JPS58214274A - Lead-acid battery - Google Patents

Lead-acid battery

Info

Publication number
JPS58214274A
JPS58214274A JP57097990A JP9799082A JPS58214274A JP S58214274 A JPS58214274 A JP S58214274A JP 57097990 A JP57097990 A JP 57097990A JP 9799082 A JP9799082 A JP 9799082A JP S58214274 A JPS58214274 A JP S58214274A
Authority
JP
Japan
Prior art keywords
active material
current collector
layer
electrolyte
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57097990A
Other languages
Japanese (ja)
Inventor
Yoshikazu Ishikura
石倉 良和
Akira Watanabe
明 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP57097990A priority Critical patent/JPS58214274A/en
Publication of JPS58214274A publication Critical patent/JPS58214274A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To suppress formation of an irreversible PbSO4 layer and improve the standing performance after overdischarge by constructing a positive plate with more than one positive active mass layers having different filling densities. CONSTITUTION:A positive plate 10 is constructed with more than one positive active mass layers 11 and 12 having different filling densities, and the filling density of the active layer 11 located in the vicinity of a current collector makes higher than that of the active mass layer 12. Pore volumes and pore diameters in the vicinity of the current collector 13 are reduced. As a result, fine pores are blocked and penetration of electrolyte is suppressed, and diffusion of electrolyte to the vicinity of the current collector is suppressed. When the diffusion of electrolyte to the vicinity of the current collector is prevented, the formation of PbSO4 layer (this layer becomes inactive while a battery is allowing to stand, that is, irreversible PbSO4 is formed) caused by reaction of PbO2 layer on the surface of the current collector with SO4<--> ion in the electrolyte is suppressed. Therefore, the standing performance after overdischarge is improved.

Description

【発明の詳細な説明】 (イ)技術分野 本発明は鉛蓄電池、特に遊離の電解液が存在しないよう
に電解液量を制限した形体のいわゆる。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical field The present invention relates to a lead-acid battery, particularly a so-called lead-acid battery of a type in which the amount of electrolyte is limited so that there is no free electrolyte.

リテナ一式鉛蓄電池に関するものである。This relates to a lead-acid battery with a retainer.

(司 背景技術 一般に鉛蓄電池にお°いては、過充電による集電体の腐
蝕を防止Tるために、定電圧充電法が採用されている。
(Tsukasa) Background Art Generally, in lead-acid batteries, a constant voltage charging method is adopted in order to prevent corrosion of the current collector due to overcharging.

一方、鉛蓄電池は周知のごとく電解液が電池反応I:関
与するものであるため、特に。
On the other hand, in lead-acid batteries, as is well known, the electrolyte is involved in battery reaction I, so this is particularly the case.

陽極板においては、過放電放置後 負荷接続のまま放置下ると、集電体と活物質界面との間
に高抵抗体となるPbSO4(硫酸鉛)の薄層が生成さ
れる。特に、電解液制限型においては、@述したPbS
O4層の生成と共に電解液の濃度も低下して内部抵抗が
増大することになり。
In the anode plate, if the anode plate is left with a load connected after overdischarging, a thin layer of PbSO4 (lead sulfate), which becomes a high resistance material, is generated between the current collector and the active material interface. In particular, in the electrolyte limited type, the PbS
As the O4 layer is formed, the concentration of the electrolyte also decreases, leading to an increase in internal resistance.

このような状態の電池を定電圧充電した場合、小さな充
電々流が通電されるのみで充分な充電がなされないとい
う問題がある。
When a battery in such a state is charged at a constant voltage, there is a problem in that only a small charging current is applied and sufficient charging is not achieved.

この問題を改善するために、従来より種々の提案がなさ
れているうそのいくつかを列記すると。
In order to improve this problem, we will list some of the lies that have been proposed in the past.

電解液にリン酸、硫酸ソーダあるいは硫酸マグネシウム
を添加下る方法、または集電体組成である鉛−カルシウ
ム合金にカドミウム、リチウムあるいはチタンを添加す
る方法などがあるが、その効果としては満足下べき状態
に至っていないのか実情である。
There are methods of adding phosphoric acid, sodium sulfate, or magnesium sulfate to the electrolytic solution, or adding cadmium, lithium, or titanium to the lead-calcium alloy that is the current collector composition, but their effects are unsatisfactory. The reality is that this has not yet been achieved.

