JPS5821582A - Radiation detector - Google Patents

Radiation detector

Info

Publication number
JPS5821582A
JPS5821582A JP56120137A JP12013781A JPS5821582A JP S5821582 A JPS5821582 A JP S5821582A JP 56120137 A JP56120137 A JP 56120137A JP 12013781 A JP12013781 A JP 12013781A JP S5821582 A JPS5821582 A JP S5821582A
Authority
JP
Japan
Prior art keywords
radiation
collimator
ray
partitions
radiation detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56120137A
Other languages
Japanese (ja)
Inventor
Moriyoshi Murata
村田 守義
Masayuki Nishiki
雅行 西木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP56120137A priority Critical patent/JPS5821582A/en
Publication of JPS5821582A publication Critical patent/JPS5821582A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • G21K1/025Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using multiple collimators, e.g. Bucky screens; other devices for eliminating undesired or dispersed radiation

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Nuclear Medicine (AREA)

Abstract

PURPOSE:To prevent the deformation of a collimator made up of thin partitions by reinforcing the partitions with a radiation transmitting fixed material interposed therebetween. CONSTITUTION:Partitions 22 for removing scattered radiation composing a collimator are reinforced with a porous fixed material 23 - small in the radiation absorption - interposed therebetween. With such an arrangement, the fixed material 23 interposed serves to secure the partitions 22 even when the collimator is made up of thin partitions 22. This maintains the strength of the partitions properly thereby checking the deformation of the collimator such as deflection and bending thereof.

Description

【発明の詳細な説明】 本発明はいわゆるコンピュータ・トモグラフィ装置等に
用いるのに最適な放射線検出器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a radiation detector most suitable for use in so-called computer tomography devices.

X線などの放射線を用いた横断面検査装置として知られ
るいわゆるコンピュータ・トモグラフィ(Comput
erized Tomography )装置は例えば
第1図<a> I tb)のように偏平な扇状のファン
ビームX@FXを曝射するX線源lと、このX線を検出
する複数のX線検出セルとを並設してなるX線検出器2
とを被検体Pを挾んで対峙させ、且つこれらX線源lお
よびX線検出器2を前記被検体Pを中心に互いに同方向
に同一角速度で回転移動させて被検体断面上の種々の方
向についてのX線投影データを収集し、そして充分なデ
ータを収集した後、このデータを電子計算機で解析し、
被検体断面の個々の位置に対応するXII吸収率を算出
してその吸収率に応じた階調度を与えて前記被検体断面
における画像情報を再構成するようにしたものであり、
軟質組織から硬質組織に至るまで明確な断層像が得られ
る。
So-called computer tomography is known as a cross-sectional inspection device that uses radiation such as X-rays.
For example, as shown in Figure 1 <a> I tb), the erized tomography) device consists of an X-ray source l that emits a flat fan-shaped fan beam X@FX, and a plurality of X-ray detection cells that detect this X-ray. X-ray detector 2, which consists of
are opposed to each other with the subject P in between, and the X-ray source 1 and the X-ray detector 2 are rotated in the same direction and at the same angular velocity around the subject P, so that various directions on the cross section of the subject are obtained. Collect X-ray projection data for , and after collecting sufficient data, analyze this data with an electronic computer,
The XII absorption rate corresponding to each position of the cross section of the object is calculated and a gradation level corresponding to the absorption rate is given to reconstruct image information on the cross section of the object,
Clear tomographic images can be obtained from soft tissues to hard tissues.

前記X線検出器2は例えばそれぞれ電離箱を構成する多
数の放射線検出セルから成り、X@(キセノン)等の高
圧ガスが封入された放射線検出器として構成され、被検
体Pの断面を透過したX線のエネルギを電離電流として
検出し。
The X-ray detector 2 is composed of a large number of radiation detection cells each forming an ionization chamber, for example, and is configured as a radiation detector filled with a high-pressure gas such as Detects the energy of X-rays as ionizing current.

これをX線投影による検出データとして出力する。This is output as detection data by X-ray projection.

