JPS58217228A - Wire-cut electric discharge machining method - Google Patents

Wire-cut electric discharge machining method

Info

Publication number
JPS58217228A
JPS58217228A JP9831782A JP9831782A JPS58217228A JP S58217228 A JPS58217228 A JP S58217228A JP 9831782 A JP9831782 A JP 9831782A JP 9831782 A JP9831782 A JP 9831782A JP S58217228 A JPS58217228 A JP S58217228A
Authority
JP
Japan
Prior art keywords
machining
wire
electric discharge
inner corner
machined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9831782A
Other languages
Japanese (ja)
Other versions
JPS6257451B2 (en
Inventor
Takeshi Yatomi
弥冨 剛
Bunpei Makino
牧野 文平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP9831782A priority Critical patent/JPS58217228A/en
Publication of JPS58217228A publication Critical patent/JPS58217228A/en
Publication of JPS6257451B2 publication Critical patent/JPS6257451B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting
    • B23H7/06Control of the travel curve of the relative movement between electrode and workpiece
    • B23H7/065Electric circuits specially adapted therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To obviate an unmachined part left behind as well as to make improvements in the dimensional accuarcy, by machining the inner corner of a workpiece once again with the same point-to-point trace as did the first time machining. CONSTITUTION:In case of a workpiece 12 processed for wire-cut machining, the same point-to-point traces A, B and Q as the first time machining are machined by a wire 10 in order to remove an unmachined part 18 left behind at an inner corner attributable to wire flection. At this time, the machining condition should be set in a range does not affect the width of a machined groove. With this method, highly accurate machining takes place in a stable manner.

Description

【発明の詳細な説明】 本発明は、ワイヤカット放電加工方法、特にインコーナ
一部での加工形状精度の不具合を改善するワイヤカット
放電加工方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a wire-cut electric discharge machining method, and particularly to a wire-cut electric discharge machining method that improves defects in machining shape accuracy at a part of an inner corner.

従来よシ、一般的に第1図の理想的な加工模式図で示さ
れるように、ワイヤ電極10により被加工物12を加工
した場合、加工溝14が形成される。このとき、ワイヤ
電極lOは、加工軌跡16上を数値制御装置等によシ移
動制御さ五る。第1図で社図中O点にR部で示されるコ
ーナー円弧が挿入されている。ここで、インコーナ一部
とは、上記R部の外側の円弧部のことを指し、一般的に
杜、加工面によって内側に囲まれたコーナ一部のことを
意味しており、本文祉、それも含んで以下インコーナ一
部と呼ぶことにする。
Conventionally, when a workpiece 12 is machined with a wire electrode 10, a machined groove 14 is generally formed, as shown in the ideal processing schematic diagram of FIG. At this time, the movement of the wire electrode 10 on the machining trajectory 16 is controlled by a numerical control device or the like. In FIG. 1, a corner arc indicated by an R section is inserted at point O in the company map. Here, the inner corner part refers to the outer arc part of the above-mentioned R part, and generally refers to the part of the corner that is surrounded on the inside by the forest and processed surface. This will be referred to as the inner corner part hereinafter.

次に第2図に示されるように、実際の加工においては、
インコーナ一部は加工後にアンダーカット部18を生じ
、正常な破線で示される形状に対して加工不足分として
表われる。このアンダーカット部18のために、例えば
、パンチとダイのようなプレス型においては、コーナ一
部のクリアランスが狭くなって打抜形状が乱れたシ、も
しくはパンチとダイかはまル合わないという事態を生ず
る欠点を有している。
Next, as shown in Figure 2, in actual processing,
An undercut portion 18 is formed in a part of the inner corner after machining, and appears as an insufficient machining portion compared to the normal shape shown by the broken line. Because of this undercut part 18, for example, in a press die such as a punch and die, the clearance at a part of the corner becomes narrow and the punched shape becomes irregular, or the punch and die do not fit properly. It has drawbacks that can cause problems.