さて、過放電放置後に陽極活物質層と集電体との界面に
生成下る非可逆性のpbso4の生成メカニズムは第1
図(a)〜(d)の経違によるものと考えられる。
Now, the formation mechanism of irreversible pbso4 that forms at the interface between the anode active material layer and the current collector after overdischarging is as follows.
This is thought to be due to the meridian in Figures (a) to (d).

まず1g1図(a)に示T初期状態から、充電により陽
極活物質層(1)が除々にPb02(二酸化鉛)に変化
下ると同時に、鉛または鉛合金よりなる集電体12ンの
表面がPbO2に変化してPbO2層(3)が形成され
る(第1図(b))。
First, from the initial state shown in Figure 1g1 (a), the anode active material layer (1) gradually changes to Pb02 (lead dioxide) due to charging, and at the same time the surface of the current collector 12 made of lead or lead alloy changes. The PbO2 layer (3) is formed by changing to PbO2 (FIG. 1(b)).

次いで、通常の充放電により陽極活物質層(1)は。Next, the anode active material layer (1) is formed by normal charging and discharging.

の反応を繰り返Tが、集電体(2)の表面に形成された
PbO2層(31は、充放電の繰り返しにおいても、P
bO2の状態で残存下る(iJ!1図(C))。
The PbO2 layer (31) formed on the surface of the current collector (2) is
It remains in the bO2 state (iJ!1 figure (C)).

そして、過放電後長期間放置しておくと、第1図(dl
に示Tように集電体(2;の表面におけるpb。
If left for a long period of time after overdischarge, as shown in Figure 1 (dl
PB on the surface of the current collector (2) as shown in T.

2層が、非可逆性のp b s o 4+=変化してP
bSO4層が形成され、このPbSO4層(4)が不働
態層となって充電特性の低下を招くことになる。
The two layers change irreversibly p b s o 4+ = P
A bSO4 layer is formed, and this PbSO4 layer (4) becomes a passive layer, leading to a decrease in charging characteristics.

回連した非可逆性のPbSO4層生成メカニズムから、
過放電放置において、集電体表面のPbO2層がPb5
04層に変化することを阻止しえれば、過放電放置特性
を改善することができることになる。
From the repeated irreversible PbSO4 layer formation mechanism,
When left overdischarged, the PbO2 layer on the surface of the current collector becomes Pb5.
If the change to the 04 layer can be prevented, the overdischarge characteristics can be improved.

rl  発明の開示 本発明者等は上述した点に鑑みて、実験検討した結果、
陽極板として、陽極活物質層を活物質の充填密度の異な
る少くとも2種類以上の活物質層で構11iMTること
により、非可逆性のPbSO4層の生成が抑制され、過
放電放置特性が改善されることを見出した。
rl Disclosure of the Invention In view of the above-mentioned points, the present inventors have conducted experimental studies and have determined that
By constructing the anode active material layer as an anode plate with at least two or more types of active material layers with different active material packing densities, the generation of an irreversible PbSO4 layer is suppressed and the overdischarge characteristics are improved. I found out that it can be done.

本発明は上述した事実に基いてなされたもので。The present invention has been made based on the above-mentioned facts.

陽極板として、活物質の充填密度の異なる2種類以tの
陽極活物W層で構成し、且、集電体の近傍に位置Tる活
物質層の充填密度を、他の活物質層の充填密度より高く
したことを特徴とする鉛蓄電池を提供下るものである。
The anode plate is composed of two or more anode active material W layers having different packing densities of active materials, and the packing density of the active material layer T located near the current collector is set to be the same as that of the other active material layers. The present invention provides a lead-acid battery characterized by a higher filling density.

に)発明を実施Tるための最良の形態 1!!2図は本発明電池の縦断面図、第3図は活物質ペ
ースト中に添加下るH2S04(硫酸)量とペースト密
度との関係を示す図、第4図は本発明電池(A)と比較
電池(B)(C)との過放電特性比較図である。
) Best form 1 for carrying out the invention! ! Figure 2 is a longitudinal cross-sectional view of the battery of the present invention, Figure 3 is a diagram showing the relationship between the amount of H2S04 (sulfuric acid) added to the active material paste and the paste density, and Figure 4 is the battery of the present invention (A) and a comparative battery. (B) A comparison diagram of overdischarge characteristics with (C).