即ち、このX線投影データの収集4二あたっては電離箱
を構成する各放射線検出セルとX線源1を結ぶ経路(こ
れをXtlAI4スと呼ぶ)上を透過して入射したX線
フォトンが高圧ガスと衝突して電離し、その電離電荷を
抽出することにより入射X線のエネルゼを電離電流とし
て検出してこれを所定の時間積分し、その積分値を所定
の時定数の放電回路にて放電してその放電時間値を各X
IIパスについてのX線投影データとするものである。
That is, in collecting this X-ray projection data 42, the incident X-ray photons are By colliding with high-pressure gas and ionizing, and extracting the ionized charge, the energy of the incident X-ray is detected as an ionizing current, which is integrated over a predetermined time, and the integrated value is passed through a discharge circuit with a predetermined time constant. Discharge and calculate the discharge time value for each
This is X-ray projection data for the II pass.

一つの角変位・置におけるすべてのXII/臂スに対す
るデータ収集が終ると次の角度位置における各Xll/
”スのデータ収集ζ二移ってゆく。
After data collection for all XII/arms at one angular displacement/position is completed, data collection for each XII/arm at the next angular position is completed.
``S data collection is moving forward.

第2図に従来用いられている放射線検出器の一例を示す
、同図において3は電極群を内蔵する容器本体、4はこ
の容器本体3の開口部を閉塞する蓋である。これらの容
器本体3および蓋4は内部に充填される高圧ガス(例え
ばXe)に対して充分な強度および気密を保持できるよ
うにしである。
FIG. 2 shows an example of a conventionally used radiation detector. In the figure, 3 is a container body that houses an electrode group, and 4 is a lid that closes the opening of the container body 3. These container body 3 and lid 4 are designed to maintain sufficient strength and airtightness against the high pressure gas (for example, Xe) filled inside.

この放射線検出器はファンビームX@FXの拡が°り角
−1=対応してその入射側側1!jaの一部3bを他の
部分より薄くして充分基=X線エネルゼが内部の電極群
に到着するようζ二しである。
This radiation detector corresponds to the divergence angle of the fan beam X@FX - 1 = its incident side 1! The part 3b of the ja is made thinner than the other part so that enough X-ray energy can reach the internal electrode group.

第3図は!J2図に示すA−人′線を矢印方向に移動さ
せた面に沿う断面を示すものであり。
Figure 3 is! This figure shows a cross section taken along the plane of the A-man' line shown in Figure J2 moved in the direction of the arrow.

電極群を配置し、電離箱を構成するための空洞部1cが
あることがわかる。
It can be seen that there is a cavity 1c for arranging the electrode group and configuring the ionization chamber.

第4図は放射線検出器2の内部構造を示す斜視図であり
、図の如く電極板5.6を所定の♂ツテに配置するため
の溝が設けられた電極支持板1に電極板5.6を挿入配
置した状態を示す。
FIG. 4 is a perspective view showing the internal structure of the radiation detector 2. As shown in the figure, the electrode support plate 1 is provided with grooves for arranging the electrode plates 5.6 in predetermined male positions. 6 is inserted and arranged.

電極板5.6のうち、5が信号検出用の信号電極板、6
が高圧用のバイアス電極板である。8はバイアス電極板
6に高電圧を印加するためのリード線であり、9は信号
電極板6から信号電流を外部に取り出すためのリード線
である。
Among the electrode plates 5.6, 5 is a signal electrode plate for signal detection, and 6 is a signal electrode plate for signal detection.
is the bias electrode plate for high voltage. 8 is a lead wire for applying a high voltage to the bias electrode plate 6, and 9 is a lead wire for taking out a signal current from the signal electrode plate 6 to the outside.

一対の電極板5,6でlデャンネル分の放射線検出セル
を形成している。
A pair of electrode plates 5 and 6 form a radiation detection cell for one channel.

このようにコンピュータ・トモグラフィ装置Φ放射線検
出器としては普通、多チャンネルの上述の如き気体或い
は近時では半導体を用いた多チャンネルの固体検出器が
用いられている。
As described above, a multi-channel gas detector as described above or recently a multi-channel solid state detector using a semiconductor is usually used as a computer tomography apparatus Φ radiation detector.

