JPS58214643A - Control method of air amount in car deceleration - Google Patents

Control method of air amount in car deceleration

Info

Publication number
JPS58214643A
JPS58214643A JP9738182A JP9738182A JPS58214643A JP S58214643 A JPS58214643 A JP S58214643A JP 9738182 A JP9738182 A JP 9738182A JP 9738182 A JP9738182 A JP 9738182A JP S58214643 A JPS58214643 A JP S58214643A
Authority
JP
Japan
Prior art keywords
vehicle
fuel
speed
control
car
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9738182A
Other languages
Japanese (ja)
Inventor
Toshiichi Ban
伴 敏一
Akira Masuda
明 益田
Toshimi Matsumura
敏美 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP9738182A priority Critical patent/JPS58214643A/en
Publication of JPS58214643A publication Critical patent/JPS58214643A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To improve the fuel cost by controlling the supply and the interception of fuel to an internal-combustion engine on the basis of the output of an inclination sensor and the car speed when a car goes down a slope for expanding the drive area of fuel-supply stoppage. CONSTITUTION:The main suction air amount of an engine 3 is regulated by a throttle valve 7, while the fuel injection amount is controlled by a computer 5, and fuel is supplied by injection from an electromagnetic fuel injection valve 15. An inclination sensor 2 is used to detect the forward/backward inclination of a car, and shift signals are sent out from the computer 5 to an actuator 4 to control the opening of the throttle 7 and a shift solenoid 9 of an electronic automatic speed change gear 8 on the basis of signals of a car speed meter 6 and a throttle sensor 11. This construction permits to improve the fuel cost, since the supply of fuel is stopped to maintain the car at a set speed when the car goes down a slope.

Description

【発明の詳細な説明】 本発明は車両の降板走行に於いて燃料供給を停止して走
行しても任意の速度が得られる車両減速時空気量制御方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling the amount of air during deceleration of a vehicle, which allows a desired speed to be obtained even when the vehicle is running with fuel supply stopped during dismounting.

従来の車両は燃費向−にの為、アクセル全閉近傍の減速
走行に於いては燃料供給を停止しているが、緩傾斜の降
板走行に於いては車両の速度が小さくなシすぎる為にア
クセルの開閉を行ない燃料の供給及び停止を繰シ返して
速度を増さねばならないと言う欠点があった。
In order to improve fuel efficiency, conventional vehicles stop fuel supply when decelerating when the accelerator is fully closed, but when descending on a gentle slope, the vehicle speed is too low. The drawback was that the accelerator had to be opened and closed repeatedly to supply and stop fuel to increase speed.

本発明は上記の欠点を解消するものである。The present invention overcomes the above-mentioned drawbacks.

本発明の目的は降板走行に於いて燃料供給を停止して走
行しても任意の速度を得られる様にし、燃料供給停止の
運転領域を拡大して燃費向上を計る点にある。
An object of the present invention is to enable a desired speed to be obtained even when the fuel supply is stopped during dismounting, and to improve fuel efficiency by expanding the operating range in which the fuel supply is stopped.

以下本発明による車両減速時空気量制御方法を実施例に
従って詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The method for controlling air amount during vehicle deceleration according to the present invention will be described in detail below according to embodiments.

第1図は本発明の基礎となるアクセル開度・車両速度特
性を示す。即ち、 燃料供給を停止して一定傾斜を降板走行した場合、アク
セル開度を大きくしたり、変速機の減速比を小さくする
と、機関負荷が減少し車速か増加する特性を示す。本特
性を利用して燃料供給を停止した降板走行時に、機関の
吸入空気量、および変速機を制御し、メカニカルロスが
小さい状態での減速走行を可能とする。
FIG. 1 shows the accelerator opening/vehicle speed characteristics that are the basis of the present invention. That is, when the fuel supply is stopped and the vehicle is traveling down a constant slope, the engine load decreases and the vehicle speed increases when the accelerator opening is increased or the transmission reduction ratio is decreased. This characteristic is used to control the amount of air intake into the engine and the transmission when driving downhill with the fuel supply stopped, allowing deceleration driving with little mechanical loss.

