圧縮機2の吸入側に設けられたアキ
ュムレータである。
In FIG. 2, the IC includes a low-temperature evaporator 5, a first capillary tube 6 provided upstream of the low-temperature evaporator 5, a first electromagnetic valve 11 provided further upstream of the low-temperature evaporator 5, and a first capillary tube 6 provided downstream of the low-temperature evaporator 5. A branch pipe in which check valves 12 are connected in series, and the branch pipe 1
b + 1 c is connected in parallel to the downstream side of the condenser 3 in the refrigerant pipe 1, but the condenser 3 and each branch pipe 1b,
A refrigerant reservoir 13 is provided between the refrigerant reservoir 1c, the branch pipe 1b is connected to the bottom of the fluid reservoir 13, and the end of the branch pipe 1c is inserted from the bottom of the fluid reservoir 13 to the -L section. It's standing up. Further, 14 is an accumulator provided on the suction side of the compressor 2.

上記構成の冷却装置において、冷媒量は高温蒸発器8に
よって冷蔵室7を冷却する際に最適な量とする。そして
、冷蔵室7が所定温度に冷却されていないときには、第
1を磁弁11を閉じて第2電磁弁10を開く。この場合
、凝縮器3により凝縮された冷媒は液状と々って液溜め
13に流入し、。
In the cooling device having the above configuration, the amount of refrigerant is set to be the optimum amount for cooling the refrigerator compartment 7 by the high-temperature evaporator 8. When the refrigerator compartment 7 is not cooled to a predetermined temperature, the first solenoid valve 11 is closed and the second solenoid valve 10 is opened. In this case, the refrigerant condensed by the condenser 3 flows into the liquid reservoir 13 in liquid form.

その底部から第2の電磁弁10を通り、第2の毛細管9
において減圧されて低温となシ、高温蒸発器8において
蒸発して冷蔵室7を冷却する。高温蒸発器8を流出した
冷媒は逆止弁12があるので低温蒸発器5に溜まり込む
ことがなく、アキュムレータ14を介して圧縮機2へ戻
る。又、冷凍室4が所定温度に冷却されていない場合に
は第2の電磁弁10を閉じて第1の電磁弁11を開くこ
とによシ、冷媒は凝縮器3から液溜め13に流入し、液
溜め13内に分岐管路1cの先端高さまで溜まυ、この
高さを越えると液溜め13から流出し、第1の電磁弁1
1を通って第1の毛細管6において減圧されて低温とな
シ、低温蒸発器5において蒸発して冷凍室4を冷却する
。このように低温蒸発器5を運転する際には液溜め13
内には分岐管路1cの立上シ高さ分だけ冷媒が溜まるの
で、この冷媒の液溜め量が各蒸発器5.8の運転時の適
正冷媒量の差となるよう分岐管路1cの端部の立上シ高
さを定めることによシ各蒸発器5,8の運転を最適に行
うことができ、冷却能力の向上によシ運転効率を向上す
ることができる。
From its bottom, it passes through the second solenoid valve 10 and the second capillary tube 9
The pressure is reduced to a low temperature, and the temperature is evaporated in a high-temperature evaporator 8 to cool the refrigerator compartment 7. Since there is a check valve 12, the refrigerant flowing out of the high temperature evaporator 8 does not accumulate in the low temperature evaporator 5, and returns to the compressor 2 via the accumulator 14. Furthermore, when the freezer compartment 4 is not cooled to a predetermined temperature, the second solenoid valve 10 is closed and the first solenoid valve 11 is opened, so that the refrigerant flows from the condenser 3 into the liquid reservoir 13. , the liquid accumulates in the reservoir 13 up to the height of the tip of the branch pipe 1c υ, and when this height is exceeded, it flows out from the reservoir 13 and closes the first solenoid valve 1.
1, the pressure is reduced in the first capillary tube 6, the temperature is reduced, and the liquid is evaporated in the low-temperature evaporator 5 to cool the freezer compartment 4. When operating the low temperature evaporator 5 in this way, the liquid reservoir 13
Since the refrigerant is accumulated in the branch line 1c by the height of the rising height of the branch line 1c, the amount of refrigerant accumulated in the branch line 1c is adjusted so that the difference in the appropriate amount of refrigerant during operation of each evaporator 5.8 is achieved. By determining the rising height of the end portion, each evaporator 5, 8 can be operated optimally, and the cooling capacity can be improved, thereby improving the operating efficiency.