このような多チャンネルの放射線検出器においては収集
データの精度を保ち、且つ忠実度の高い再構成画像を得
るために被検体中で散乱したX線を除去して検出するの
が望ましい。
In such a multi-channel radiation detector, in order to maintain the accuracy of collected data and obtain a reconstructed image with high fidelity, it is desirable to remove X-rays scattered within the subject before detection.

被検体中で散乱されたX線を放射線検出器に入射させな
いようにするためには放射線検出器の前面に散乱線除去
用のコリメータを取り付けた構造が有効である。
In order to prevent X-rays scattered in the subject from entering the radiation detector, it is effective to have a structure in which a collimator for removing scattered rays is attached to the front of the radiation detector.

第5図に、上記コリメータを取り付けた放射線検出器の
概要を示す。
FIG. 5 shows an outline of a radiation detector equipped with the above-mentioned collimator.

即ち、図において、11は放射線検出セルであり、放射
線検出セル11はX線入射方向に入射側を向け、複数個
並設されている。12はコリメータであり、放射線検出
セル11の放射線入射側に設けられている。コリメータ
としてはタングステン、モリブデン等のXs吸収効率の
高い物質が用いられており、か−る物質の薄板を隔壁と
してX線入射側に且つX@一パス平行に多数並設して構
成しである。
That is, in the figure, 11 is a radiation detection cell, and a plurality of radiation detection cells 11 are arranged in parallel with the incident side facing the X-ray incident direction. Reference numeral 12 denotes a collimator, which is provided on the radiation incident side of the radiation detection cell 11. A material with high Xs absorption efficiency, such as tungsten or molybdenum, is used as the collimator, and a large number of thin plates of such materials are used as partition walls and are arranged in parallel on the X-ray incident side in parallel with each other. .

ところで、プリメータの前記隔壁はコリメータ自身のた
わみや曲り等の変形を防ぐために一般めには、コリメー
タとしての機能から要求される厚みよりも少し厚めのも
のを用いる。
Incidentally, in order to prevent the collimator itself from being deformed such as bending or bending, the partition wall of the premeter is generally made slightly thicker than required for its function as a collimator.

一方、コリメータの前記隔壁の厚みが大きいと放射線検
出器全体のうち、X線が入射する部分の面積が小さくな
るのでコリメータの厚みが小さい程%X線の利用効率は
高くなる。
On the other hand, if the thickness of the partition wall of the collimator is large, the area of the portion of the entire radiation detector into which the X-rays are incident becomes small, so the smaller the thickness of the collimator, the higher the % X-ray utilization efficiency becomes.

しかし、プリメータの隔壁があまり薄すぎると散乱線が
透過してしまい、コリメータ本来の役目を果たさなくな
るので薄くし過ぎても不都合であることはもちろんであ
る。
However, if the partition wall of the premeter is too thin, scattered rays will pass through it, and the collimator will no longer fulfill its original role, so it is of course inconvenient to make it too thin.

すなわち、コリメータは散乱線を除去するコリメータと
しての役目を果たす範囲で薄(することが望ましい。
In other words, the collimator is preferably as thin as possible to serve as a collimator for removing scattered radiation.

さて、上記の理由で隔壁の薄いコリメータを使用する場
合1次のような問題点が生じる。それは、コリメータの
隔壁が薄いため製造過程や使用条件その他により、たわ
みや曲がり等の変形を生じ易いことである。
Now, for the above-mentioned reasons, when a collimator with a thin partition wall is used, the following problems arise. The problem is that the partition walls of the collimator are thin and are therefore susceptible to deformation such as bending or bending due to the manufacturing process, usage conditions, and other factors.

このような問題が生じると放射線検出器に入射するX線
量が減少して放射線検出器の性能が損なわれる。
When such a problem occurs, the amount of X-rays incident on the radiation detector is reduced, impairing the performance of the radiation detector.

本発明は上記事情に鑑みて成されたもので。The present invention has been made in view of the above circumstances.