第2図は車両1に勾配センサ2を取し付け、勾配センサ
2の出力によシ車両1の降板状態θを検出する図、第6
図は本発明による制御方法を行なう装置の回路構成図を
示す。
Fig. 2 is a diagram in which a gradient sensor 2 is installed on the vehicle 1, and the exit state θ of the vehicle 1 is detected by the output of the gradient sensor 2.
The figure shows a circuit configuration diagram of an apparatus for carrying out the control method according to the present invention.

第2図及び第6図に於いて、エンジン3は、自動車を駆
動する公知の4サイクル火花点火式エンジンで、エアフ
ローメータ12.吸気管13、及び該吸気管13内に設
けられた吸気分岐管14を経て主の空気を吸入し、燃料
、例えばガソリンは吸気分岐管14に設けられた複数の
電磁式燃料噴射弁15から噴射供給される。
In FIGS. 2 and 6, the engine 3 is a known four-cycle spark ignition engine that drives an automobile, and the air flow meter 12. Main air is taken in through an intake pipe 13 and an intake branch pipe 14 provided in the intake pipe 13, and fuel, for example gasoline, is injected from a plurality of electromagnetic fuel injection valves 15 provided in the intake branch pipe 14. Supplied.

エンジン3の主吸入空気量は、図示しないアクセルペダ
ルにより任意に操作されるスロットル弁7によって調整
され、一方燃料噴射量は、コンピュータ5によって調整
される。コンピュータ5は、回転速度センサをなす電磁
ピックアップ1oで検出される回転速度と、エアフロー
メータ12によって測定される吸入空気域とを基本パラ
メータとして燃料噴射量を決定する公知のもので、他に
エンジン冷却水温を検出する暖機センサ等からの信号を
入力しており、これによって燃料噴射量の増減を行う。
The main intake air amount of the engine 3 is adjusted by a throttle valve 7 which is arbitrarily operated by an accelerator pedal (not shown), while the fuel injection amount is adjusted by a computer 5. The computer 5 is a known computer that determines the fuel injection amount using the rotational speed detected by the electromagnetic pickup 1o, which is a rotational speed sensor, and the intake air area measured by the airflow meter 12 as basic parameters. Signals from warm-up sensors that detect water temperature are input, and the amount of fuel injection is increased or decreased based on these signals.

更に勾配センサ2は車両の前後方向の傾きを検出するも
ので、車速唱゛6とスロットルセンサ11の信号を元に
してコンピュータ5からスロットル7の開度を制御する
アクチュエータ4と電子式自動変速機Electron
ic A、utomaticTransmissj、o
n EA’1.’ QのシフトソレノイP9にシフト信
号を送り出す。
Furthermore, the slope sensor 2 detects the inclination of the vehicle in the longitudinal direction, and the actuator 4 and electronic automatic transmission control the opening degree of the throttle 7 from the computer 5 based on the vehicle speed reading 6 and the signal from the throttle sensor 11. Electron
ic A, automatic Transmissj, o
n EA'1. ' Send a shift signal to Q's shift solenoid P9.

第4図は第6図に示さノする本発明による制御を行なう
装置の動作過程を示す概略制御フローチャートである。
FIG. 4 is a schematic control flowchart showing the operation process of the control device according to the present invention shown in FIG.

第4図に於いてステップ200では車速計6、勾配セン
サ2及びエンジン回転数センサ10からのそれぞれの出
力値を取り込み、勾配センサ値に応じてカット回転数を
ステップ201でセットする。ステップ202で車両が
減速状態にあるかどうかを機関負荷状態から判別する。
In FIG. 4, in step 200, the respective output values from the vehicle speed meter 6, slope sensor 2, and engine speed sensor 10 are taken in, and in step 201, the cut speed is set in accordance with the slope sensor value. In step 202, it is determined from the engine load state whether the vehicle is in a deceleration state.