以下、上記インコーナ一部にアンダーカット部が生じる
理由を第3図を用いて説明する。第3図において、20
はワイヤガイドを示し、22はワイヤ電極lOの実際に
通るワイヤ軌跡を示している。一般に、放電加工中、加
工液の気化爆発等によルワイヤ電極lOにはその進行方
向とは逆向きに反撥力が働き、ワイヤガイド20に対し
てeなるたわみ量による誤差を生じている。
The reason why an undercut portion occurs in a part of the inner corner will be explained below with reference to FIG. 3. In Figure 3, 20
2 indicates a wire guide, and 22 indicates a wire trajectory that the wire electrode IO actually passes. Generally, during electrical discharge machining, a repulsive force acts on the wire electrode lO in the opposite direction to its advancing direction due to vaporization explosion of the machining fluid, etc., causing an error in the wire guide 20 due to the amount of deflection e.

そこで、ワイヤガイド20が加工軌跡16上を(e1→
G2→G3→G4)と移動すると、ワイヤ電極10はワ
イヤ軌跡22上を(Wl→W2→W3→W4)とする。
Therefore, the wire guide 20 moves on the machining trajectory 16 (e1→
When the wire electrode 10 moves as follows (W1→W2→W3→W4), the wire electrode 10 moves along the wire locus 22 (W1→W2→W3→W4).

すなわち、実加工でB1ワイヤ軌跡22はインコーナ一
部では、ワイヤ電極10のたわみが原因して加工軌跡1
6のさらに内側に入ってしまう。このため、第2図で示
すアンダーカット部18が生じるものと一般的に説明さ
れている。
In other words, in actual machining, the B1 wire trajectory 22 is different from the machining trajectory 1 at the inner corner due to the bending of the wire electrode 10.
It goes further inside of 6. Therefore, it is generally explained that an undercut portion 18 shown in FIG. 2 is generated.

このアンダーカット部1Bは、内側に数十μmに及ぶこ
とがあり加工形状精度を悪くしている。
This undercut portion 1B may extend inwardly to several tens of micrometers, impairing the accuracy of the processed shape.

そこで、加工形状精度を向上させる加工方法として、一
度加工した面を再度加工するセカンドカット法という方
法が知られている。この方法は、一度加工した加工面に
対して二度目以降の加工では順に寄せると共に一度目の
加工エネルギーに対して加工エネルギーが弱くなるよう
に落として行なう方法である。
Therefore, as a processing method for improving the accuracy of processed shapes, a method called a second cut method is known in which a surface that has been processed once is processed again. This method is a method in which a machined surface that has been machined once is sequentially brought closer to the machined surface for the second time onwards, and the machining energy is lowered so that it becomes weaker than the energy used for the first time.

第4図は、一度目の加工が終った後の二度目の加工にお
いて、インコーナ一部を加工する状況を示している。一
度目の加工でのアンダーカットはR部の範囲である。第
4図において、16は一度目の加工におけるワイヤ電極
10の加工軌跡であり、24u二度目の加工におけるワ
イヤ電極1゜の加工軌跡であル、hだけ被加工物12の
加工面側にシフトさせである。斜面部26は二度目の加
工で除去の予定である加工除去部であシ、直線部ではm
なる量が加工除去される。
FIG. 4 shows a situation in which a part of the inner corner is machined in the second machining after the first machining is completed. The undercut in the first machining is within the R section. In Fig. 4, 16 is the machining locus of the wire electrode 10 in the first machining, and 24u is the machining locus of the wire electrode 1° in the second machining. It's a shame. The slope part 26 is a machining removal part that is scheduled to be removed in the second machining, and the straight part is m.
amount is removed by machining.

このように、二度目の加工を行なう場合、R部以外の直
線部では、mなる加工除去量であるが、インコーナ一部
のR部ではそれよシも加工除去量が相当増大している。
In this way, when machining is performed for the second time, the machining removal amount is m in the straight line portion other than the R portion, but the machining removal amount is considerably increased in the R portion of a part of the inner corner.

さらに、一度目の加工面を形成したときの加工速度はF
、であシ、二度目の加工では加工除去量が一度目よル少
ないので、’1よル速い加工速度ちを選定する必要があ
る。しかし、ある加工速度F、を決めたとしても、R部
で急激に加工除去量が増加するため短絡を生じることが
多かった。そのため、直線部の加工除去量mを減少する
と、二度目以降の加工形状修正に回数が多く費やされた
Furthermore, the machining speed when forming the first machined surface is F
However, in the second machining, the amount removed by machining is less than the first time, so it is necessary to select a machining speed that is one bit faster. However, even if a certain machining speed F is determined, the amount removed by machining rapidly increases at the R portion, often resulting in short circuits. Therefore, when the machining removal amount m of the straight portion was reduced, a large number of times were spent on the second and subsequent machining shape corrections.