尚、上記実施例では分岐管路ICの端部を液溜め13の
底部を貫通して立上らせるようにしたが、該端部を液溜
め13の中部又は上部に貫通するようにしても適正冷媒
量の差だけ液溜め13に溜まる位置関係であれば良い。
In the above embodiment, the end of the branch pipe IC is made to penetrate through the bottom of the liquid reservoir 13 and stand up, but it is also possible to make the end pass through the middle or upper part of the liquid reservoir 13. Any positional relationship is sufficient as long as the difference in the appropriate amount of refrigerant remains in the liquid reservoir 13.

又、上記実施例では制御温度の異る二つの保冷室を冷却
する場合について述べたが、三つ以上の保冷室を異る温
度に冷却する場合即ち蒸発温度が異る三つ以上の蒸発器
を冷却運転する場合においても夫々の適正冷媒量の差だ
け液溜め量が異るように蒸発器を有する各分岐管路を液
溜め13に接続すれば良い。
Furthermore, in the above embodiment, a case was described in which two cold storage chambers with different control temperatures are cooled, but when three or more cold storage chambers are cooled to different temperatures, that is, three or more evaporators with different evaporation temperatures are used. Even in the case of cooling operation of the refrigerant, it is sufficient to connect each branch pipe line having an evaporator to the liquid reservoir 13 so that the amount of the liquid reservoir differs by the difference in the appropriate amount of refrigerant.

以上のように本発明の冷却装置においては、凝縮器と蒸
発温度が異る蒸発器を有する各分岐管路との間に蒸発温
度が低い蒸発器を有する分岐管路に対するほど冷媒の液
溜め量が多くなる液溜めを設けておシ、この液溜め量の
差を各蒸発器運転時の適正冷媒量の差に設定することに
よシ各蒸発器を適正冷媒量で運転することができ、これ
によって冷却能力を向上して運転効率を向上することが
できる。
As described above, in the cooling device of the present invention, between the condenser and each branch pipe having an evaporator with a different evaporation temperature, the amount of refrigerant stored in the branch pipe having an evaporator with a lower evaporation temperature is larger than that of the branch pipe having an evaporator with a lower evaporation temperature. By providing a liquid reservoir in which the amount of refrigerant increases, and by setting the difference in the amount of liquid in the reservoir to the difference in the appropriate amount of refrigerant when operating each evaporator, each evaporator can be operated with the appropriate amount of refrigerant. This improves the cooling capacity and improves the operating efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の冷蔵庫における冷却装置の構成図、第2
図は本発明に係る冷蔵庫における冷却装置の構成図であ
る。 1・−・冷媒管路、1 b + 1 c・・・分岐管路
、2・・・圧縮機、3・・・凝縮器、4・・・冷凍室、
5・・・低温蒸発器、6・・・第1毛細管、7・−・冷
蔵庫、8・・・高温蒸発器、9・・・第2毛細管、10
・・・第2電磁弁、11・・・第1電磁弁、13・・・
液溜め。 尚、図中同一符号は同−又は相当部分を示す。 代理人   葛  野  信  −
Figure 1 is a configuration diagram of a cooling device in a conventional refrigerator;
The figure is a configuration diagram of a cooling device in a refrigerator according to the present invention. 1... Refrigerant pipe line, 1 b + 1 c... Branch pipe line, 2... Compressor, 3... Condenser, 4... Freezer compartment,
5... Low temperature evaporator, 6... First capillary tube, 7... Refrigerator, 8... High temperature evaporator, 9... Second capillary tube, 10
...Second solenoid valve, 11...First solenoid valve, 13...
liquid reservoir. Note that the same reference numerals in the figures indicate the same or corresponding parts. Agent Shin Kuzuno −