減速状態にある時はステップ203に進み、減速でない
場合はステン′7°217に進む。ステップ203では
エンジン回転数がカット回転数以上かどうかを判別し、
カット回転数以上ならステップ205へ、カット回転数
未満のときはステップ204へ進む。ステップ204で
は復帰回転数とエンジン回転数とを比較しカット続行か
復帰かを判別し、復帰回転数以上の時はステップ205
、復帰回転数より小の時はステップ217へ進む。ステ
ップ205では燃料噴射時間をOmsにセットして燃料
カットを実施し、ステップ206へ進む。ステップ20
6では車速か所定値よ漫大か小かを判別し、小ならばス
テップ207へ進み、犬ならばステップ212へ進む。
If it is in a deceleration state, the process advances to step 203, and if it is not decelerated, it advances to step 217. In step 203, it is determined whether the engine rotation speed is greater than or equal to the cut rotation speed,
If the number of rotations is greater than or equal to the number of rotations for cutting, the process proceeds to step 205, and if it is less than the number of rotations for cutting, the process proceeds to step 204. In step 204, the return rotation speed is compared with the engine rotation speed to determine whether to continue cutting or to return. If the return rotation speed is higher than the return rotation speed, step 205
, is smaller than the return rotation speed, the process advances to step 217. In step 205, the fuel injection time is set to Oms to implement a fuel cut, and the process proceeds to step 206. Step 20
At step 6, it is determined whether the vehicle speed is greater or less than a predetermined value. If the vehicle speed is smaller than the predetermined value, the process proceeds to step 207, and if it is a dog, the process proceeds to step 212.

ステップ207ではスロットルが全開かどうかをスロッ
トル信号で判別し、全開の場合はステップ208へ進み
、全開でない場合はステップ211へ進む。ステップ2
08では更にシフト位置を高くする余裕が有るかどうか
を判別し、シフト余裕が有る場合にはステップ209.
210を実行するが、又シフト余裕が無い時はそのまま
何もせずにステップ219へ進む。
In step 207, it is determined based on the throttle signal whether the throttle is fully open. If the throttle is fully open, the process proceeds to step 208, and if it is not fully open, the process proceeds to step 211. Step 2
In step 08, it is determined whether there is room to further raise the shift position, and if there is room, the process proceeds to step 209.
Step 210 is executed, but if there is no shift margin, the process proceeds to step 219 without doing anything.

ステップ209ではシフト位置を一段アツブして、又ス
テップ210ではシフト制御で車速が急増しない様にス
ロットル開度制御値を” o ” (全閉)にセットす
る。ステップ211では未だスロットルでの制御余裕が
有るとしてスロットルの開方向への値をセットする。車
速か所定値よシ大の場合はステップ212でスロットル
が全閉がどうがを判別し、全開の場合はステップ208
〜210とは逆にステップ213でシント位置が1 s
tがどうかを判別し、1stの場合は減速余裕が無いも
のとしてステップ219へ進む。一方1 st以外の場
合はステップ214でシフト位置を1段ダウンすると同
時にシフト制御で車速が急減しない様にステップ216
でスロットル開度制御値を全開にセットし、ステップ2
19へ進む。ステップ212でスロットルが全閉でない
と判別した場合はステップ215でスロットル制御量を
更に閉方向の値とし、ステップ219へ進む。減速状態
でない場合やエンジン回転数が復帰回転数よp小のとき
はステップ217で燃料カットを解除し、ステップ21
8でスロットル開度制御量を0”(全閉)としてステッ
プ219へ進む。ステップ219では指示されたスロッ
トル開度制御量を出力する。出力後は再度ステップ20
0へ戻り上記と同様の制御を繰り返す。
In step 209, the shift position is increased by one step, and in step 210, the throttle opening control value is set to "o" (fully closed) to prevent the vehicle speed from rapidly increasing during shift control. In step 211, a value is set in the opening direction of the throttle, assuming that there is still a control margin for the throttle. If the vehicle speed is greater than the predetermined value, it is determined in step 212 whether the throttle is fully closed or not, and if it is fully open, it is determined in step 208.
~ Contrary to 210, the scint position is 1 s in step 213
It is determined whether t is 1st, and if it is 1st, it is assumed that there is no deceleration margin and the process proceeds to step 219. On the other hand, if it is other than 1 st, the shift position is lowered by one step in step 214, and at the same time, in step 216, the shift control is performed to prevent the vehicle speed from suddenly decreasing.
Set the throttle opening control value to full open with
Proceed to step 19. If it is determined in step 212 that the throttle is not fully closed, the throttle control amount is further set in the closing direction in step 215, and the process proceeds to step 219. If the engine is not in a deceleration state or the engine speed is p smaller than the return speed, the fuel cut is canceled in step 217, and the fuel cut is canceled in step 21.
In step 8, the throttle opening control amount is set to 0" (fully closed) and the process proceeds to step 219. In step 219, the instructed throttle opening control amount is output. After outputting, step 20 is again performed.
Returns to 0 and repeats the same control as above.