その目的とするところは隔壁間に放射線透過性の固定物
質を介在させ、補強することにより、隔壁の薄いコリメ
ータの変形防止を図ることを可能にした多チヤンネル型
の放射線検出器を提供することにある。
The purpose is to provide a multi-channel radiation detector that makes it possible to prevent deformation of the collimator with thin partition walls by interposing and reinforcing a radiolucent fixed substance between the partition walls. be.

以下1本発明の一実施例について116図を参照しなが
ら説明する。
An embodiment of the present invention will be described below with reference to FIG.

この発明においては上記目的を達成するため、プリメー
タ用の前記隔壁間にその固定用の固定物質をチンドイツ
テ状に挾み込んで補強する。
In order to achieve the above object, in this invention, a fixing material for fixing the premeter is inserted between the partition walls for the premeter in the form of a chinde lever for reinforcement.

この固定物質を挾み込んで例えば接着するなどし、固定
することにより1強度は大幅に補強される。しかしこの
固定物質によるX線吸収゛がある程度生ずることは避け
られないので、できるだけその影響を小さくするために
本装置においては゛前記固定物質としてはスーンジやI
リスプレン等の多孔物質でX線吸収率の小さい物質を用
いる。
By inserting this fixing substance and fixing it, for example by gluing it, the strength can be greatly increased. However, since it is unavoidable that some amount of X-ray absorption occurs due to this fixed substance, in order to minimize the effect, in this device, ``Soonji, I
A porous material with a low X-ray absorption rate, such as Risprene, is used.

以下1本発明の一実施例について第6図を参照しながら
説明する。図は、半導体等の固体素子、を放射線検出セ
ルとして用いた多チャンネル放射線検出器に本発明を適
用した場合の放射線検出器の正面断面図である。
An embodiment of the present invention will be described below with reference to FIG. The figure is a front sectional view of a radiation detector in which the present invention is applied to a multi-channel radiation detector using a solid-state element such as a semiconductor as a radiation detection cell.

図中21は放射線検出セル、22はコリメータを形成す
る散乱線除去用の隔壁%2sはこの隔壁22間に介装さ
れた上述の如きコツメータ固定用の固定物質である。こ
の図ではコリメータは各放射線検出セルの仕切りの役割
も兼ねているが、単にコリメータの役割のみの構造につ
いても本発明は有効である。
In the figure, reference numeral 21 denotes a radiation detection cell, and 22, a partition wall for removing scattered radiation forming a collimator, denotes a fixing material interposed between the partition walls 22 for fixing the cotmeter as described above. In this figure, the collimator also serves as a partition between each radiation detection cell, but the present invention is also effective for a structure that only serves as a collimator.

このような構造とすればコリメータが薄い隔壁22で形
成されていても隔壁22間に介装された固定物質23で
隔壁22は固定されるため。
With this structure, even if the collimator is formed of thin partition walls 22, the partition walls 22 are fixed by the fixing substance 23 interposed between the partition walls 22.

強度が保たれることになり、コリメータそのもののたわ
みや曲りなどの変形が抑制される。    ″従って、
隔Wzzの厚みを必要以上に厚くする必要がなくなり、
目的に応じた厚みの隔壁   122を有するコリメー
タとすることができ、また、固定物質2Jは多孔質でし
かもX線吸収が 4.:小さいから、この固定物質23
でのX線減衰も極めて小さく、忠実度の高い検出出力を
得ることのできる放射線検出器を得ることができる。
The strength is maintained, and deformation such as deflection or bending of the collimator itself is suppressed. ″Therefore,
There is no need to make the distance Wzz thicker than necessary,
4. The collimator can have a partition wall 122 having a thickness depending on the purpose, and the fixed material 2J is porous and X-ray absorbing. : Because it is small, this fixed substance 23
X-ray attenuation is also extremely small, making it possible to obtain a radiation detector that can obtain detection output with high fidelity.