またサーボ送シの場合においても、定速送)よりは少し
軽減されるものの、加工除去量の変化幅が大きいために
過渡的に不安定となるし、サーボ感度を調整するにして
も種々の状況によシ異なるため、たいへん繁雑かつ複雑
な制御が必要になってくる。
In addition, in the case of servo feed, although the reduction is slightly lower than constant speed feed, it becomes transiently unstable due to the large variation range of the machining removal amount, and even if the servo sensitivity is adjusted, various Since it varies depending on the situation, very complicated and complex control is required.

本発明は前述した従来の課題に鑑み為されたものであシ
、その目的はセカンドカット法において、特にインコー
ナ一部の加工形状修正が、短時間かつ少ない回数で完了
することのできるワイヤカット放電加工方法を提供する
ことにある。
The present invention has been devised in view of the above-mentioned conventional problems, and its purpose is to use a wire cut discharge method in which machining shape correction of a part of an inner corner can be completed in a short time and with a small number of times in a second cut method. The purpose is to provide a processing method.

上記目的を達成するために、本発明はワイヤ電極と該ワ
イヤ電極を貫通させた被加工物との間に加工電源によシ
ミ圧を印加し、上記のワイヤ電極と被加工物の対向する
微少間隙において、加工液を媒体として繰シ返し放電を
生じさせるワイヤカット放電加工方法において、一度加
工した軌跡と同一の軌跡を通って、一度目に加工した加
工溝幅に大きな影響を与えない範囲の加工条件で再度放
電加工することを特徴とする。
In order to achieve the above object, the present invention applies a stain pressure using a machining power source between a wire electrode and a workpiece that has passed through the wire electrode, and In the wire-cut electrical discharge machining method, which repeatedly generates electrical discharge in the gap using machining fluid as a medium, the machined groove width is passed through the same trajectory as the one machined once, and within a range that does not significantly affect the width of the machined groove that was machined the first time. It is characterized by performing electrical discharge machining again under the same machining conditions.

そして、一度目に加工した加工速度と同一の加工速度で
二度目を加工すること、一度目に加工した加工条件と同
一の加工条件で二度目を加工すること、二度目の加工が
インコーナ一部において施されること、二度目の加工が
インコーナ一部のある一定区間において施されることを
特徴とする。
Then, the second machining is performed at the same machining speed as the first machining speed, the second machining is performed under the same machining conditions as the first machining, and the second machining is a part of the inner corner. The second processing is performed in a certain section of a part of the inner corner.

以下、本発明の放電加工方法を第5図に基づいて説明す
る。
Hereinafter, the electrical discharge machining method of the present invention will be explained based on FIG. 5.

ワイヤ電極lOは、一度目の加工における加工軌跡16
上をセカンドカット法の二度目においても再度通るよう
にする。すなわち、一度目の加工の加工溝幅を8とする
と、%なる加工面と加工軌跡16との距離がある。しか
も、二度目の加工速度?、は、一度目の加工速度F、と
同一であシ、さらに加工条件も同一である。
The wire electrode lO is the machining trajectory 16 in the first machining.
The upper part should be passed through again in the second cut method. That is, if the machining groove width of the first machining is 8, there is a distance between the machining surface and the machining trajectory 16 of %. Moreover, the second machining speed? , is the same as the first machining speed F, and the machining conditions are also the same.

このようにして二度目の加工を行なうと、アンダーカッ
ト部18のみで放電が生じ、他の部分では放電が起きな
い。すなわち、直線区間Pム及び直線区間BQでは放電
が起きないので、円弧区間AB部で放電が生じるわけで
ある。
When machining is performed for the second time in this manner, electric discharge occurs only in the undercut portion 18, and no electric discharge occurs in other portions. That is, since no discharge occurs in the straight section P and the straight section BQ, discharge occurs in the arc section AB.

この放電の発生の理由を第6図を用いて説明する。この
第6図は縦軸に加工溝幅Sを表わし、横軸に加工速度F
を表わしている。本図から明らかな如く、加工溝幅Sは
加工速度Fの増大に伴い減少することが知られている。
The reason why this discharge occurs will be explained using FIG. 6. In Fig. 6, the vertical axis represents the machining groove width S, and the horizontal axis represents the machining speed F.
It represents. As is clear from this figure, it is known that the machining groove width S decreases as the machining speed F increases.