他の実施例としてスロットルをバイパスさせ該バイパス
通路途中に空気制御用アクチュエータを設けてスロット
ル弁の代りに制御する事も可能であり、同等の効果が得
られる。
As another embodiment, it is also possible to bypass the throttle and provide an air control actuator in the middle of the bypass passage for control in place of the throttle valve, and the same effect can be obtained.

またシフト制御のないマニュアルシフト車でスロットル
の開度制御のみを行ってもかなりの効果が期待出来る。
Furthermore, even if you control only the throttle opening in a manual shift car without shift control, you can expect a considerable effect.

また減速時に係る制御のキャンセル条件として回転数以
外にブレーキ操作が有り、所定時間間隔でブレーキ操作
が有った時はスロットル開度を全閉にすると同時にシフ
ト位置もダウンさせ(減速比を増加させ)減速度を増し
、降板減速時に係る制御は一切行なわない事も考えられ
る。
In addition, as a cancellation condition for control related to deceleration, there is a brake operation other than the rotation speed, and when there is a brake operation at a predetermined time interval, the throttle opening is fully closed and the shift position is also lowered (the reduction ratio is increased). ) It is also conceivable to increase the deceleration and not perform any control related to deceleration.

第5図は第6図に示されるコンピュータ5の構成図を示
す。
FIG. 5 shows a block diagram of the computer 5 shown in FIG.

第5図に於いてセントラル・プロセッシング・ユニツ)
 (cpu ) 100は、所定のプログラムにしたが
って燃料噴躬礪、スロットル制御量及びシフト制御位置
を演算゛ノーるもので、8.12あるいは16ビツトの
公知のものでおる。
(Central processing unit in Figure 5)
(CPU) 100 is a known 8.12 or 16 bit CPU that calculates fuel injection, throttle control amount and shift control position according to a predetermined program.

入力カウンタ101は、(!PU l 00に回転速度
Nと車速を表すデータをCPU 100に送るためのも
ので、電磁ピックアップN10からのパルス信号に基い
てクロックパルスをカウントしてデータを得る。ま九、
この入力カウンタ101はエンジン回転車速パルスに同
期して割り込み制御部102に割り込み指令信号を送る
。そして、割り込み制御部102はこの信号を受けると
、バス150を通してCPU 100に割り込み信号を
出力する〇人力ポート103は、各センサからの信号を
バス150を介してCPU100に伝達するためのもの
で1.A、 / Dコ/パータ、マルチプレクサなどか
らなシ、エアフロメータ12からの吸入空気量信調スイ
ッチからのエアコン信号A / C、自動変速機ノニュ
ートラルセーフティスイッチカラノ= ユートラル信号
NSS 、エンジン始動スイッチからのスタータ信号S
TAなどが入力されている。
The input counter 101 is used to send data representing the rotational speed N and vehicle speed to the CPU 100 (!PU l 00), and obtains data by counting clock pulses based on pulse signals from the electromagnetic pickup N10. Nine,
This input counter 101 sends an interrupt command signal to the interrupt control section 102 in synchronization with the engine rotation vehicle speed pulse. When the interrupt control unit 102 receives this signal, it outputs an interrupt signal to the CPU 100 via the bus 150. The human power port 103 is for transmitting signals from each sensor to the CPU 100 via the bus 150. .. Air conditioner signal A/C from the intake air volume control switch from the airflow meter 12, automatic transmission neutral safety switch Karano = utility signal NSS, from the engine start switch starter signal S
TA etc. are input.