以上詳述したように本発明は複数の放射線検出セルを並
設して構成した多チヤンネル型の放射線検出器において
、その放射線入射側に設けられ、放射線不透過の材料に
よる薄い隔壁を放射線の入射方向に平行に複数形成した
散乱線除去用のコリメータとして前記隔壁間に多孔質で
放射線吸収の小さい固定物質を介在させ、補強して構成
したコリメータを設けるようにしたので、コリメータは
前記固定物質により変形しにくい構造となるため、その
隔壁を所望の厚みとすることが可能となり、従って、理
想の散乱線除去効率を得ることができ、検出特性が良好
な阪射線検出器を提供することができる。
As described in detail above, the present invention provides a multi-channel radiation detector configured by arranging a plurality of radiation detection cells in parallel. As a plurality of collimators for removing scattered radiation formed parallel to the direction, a porous fixed material with low radiation absorption is interposed between the partition walls to reinforce the collimator. Since the structure is difficult to deform, it is possible to set the partition wall to a desired thickness, and therefore, it is possible to obtain ideal scattered ray removal efficiency and provide an infrared ray detector with good detection characteristics. .

尚、本発明は上記し且つ図面に示す実施例に限定するこ
となくその要旨を変更しない範囲内C適宜変形して実施
し得るものである。
It should be noted that the present invention is not limited to the embodiments described above and shown in the drawings, but can be practiced with appropriate modifications within the scope of the invention without changing its gist.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) 、 (b)はいわゆるコンピュータ・ト
モグラフィ装置の一例の原理について説明する−丸めの
図、第2図〜第4図は従来の放射線検出器の一例::つ
いて説明するための図、第5図は従来のコツメータ付き
の放射・線検出器の構造を示す正面断面図、第6図は本
発明の一実施例を示す正面断面図である。 I・・・X線管、2・・・放射線検出器、21・・・放
射線検出セル、22・・・コリメート用の隔壁、23・
・・固定物質。 出願人代理人 弁理士 鈴 江 武 彦第1図 (a) 第2図 (b) 第3図
Figures 1 (a) and (b) explain the principle of an example of a so-called computerized tomography device - rounded diagrams, and Figures 2 to 4 are examples of conventional radiation detectors. FIG. 5 is a front sectional view showing the structure of a conventional radiation/ray detector with a cotmeter, and FIG. 6 is a front sectional view showing an embodiment of the present invention. I: X-ray tube, 2: Radiation detector, 21: Radiation detection cell, 22: Collimating partition, 23:
...Fixed substance. Applicant's agent Patent attorney Takehiko Suzue Figure 1 (a) Figure 2 (b) Figure 3

Claims (1)

【特許請求の範囲】[Claims] 複数の放射線検出セルを並設した多デャンネル型の放射
線検出器において、その放射線入射側に設けられ放射線
不透過の材料により形成された放射線の入射方向Cコ平
行な複数の薄い隔壁を有する散乱線除去用のプリメータ
として前記隔壁間に多孔質で放射吸収の小さい固定物質
を介在させ補強して成るプリメータを設けたことを特徴
とする放射線検出器。
In a multi-channel radiation detector in which a plurality of radiation detection cells are arranged in parallel, a scattered radiation having a plurality of thin partition walls provided on the radiation incidence side and made of a radiation-opaque material and parallel to the radiation incidence direction C. A radiation detector characterized in that a premeter for removal is provided by reinforcing a porous fixing material with low radiation absorption between the partition walls.
JP56120137A 1981-07-31 1981-07-31 Radiation detector Pending JPS5821582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56120137A JPS5821582A (en) 1981-07-31 1981-07-31 Radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56120137A JPS5821582A (en) 1981-07-31 1981-07-31 Radiation detector

Publications (1)

Publication Number Publication Date
JPS5821582A true JPS5821582A (en) 1983-02-08

Family

ID=14778876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56120137A Pending JPS5821582A (en) 1981-07-31 1981-07-31 Radiation detector

Country Status (1)