換言子れば、加工溝幅Sは加工速度Fと加工条件がバラ
ンスした平衡状態の結果であるので一義的に定まってく
る。
In other words, the machining groove width S is uniquely determined because it is the result of an equilibrium state in which the machining speed F and machining conditions are balanced.

そこで一度目、二度目の加工速度Ft (””t )に
よシ加工溝幅S1が定まる。よって第5図中の距離ルは
定まってくるので、前述したように直線区間Pム、BQ
で社放電が生じなくて、円弧区間ABでは放電が生じ正
常な加工筋状精度が得られるわけである。ここで、第6
図において、アンダーカット部18の放電反撥力により
、ワイヤ電極lOが振動及びたわむのを少なくするため
に、二度目以降の加工では極端にワイヤ張力を大きく、
シて実験したところ、さらに良好な結果が得られた。
Therefore, the machining groove width S1 is determined by the first and second machining speeds Ft (""t). Therefore, the distance L in Fig. 5 is determined, so as mentioned above, the straight sections Pm, BQ
In this case, no electric discharge occurs, but electric discharge occurs in the arc section AB, and normal machining streak accuracy is obtained. Here, the sixth
In the figure, in order to reduce the vibration and deflection of the wire electrode IO due to the discharge repulsion force of the undercut portion 18, the wire tension is extremely increased in the second and subsequent machining.
When we conducted an experiment, even better results were obtained.

上記のように二度目の加工速度が−i目と同じでは加工
時間が2倍かかつてしまう。そこで、横軸に加工位置を
表わし、縦軸に加工速度を表わした第7図に示すように
、円弧区間Ωは加工速度Ft(=FI)で、他の直線区
、filjPA、BQ、は加工速度Fo(Fo) F、
、?、)にすることによシ加工時間が大幅に短縮される
。上記加工速度F。はF!、’lよシ大幅に速いので、
前述の如く、当然放電は生じない。
As mentioned above, if the second machining speed is the same as the -i-th machining speed, the machining time will be twice as long. Therefore, as shown in Figure 7, where the horizontal axis represents the machining position and the vertical axis represents the machining speed, the arc section Ω is the machining speed Ft (=FI), and the other straight sections, filjPA, BQ, are the machining speed. Speed Fo (Fo) F,
,? ), the machining time is significantly shortened. The above processing speed F. is F! ,'l is significantly faster, so
As mentioned above, of course no discharge occurs.

インコーナ一部は第5図に示すように乱れた形状なので
、A、Hの位置を生テープ上で指定しても良い。種々の
実験によれば、インコーナ一部付近の前後o、:Iit
m程度は、加工速度は一度目と同一に選ぶ方が良好であ
った。このことは、前述したインコーナ一部全部に対し
て適用できる。
Since a part of the inner corner has a disordered shape as shown in FIG. 5, the positions A and H may be specified on the raw tape. According to various experiments, the front and rear o, near a part of the inner corner: Iit
For about m, it was better to select the same processing speed as the first time. This can be applied to all of the inner corners described above.

次に、本発明放電加工方法を実加工に適用した結果につ
いて第8図を用いて説明する。
Next, the results of applying the electric discharge machining method of the present invention to actual machining will be explained using FIG. 8.

まず、第8図(a)は従来のセカンドカット法によるも
ので、縦軸にワイヤ電極10と被加工物12間の加工中
の平均加工電圧vIを表わし、横軸に第5図の加工位置
を表わしている。本図中Vl 2が直線区間Pム、BQ
での平均加工電圧であシ、円弧区間ムBでは初期に短絡
が発生し、平均加工電圧vlOで落ち着いている。これ
は、加工量が急激に増大したためである。
First, FIG. 8(a) is based on the conventional second cut method, and the vertical axis represents the average machining voltage vI during machining between the wire electrode 10 and the workpiece 12, and the horizontal axis represents the machining position shown in FIG. It represents. In this figure, Vl 2 is a straight section Pm, BQ
In the arc section MB, a short circuit occurs at the beginning, and the average machining voltage is settled at vlO. This is because the amount of processing increased rapidly.