電源回路104は、車載バッテリ60の出力電圧を定電
圧化する回路で、電源回路104はエンジンキースイッ
チ61を介してバッテリ60に接続され、ユニットにキ
ースイッチ61がオンされると電圧を加える。
The power supply circuit 104 is a circuit that makes the output voltage of the vehicle battery 60 constant.The power supply circuit 104 is connected to the battery 60 via the engine key switch 61, and applies voltage to the unit when the key switch 61 is turned on.

ランダムアクセスメモリ(RAM ) 107は、CP
U100がプログラムを実行する際に一時使用する読み
書き可能なメモリである。
Random access memory (RAM) 107 is a CP
This is a readable and writable memory that is temporarily used when U100 executes a program.

リードオンリイメモリ(ROM ) 108は、プログ
ラムや各種の定数等を記憶しておくメモリで、CPU 
100はROM 108からバス150を介してデータ
を読み出す。
A read-only memory (ROM) 108 is a memory that stores programs and various constants, etc.
100 reads data from ROM 108 via bus 150.

タイマー109は、クロックパルスを発生して経過時間
を測定する回路で、’CPU100にクロック信号を出
力したり、割や込み制御部102に時間割込み信号を出
力する。
The timer 109 is a circuit that generates clock pulses and measures elapsed time, and outputs a clock signal to the CPU 100 and a time interrupt signal to the interrupt control unit 102.

出力回路110は、ラッチ、ダウンカウンタ、パワート
ランジスタなどよりなり%CPU100で演算された燃
料噴射−:を表すデータに基いて燃料噴射着に見合う時
間幅のパルス信号を作シ、このパルス信号を燃料噴射弁
15に印加する。
The output circuit 110 is composed of a latch, a down counter, a power transistor, etc., and generates a pulse signal with a time width suitable for the fuel injection based on the data representing the fuel injection calculated by the CPU 100, and uses this pulse signal as the fuel injection signal. is applied to the injection valve 15.

出力回路112は、回路110と同様にラッチ、り゛ラ
ンカウンタ、パワートランジスタなどよりな’p、cp
u 100で演算された減速時のスロットル開度の制御
はを表すデータに基いて制御量に見合うステップ数のパ
ルス信号を作り、このパルス信号をステップモータ4の
コイルに印加する。
Like the circuit 110, the output circuit 112 includes a latch, a run counter, a power transistor, etc.
Based on the data representing the control of the throttle opening degree during deceleration calculated in u 100, a pulse signal with the number of steps corresponding to the control amount is generated, and this pulse signal is applied to the coil of the step motor 4.

出力回路113はラッチ、パワートランジスタなどより
なJl) CPU l 0口で演算されたシフト位置に
基づいた制御信号を作り、この制御信号を電子式自動変
速機EAT用ソレノイP9に印加する。
The output circuit 113 includes a latch, a power transistor, etc., and generates a control signal based on the shift position calculated by the CPU l0 port, and applies this control signal to the solenoid P9 for the electronic automatic transmission EAT.