Country Link
JP (1) JPS5821582A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001073794A1 (en) * 2000-03-28 2001-10-04 General Electric Company Anti-scatter grid, method, and apparatus for forming same
EP1280165A2 (en) * 2001-07-28 2003-01-29 Philips Corporate Intellectual Property GmbH Anti-scatter grid for an X-ray device
WO2007088498A3 (en) * 2006-02-02 2008-01-03 Philips Intellectual Property Anti-scatter device, method and system
JP2012093429A (en) * 2010-10-25 2012-05-17 Fujifilm Corp Grid for radiation imaging, method of manufacturing the same, and radiation imaging system
CN104586415A (en) * 2013-10-31 2015-05-06 Ge医疗***环球技术有限公司 Collimator alignment error determination method and computerization tomography system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6594342B2 (en) 2000-03-28 2003-07-15 General Electric Company Anti-scatter grid, method, and apparatus for forming same
US6438210B1 (en) * 2000-03-28 2002-08-20 General Electric Company Anti-scatter grid, method, and apparatus for forming same
KR100801118B1 (en) * 2000-03-28 2008-02-05 제너럴 일렉트릭 캄파니 Anti-scatter grid, method, and apparatus for forming same
WO2001073794A1 (en) * 2000-03-28 2001-10-04 General Electric Company Anti-scatter grid, method, and apparatus for forming same
JP2003116846A (en) * 2001-07-28 2003-04-22 Koninkl Philips Electronics Nv Anti-scatter grid for x-ray device
EP1280165A2 (en) * 2001-07-28 2003-01-29 Philips Corporate Intellectual Property GmbH Anti-scatter grid for an X-ray device
EP1280165A3 (en) * 2001-07-28 2008-02-13 Philips Intellectual Property & Standards GmbH Anti-scatter grid for an X-ray device
JP4643885B2 (en) * 2001-07-28 2011-03-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Anti-scattering grid for X-ray equipment
WO2007088498A3 (en) * 2006-02-02 2008-01-03 Philips Intellectual Property Anti-scatter device, method and system
US7801279B2 (en) 2006-02-02 2010-09-21 Koninklijke Philips Electronics N.V. Anti-scatter device, method and system
CN104392762A (en) * 2006-02-02 2015-03-04 皇家飞利浦电子股份有限公司 Anti-scatter device, method and system
JP2012093429A (en) * 2010-10-25 2012-05-17 Fujifilm Corp Grid for radiation imaging, method of manufacturing the same, and radiation imaging system
CN104586415A (en) * 2013-10-31 2015-05-06 Ge医疗***环球技术有限公司 Collimator alignment error determination method and computerization tomography system
CN104586415B (en) * 2013-10-31 2019-10-08 Ge医疗***环球技术有限公司 Collimator-alignment offset determination methods and Computed Tomography system

Similar Documents

Publication Publication Date Title
US7321122B2 (en) System for selecting true coincidence events in positron emission tomography
US6316773B1 (en) Multi-density and multi-atomic number detector media with gas electron multiplier for imaging applications
US7186986B2 (en) Radiation detector with converters
EP1549218B1 (en) Method and apparatus for detection of ionizing radiation
JPS5910514B2 (en) Ionization chamber detector array
JP5283382B2 (en) Nuclear medicine detector
US4973846A (en) Linear radiation detector
JPH0135311B2 (en)
Charpak Electronic imaging of ionizing radiation with limited avalanches in gases
US6556650B2 (en) Method and a device for radiography and a radiation detector
JPS5821582A (en) Radiation detector
CN112690819A (en) Energy spectrum imaging system and method
US7555101B2 (en) High-energy photon detector
EP1314184A1 (en) Multi-density and multi-atomic number detector media with gas electron multiplier for imaging applications
JPH0675570B2 (en) X-ray CT system
CA1151778A (en) Device for determining local absorption differences in an object
US4476390A (en) Radiation detector having radiation source position detecting means
JPH1199148A (en) Transmission ct device
Smith et al. Gas scintillation proportional counters for x‐ray synchrotron applications
US20190025443A1 (en) Detector with radiopaque sheet battery
JPS62203078A (en) Radiation position detector
JPH06317673A (en) Radiation detector
Conde et al. The gas proportional scintillation counter as a room-temperature detector for energy-dispersive X-ray fluorescence analysis
Bolon et al. A spherical drift chamber area detector for X-ray crystallography
Albuquerque et al. Practical method for photon fluency evaluation of digital X-ray image system