次に第8図(b)は、本発明放電加工方法を実施した後
の三度目での加工結果である。なおミこの三度目の加工
条件は、前記第8図(a)の二度目と同じ加工条件であ
る。この場合は、どの加工位置でも平均加工電圧はvl
) 2で一定であった。これは、本発明放電加工方法に
よる二度目の加工で、加工量の変化を解消できたことを
証明するものである。
Next, FIG. 8(b) shows the results of the third machining after implementing the electrical discharge machining method of the present invention. Note that the machining conditions for the third time are the same as the machining conditions for the second time shown in FIG. 8(a). In this case, the average machining voltage at any machining position is vl
) was constant at 2. This proves that the change in machining amount could be resolved by the second machining using the electrical discharge machining method of the present invention.

第9図(−)、(りは、第8図(a)、(b)に対応し
た加工結果の内容である。従来のセカンドカット法では
、第9図<>に示すように、アンダーカット部18が一
度目よシ減少したもののまだ残っている。また短絡(第
8図(a)中のA付近)によシ、アンダーカット部18
の加工面に傷が残っていた。結局、アンダーカット部1
8を解消するには、まだ数回放電加工を行なって少しづ
つ収束させてい、くシかない。しかし、実際は第9図(
a)の状態からさらに数回加工を行なったが、アンダー
カット部は完全には解消されなかった。これに対して、
本発明放電加工方法では、一度目と同一の加工軌跡を通
って、しかも前記第7図のような加工速度の変化をさせ
て短時間で二度目の加工を行なったところ、インコーナ
一部は完全に正常になっていた。
Figure 9 (-) and (ri) are the contents of the machining results corresponding to Figure 8 (a) and (b). In the conventional second cut method, as shown in Figure 9 Although the portion 18 has been reduced for the first time, it still remains.In addition, due to a short circuit (near A in Fig. 8(a)), the undercut portion 18
There were scratches left on the machined surface. After all, undercut part 1
In order to solve problem 8, we need to perform electrical discharge machining several times to gradually converge, and it will not fade. However, in reality, Figure 9 (
Although processing was performed several more times from state a), the undercut portion was not completely eliminated. On the contrary,
In the electrical discharge machining method of the present invention, when the second machining was performed in a short time by passing the same machining trajectory as the first machining trajectory and changing the machining speed as shown in Fig. 7, a part of the inner corner was completely cut. It had become normal.

以上の如く、本発明は、セカンドカット法における二度
目の加工において、ワイヤ電極を一度目の加工軌跡と同
一軌跡を通し、加工条件、インコーナ一部での加工速度
を同一にして再度放電加工を行なうものであるから、従
来のような長時間を費やさずに、高精度な加工が安定し
て出来るものである。
As described above, in the second machining in the second cut method, the present invention runs the wire electrode along the same trajectory as the first machining trajectory, and performs electrical discharge machining again under the same machining conditions and machining speed at the inner corner part. Because of this, it is possible to stably perform high-precision machining without spending a long time unlike conventional methods.