Claims (1)

【特許請求の範囲】[Claims] (1)制御温度の異る複数の保冷室に夫々蒸発器を設け
るとともに冷媒管路には冷媒を圧縮する圧縮機とこの圧
縮された冷媒を凝縮する凝縮器を設け、冷媒管路の凝縮
器の下流側には、蒸発器と蒸発器の上流側に設けられた
流路抵抗の異る毛細管等の膨張機構と弁機構とをそれぞ
れ有する分岐管路を並列に接続した冷却装置において、
上記凝縮器と各分岐管路との間に、蒸発温度が低い蒸発
器を有する分岐管路に対するほど冷媒の液溜め量が多く
なる液溜めを設けたことを特徴とする冷却装置。
(1) An evaporator is provided in each of the multiple cold storage rooms with different control temperatures, and the refrigerant pipe is provided with a compressor that compresses the refrigerant and a condenser that condenses the compressed refrigerant. In a cooling device in which an evaporator and a branch pipe line each having an expansion mechanism such as a capillary tube with different flow resistance and a valve mechanism provided on the upstream side of the evaporator are connected in parallel on the downstream side of the evaporator,
A cooling device characterized in that a liquid reservoir is provided between the condenser and each branch pipe, and the amount of refrigerant stored in the branch pipe increases as the branch pipe has an evaporator with a lower evaporation temperature.
JP10315182A 1982-06-16 1982-06-16 Cooling device Granted JPS58219366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10315182A JPS58219366A (en) 1982-06-16 1982-06-16 Cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10315182A JPS58219366A (en) 1982-06-16 1982-06-16 Cooling device

Publications (2)

Publication Number Publication Date
JPS58219366A true JPS58219366A (en) 1983-12-20
JPS6257905B2 JPS6257905B2 (en) 1987-12-03

Family

ID=14346499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10315182A Granted JPS58219366A (en) 1982-06-16 1982-06-16 Cooling device

Country Status (1)

Country Link
JP (1) JPS58219366A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60182667U (en) * 1984-05-15 1985-12-04 シャープ株式会社 Cooling system
US6775998B2 (en) 2000-11-10 2004-08-17 Matsushita Refrigeration Company Freezer and refrigerator provided with freezer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60182667U (en) * 1984-05-15 1985-12-04 シャープ株式会社 Cooling system
JPH0311661Y2 (en) * 1984-05-15 1991-03-20
US6775998B2 (en) 2000-11-10 2004-08-17 Matsushita Refrigeration Company Freezer and refrigerator provided with freezer

Also Published As

Publication number Publication date
JPS6257905B2 (en) 1987-12-03

Similar Documents

Publication Publication Date Title
JP3743861B2 (en) Refrigeration air conditioner
US4123914A (en) Energy saving change of phase refrigeration system
US3065610A (en) Charge stabilizer for heat pump
JPH07120076A (en) Air conditioner
JPS58219366A (en) Cooling device
JPH078999Y2 (en) Air source heat pump
JP3475203B2 (en) Superheat control device for capillary tube
JP4258030B2 (en) Refrigerant circulation device
KR100510851B1 (en) Condenser Structure Of Outdoor Unit For Air Conditioner
JPS5913572Y2 (en) Air-cooled heat pump equipment
JPS62178856A (en) Multi-chamber air conditioner
JPS5896955A (en) Oil return device for refrigerator
JPS5849863A (en) Refrigerating cycle of heat pump type hot-water supply machine
JPH04132369U (en) Air conditioner refrigerant circuit
JPS5969663A (en) Refrigeration cycle
KR100510849B1 (en) Condensation Structure of Refrigeration System
JPS58148358A (en) Refrigerator
JPS58130967A (en) Refrigerator
JPS583011Y2 (en) heat pump equipment
JPH0692849B2 (en) Turbo refrigerator
JPS58120056A (en) Refrigerator
JPH05157373A (en) Heat pump
JPH04132374U (en) Air conditioner refrigerant circuit
JPS582561A (en) Two-stage compressing refrigerator
JPS58130968A (en) Refrigerator