次に上記構成において作動を説明する。CPU100は
%ROM108に格納されたプログラムのうち、メイン
ルーチン、燃料噴射量演算ルーチンなどを実行している
が、タイマー109から出力される所定周期の例えば8
 m5ec毎の信号により割シ込み制御部102から割
シ込み信号が発生すると)CPU100は第4図に示す
スロットル制御、シフト位置制御の制御量演算用割り込
みルーチンの実行を開始する。
Next, the operation of the above configuration will be explained. The CPU 100 executes the main routine, fuel injection amount calculation routine, etc. of the programs stored in the %ROM 108.
When an interrupt signal is generated from the interrupt control unit 102 in response to a signal every m5ec, the CPU 100 starts executing an interrupt routine for calculating control amounts for throttle control and shift position control shown in FIG.

上記の如く、本発明によれば、車両の降板走行時に勾配
センサの出力及び車速により内燃機関への燃料供給又は
燃料停止の制御及び内燃機関の絞り弁制御及び変速機の
ギヤ位置の選定により、燃料供給を停止して走行しても
任意の速度が得られ、更に燃費の向上が企iするという
優れた効果が得られる。
As described above, according to the present invention, when the vehicle is dismounting, the output of the slope sensor and the vehicle speed are used to control the fuel supply or stop of the fuel to the internal combustion engine, to control the throttle valve of the internal combustion engine, and to select the gear position of the transmission. Even if the vehicle runs with the fuel supply stopped, it is possible to obtain any desired speed, and the excellent effect of improving fuel efficiency can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本願発明の基礎となるアクセル開度・車両速度
特性を示すグラフ、第2図は本願発明に於ける車両の降
板状態θを検出する図、第6図は本願発明による制御方
法を行なう装置の回路構成図、第4図は第6図に示され
る装置の動作過程を示すフローチャート、第5図は第6
図に示されるコンピュータの構成図を示す。 1 1・・・車両、2・・・勾配センサ、3・・・エンジン
、4・・・アクチュエータ、5・・・コンビ子−タ、6
・・・車速計、7・・・スロットル、8・・・電子式自
動変速機EAT 。 9・・・シフトンレノイtp、10・・・電磁ピック・
アラ7’、11・・・スロットルセンサ、12・・・エ
アフローメータ、13・・・吸気管、14・・・吸気分
岐管、15・・・電磁式燃料噴射弁、100・・・CP
U、101・・・入力カウンタ、107・・・口AM%
108・・・ROM%  109・・・タイマ 代理人 浅 利   皓 外4名 2 矯■嘱−\←
Fig. 1 is a graph showing the accelerator opening/vehicle speed characteristics that are the basis of the present invention, Fig. 2 is a graph for detecting the dismounting state θ of the vehicle in the present invention, and Fig. 6 is a graph showing the control method according to the present invention. FIG. 4 is a flowchart showing the operating process of the device shown in FIG. 6, and FIG.
1 shows a configuration diagram of the computer shown in the figure. 1 1... Vehicle, 2... Gradient sensor, 3... Engine, 4... Actuator, 5... Combinator, 6
... Vehicle speedometer, 7... Throttle, 8... Electronic automatic transmission EAT. 9...Sifton Lenoy TP, 10...Electromagnetic pick・
Arara 7', 11... Throttle sensor, 12... Air flow meter, 13... Intake pipe, 14... Intake branch pipe, 15... Electromagnetic fuel injection valve, 100... CP
U, 101... Input counter, 107... Mouth AM%
108...ROM% 109...Timer agent Asari Koutai 4 people 2 Correction■嘱-\←

Claims (2)