なお、図示例では二度目の加工を一度目の加工内容と同
じで行なったが、同一軌跡を通ることが重要なので他の
条件は変更しても同一の効果は得られる。ただし、加工
溝幅に大きく影響を与えない範囲であることが必要であ
る。また、サーボ送シでセカンドカットを行なう場合は
、インコーナ一部で定速に変更することによシ上記と同
様な結果が得られる。
In the illustrated example, the second machining was performed with the same contents as the first machining, but since it is important to follow the same trajectory, the same effect can be obtained even if other conditions are changed. However, it is necessary that it is within a range that does not significantly affect the width of the machined groove. Further, when performing a second cut using servo feed, the same result as above can be obtained by changing the speed to a constant speed at a part of the inner corner.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は理想的な加工模式図、第2図は実際の加工での
インコーナ一部を示した加工模式図、第3図はアンダー
カットの発生原因を説明する図、第4図は従来のセカン
ドカット法を説明する図、第5図は本発明方法を説明す
る図、第6図は横軸に加工速度を表わし、縦軸に加工′
溝幅を表わした図、第7図は加工位置を表わし、縦軸に
加工速度を表わした図、第8図(a)、(b)は横軸に
加工位置を表わし、縦軸に平均加工電圧を表わした図、
第9図(a)、(b)は加工結果の内容を示す図で、同
図(a)は従来の方法による場合、同図(b)は本発明
方法による場合である。 各図中同一部材には同一符号を付し、lOはワイヤ電極
、12は被加工物、14は加工溝、16は一度目の加工
軌跡、18はアンダーカット部、20Lワイヤガイド、
22はワイヤ軌跡、24は二度目の加工軌跡、26は斜
線部である。。 代理人  弁理士  葛 野 信 − (ほか1名) 第1図 第3図 6 第4図 −,11,−11 第5図 力Oエイ1[1 第8図 カロ エ イ11
Figure 1 is an ideal machining schematic diagram, Figure 2 is a machining diagram showing a part of the inside corner in actual machining, Figure 3 is a diagram explaining the cause of undercut, and Figure 4 is a conventional machining diagram. Figure 5 is a diagram explaining the second cut method, Figure 5 is a diagram explaining the method of the present invention, Figure 6 shows the machining speed on the horizontal axis, and the machining speed on the vertical axis.
Figure 7 shows the groove width, Figure 7 shows the machining position, and the vertical axis shows the machining speed. Figures 8 (a) and (b) show the machining position on the horizontal axis, and the average machining on the vertical axis. Diagram showing voltage,
FIGS. 9(a) and 9(b) are diagrams showing the contents of the machining results, with FIG. 9(a) showing the case using the conventional method and FIG. 9(b) showing the case using the method of the present invention. The same members in each figure are given the same symbols, IO is the wire electrode, 12 is the workpiece, 14 is the machining groove, 16 is the first machining trajectory, 18 is the undercut part, 20L wire guide,
22 is the wire trajectory, 24 is the second machining trajectory, and 26 is the shaded area. . Agent Patent attorney Makoto Kuzuno - (1 other person) Figure 1 Figure 3 Figure 6 Figure 4 -, 11, -11 Figure 5 Riki Oei 1 [1 Figure 8 Karo Ei 11]

Claims (1)

【特許請求の範囲】 +11  ワイヤ電極と該ワイヤ電極を貫通させた被加
工物との間に加工電源にょシミ圧を印加し、上記のワイ
ヤ電極と被加工物の対向する微少間隙において、加工液
を媒体として繰シ返し放電を生じさせるワイヤカット放
電加工方法において、一度加工した軌跡と同一の軌跡を
通って、一度目に加工した加工溝幅に大きな影響を与え
ない範囲の加工条件で再度放電加工することを特徴とす
るワイヤカット放電加工方法。 (2)  特許請求の範囲+1)の方法において、一度
目に加工した加工速度と同一の加工速度で二度目を加工
することを特徴とするワイヤカット放電加工方法。 (31%許請求の範囲(1)、(2)の方法において、
一度目に加工した加工条件と同一の加工条件で二度目を
加工することを特徴とするワイヤカット放電加工方法。 (4)特許請求の範囲(2)、(3)の方法において、
二度目の加工がインコーナ一部において施されることを
特徴とするワイヤカット放電加工方法。 (5)特許請求の範囲(4)の方法において、二度目の
加工がインコーナ一部のある一定区間において施される
ことを特徴とするワイヤカット放電加工方法。
[Claims] +11 A stain pressure is applied to a machining power source between a wire electrode and a workpiece passed through the wire electrode, and a machining liquid is applied in a minute gap between the wire electrode and the workpiece facing each other. In the wire cut electric discharge machining method, which repeatedly generates electric discharge using a medium as a medium, electric discharge is performed again along the same trajectory as the one machined once, under machining conditions that do not significantly affect the width of the machined groove that was machined the first time. A wire cut electric discharge machining method characterized by machining. (2) A wire-cut electric discharge machining method according to claim +1), characterized in that the second machining is performed at the same machining speed as the first machining speed. (31% In the method of claims (1) and (2),
A wire cut electrical discharge machining method characterized by performing a second machining under the same machining conditions as the first machining. (4) In the method of claims (2) and (3),
A wire cut electric discharge machining method characterized in that a second machining is performed on a part of the inner corner. (5) A wire-cut electric discharge machining method according to claim (4), characterized in that the second machining is performed in a certain section of a part of the inner corner.
JP9831782A 1982-06-08 1982-06-08 Wire-cut electric discharge machining method Granted JPS58217228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9831782A JPS58217228A (en) 1982-06-08 1982-06-08 Wire-cut electric discharge machining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9831782A JPS58217228A (en) 1982-06-08 1982-06-08 Wire-cut electric discharge machining method

Publications (2)

Publication Number Publication Date
JPS58217228A true JPS58217228A (en) 1983-12-17
JPS6257451B2 JPS6257451B2 (en) 1987-12-01

Family

ID=14216533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9831782A Granted JPS58217228A (en) 1982-06-08 1982-06-08 Wire-cut electric discharge machining method

Country Status (1)

Country Link
JP (1) JPS58217228A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60172420A (en) * 1984-02-17 1985-09-05 Inoue Japax Res Inc Electric discharge machining method
US5185507A (en) * 1990-11-20 1993-02-09 Mitsubishi Denki K.K. Wire electric discharge machining method for machining entrance lines and apparatus therefor
US5418344A (en) * 1992-10-20 1995-05-23 Mitsubishi Denki Kabushiki Kaisha Method and apparatus for wire-cutting electrical discharge machining of a corner
JP2015123544A (en) * 2013-12-26 2015-07-06 ファナック株式会社 Wire electric discharge machine performing path correction in concave arc corner part, machining path generation device for the wire electric discharge machine, and machining method using the wire electric discharge machine
US10300542B2 (en) 2014-09-24 2019-05-28 Mitsubishi Electric Corporation Wire electrical discharge machining apparatus and method of manufacturing semiconductor wafer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60172420A (en) * 1984-02-17 1985-09-05 Inoue Japax Res Inc Electric discharge machining method
US5185507A (en) * 1990-11-20 1993-02-09 Mitsubishi Denki K.K. Wire electric discharge machining method for machining entrance lines and apparatus therefor
US5418344A (en) * 1992-10-20 1995-05-23 Mitsubishi Denki Kabushiki Kaisha Method and apparatus for wire-cutting electrical discharge machining of a corner
JP2015123544A (en) * 2013-12-26 2015-07-06 ファナック株式会社 Wire electric discharge machine performing path correction in concave arc corner part, machining path generation device for the wire electric discharge machine, and machining method using the wire electric discharge machine
EP2889101A3 (en) * 2013-12-26 2015-10-07 Fanuc Corporation Wire electrical discharge machine, machining path generator of wire electrical discharge machine, and machining method for use in wire electrical discharge machine for performing path compensation in concave arc corner portion
US9796034B2 (en) 2013-12-26 2017-10-24 Fanuc Corporation Wire electrical discharge machine, machining path generator of wire electrical discharge machine, and machining method for use in wire electrical discharge machine for performing path compensation in concave arc corner portion
US10300542B2 (en) 2014-09-24 2019-05-28 Mitsubishi Electric Corporation Wire electrical discharge machining apparatus and method of manufacturing semiconductor wafer

Also Published As

Publication number Publication date
JPS6257451B2 (en) 1987-12-01

Similar Documents

Publication Publication Date Title
KR880002554B1 (en) Numerially controlled cutting method
CN102814563B (en) Wire electric discharge machine for taper-machining tilted workpiece
IT1017984B (en) PROCEDURE AND EQUIPMENT FOR ELECTROEROSIS PROCESSING VA OR RESPECTIVELY ELECTROCHI MICA OF PIECES
FR2419135A1 (en) ELECTROEROSION MACHINING PROCESS AND DEVICE
CN103909312A (en) Wire electrical discharge machine which corrects machining path in corner portion
EP0068029A1 (en) Method of controlling wire cut electric discharge machining
JPS58217228A (en) Wire-cut electric discharge machining method
KR920006651B1 (en) Method of calculating an amount of offset in a wire cut electric discharge machining operation
JP5731613B2 (en) Wire electric discharge machine and control device for wire electric discharge machine
JPH022663B2 (en)
JPH0160377B2 (en)
EP1459828B1 (en) Method of operating a wire electrical discharge machining apparatus
JPS6010854B2 (en) Wire cut electric discharge machining method
US3609280A (en) Method of making apertures and slots in electrically conductive workpieces by edm
JP5877915B2 (en) Numerical control device for controlling machine tools
US4229636A (en) Spark erosion machining process
JPS632728B2 (en)
JPH04764B2 (en)
JPH0783968B2 (en) Machining control method for wire cut electric discharge machine
JPS6026650B2 (en) Short circuit release device for wire cut electrical discharge machine
JPS58114823A (en) Machining control system for wire-cut electric discharge machine
JPH04336919A (en) Spiral machining method
JPH0230431A (en) Power unit for discharge processing
JPS5890426A (en) Control method for wire cut electric discharge machining
CH695885A5 (en) Method and apparatus for wire electrical discharge machining.