【特許請求の範囲】[Claims] (1)空気絞り弁開度によって内燃機関の出力を調整し
、車速減速時にエンジン回転数、車速あるいは負荷等の
運転状態を検出して該内燃機関への燃料供給を停止する
車両に於いて、該車両の前後方向の傾きを検出する勾配
センサを備え、該車両の降板走行時に該勾配センサの出
力及び上記車速により上記内燃機関への燃料供給又は燃
料停止の制御及び上記内燃機関の絞シ弁の制御及び変速
機のギヤ位置の選定を行なうことによシ上記車両を設定
速度に保つことを特徴とする車両減速時空気量制御方法
(1) In a vehicle that adjusts the output of the internal combustion engine by adjusting the opening of the air throttle valve, and detects operating conditions such as engine speed, vehicle speed, or load when the vehicle speed is decelerated, and stops fuel supply to the internal combustion engine. A slope sensor is provided to detect the inclination of the vehicle in the longitudinal direction, and when the vehicle is disembarking, the output of the slope sensor and the vehicle speed are used to control fuel supply or fuel stop to the internal combustion engine, and to control the throttle valve of the internal combustion engine. A method for controlling the amount of air during vehicle deceleration, characterized in that the vehicle is maintained at a set speed by controlling the speed of the vehicle and selecting the gear position of the transmission.
(2)  上記空気量制御の条件に該車両のブレーキ信
号及びエンジン回転数が含まれることを特徴とする特許
請求の範囲第1項記載の車両減速時空気量制御方法。
(2) The air amount control method during vehicle deceleration according to claim 1, wherein the air amount control conditions include a brake signal and an engine rotation speed of the vehicle.
JP9738182A 1982-06-07 1982-06-07 Control method of air amount in car deceleration Pending JPS58214643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9738182A JPS58214643A (en) 1982-06-07 1982-06-07 Control method of air amount in car deceleration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9738182A JPS58214643A (en) 1982-06-07 1982-06-07 Control method of air amount in car deceleration

Publications (1)

Publication Number Publication Date
JPS58214643A true JPS58214643A (en) 1983-12-13

Family

ID=14190927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9738182A Pending JPS58214643A (en) 1982-06-07 1982-06-07 Control method of air amount in car deceleration

Country Status (1)

Country Link
JP (1) JPS58214643A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60216041A (en) * 1984-04-11 1985-10-29 Daihatsu Motor Co Ltd Fuel-cut apparatus for car engine
JPH0285067A (en) * 1988-08-02 1990-03-26 Hitachi Ltd Vehicle drive assisting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60216041A (en) * 1984-04-11 1985-10-29 Daihatsu Motor Co Ltd Fuel-cut apparatus for car engine
JPH0285067A (en) * 1988-08-02 1990-03-26 Hitachi Ltd Vehicle drive assisting device

Similar Documents

Publication Publication Date Title
JPH0625545B2 (en) Electronic throttle control device for internal combustion engine
JPS631453B2 (en)
US6880523B2 (en) Measurement of engine cylinder induction air quantity
US5366039A (en) Acceleration slip control device for a motor vehicle
US5186080A (en) Engine coastdown control system
JPS5828561A (en) Method of controlling internal combustion engine equipped with turbocharger, at deceleration
JPH0658187A (en) Fuel feed stop control device for internal combustion engine
JPS59150945A (en) Method of controlling quantity of intake air in internal- combustion engine for automobile
JPS58214643A (en) Control method of air amount in car deceleration
US5213076A (en) Apparatus and method for controlling an internal combustion engine
JP3709749B2 (en) Automatic engine starter for AT cars
JPH05256646A (en) Slope estimating method
JPH094485A (en) Driving force control device for vehicle
US5547037A (en) Constant-speed cruise control device for a vehicle
JPH033936A (en) Fuel injection quantity control system for internal combustion engine
JP2533554B2 (en) Automatic transmission control device
JP2541190B2 (en) Engine intake air amount control device
JPS6282250A (en) Idling speed control device for internal combustion engine
JPH0427735A (en) Idle speed control method of engine
JPH0557422B2 (en)
JPS631743A (en) Control method for throttle valve drive motor
JP2001207891A (en) Vehicular engine control method
JPH04350336A (en) Engine output control device
JPH06146940A (en) Control device for engine with automatic transmission
JPS58126445A (en) Fuel supply method of automobile internal combustion engine with automatic transmission