第2図において、aαは本発明の要旨とする陽極板であ
り、活物質の充填密度の異なる2種類の陽極活物質層(
111(121と、鉛−カルシウム合金よりなる集電体
a3とにより構成されている。前記活物質層重)と02
とは活物質の充填密度が異なり、集電体a3近傍の活物
質層(111は、活物質層(12+より充填密度が高く
構成されている。a化1極板であり、陰極活物質層四と
鉛−カルシウム合金よりなる集電体(161とにより構
成されている。
In FIG. 2, aα is the anode plate which is the gist of the present invention, and two types of anode active material layers (
111 (consisting of 121 and a current collector a3 made of a lead-calcium alloy.The active material layer weight) and 02
The active material layer (111) near the current collector a3 has a higher packing density than the active material layer (12+). 4 and a current collector (161) made of a lead-calcium alloy.

次に、陰陽極板について具体的な作成例について述べる
Next, a specific example of making the cathode and anode plates will be described.

まず陽極板について述べる。鋳造、打抜き、あるいは、
エキスバンド加工により得た鉛−カルシウム合金を50
X50X2■の寸法に裁断したるものを陽極集電体とす
る。そして−pbo(−酸化鉛)と水のみで練合してペ
ースト密度6゜QP/e1!ヲ有Tルヘースト状活物質
を、ローラ等によす圧延し厚み0.5fiの活物質シー
トを作成下る。次に、pboと水と適量のH2SO4を
練合してペースト密度4.C1/ccY有するペースト
状活物質を、同じくローラ等により圧延して厚み0.5
鱈の活物質シートを作成下る。このようf二して得た充
填密度の頁なる2枚の活物質シートを密着させて。
First, let's talk about the anode plate. Casting, stamping or
50% of lead-calcium alloy obtained by extract band processing
The anode current collector is cut into a size of 50x2cm. Then, by kneading only -pbo (-lead oxide) and water, the paste density was 6°QP/e1! The heasted active material is rolled using a roller or the like to form an active material sheet with a thickness of 0.5 fi. Next, pbo, water, and an appropriate amount of H2SO4 are kneaded to a paste density of 4. A paste-like active material having C1/ccY is similarly rolled with a roller or the like to a thickness of 0.5.
Create a cod active material sheet. In this way, the two active material sheets with the packing density obtained by f2 were brought into close contact.

厚み1.0mの密度の異なる2層の活物質シートを作成
した。
A two-layer active material sheet with a thickness of 1.0 m and different densities was prepared.

活物質のペースト密度は、第3図に示Tように。The paste density of the active material is as shown in Figure 3.

ペースト中(:添加するH2SO4の量により変化下る
。したがって2適当な量のFi2SO4!添加すること
によって、所望のペースト密度を得ることができる。
The amount of H2SO4 in the paste varies depending on the amount of H2SO4 added. Therefore, by adding an appropriate amount of Fi2SO4, the desired paste density can be obtained.

なお、上述したものは一ペースト密度の異なる活物質層
の厚みを、夫々0.5腐としているが、必要とする活物
質量に応じて、夫々活物質層の厚みを変化させればよい
In addition, although the thickness of the active material layers with different paste densities is set to 0.5 mm in the above-described example, the thickness of each active material layer may be changed depending on the amount of active material required.

次に、充填密度の異なる2@の活物質シートを。Next, we made 2@ active material sheets with different packing densities.

50x50mの規定寸法に裁断し、規定寸法に裁断した
一対の前記活物質シートを、夫々充填密度の高い面を集
電体の近傍に位置するように配置し、ローラブレスによ
り陽極集電体の両面に前記活物質シートを圧着して厚み
2.4層の陽極板を得る。
A pair of the active material sheets cut to the specified size were cut to a specified size of 50 x 50 m, and each of the above-mentioned active material sheets cut to the specified size was placed so that the side with a high packing density was located near the current collector. The active material sheet is pressure-bonded to obtain an anode plate having a thickness of 2.4 layers.

このよう(二して形成された陽極板は、活物質の充填密
度の異なる2種類の陽極活物質層で構成され。
The anode plate formed in this way is composed of two types of anode active material layers with different active material packing densities.

且、陽極集電体の近傍に位置下る活物質層の充填密度は
他の活物質層より高密度に構成される。
Moreover, the packing density of the active material layer located near the anode current collector is higher than that of other active material layers.

陰極板については、前述せる陽極集電体と同様に、鋳造
、打抜き、あるいは、エキスバンド加工により得た鉛−
カルシウム合金を50X50X1箇に裁断したるものを
陽極集電体と下る。そして。
As with the anode current collector mentioned above, the cathode plate is made of lead obtained by casting, punching, or expanded band processing.
A piece of calcium alloy cut into 50x50x pieces is used as the anode current collector. and.

PbOと水を練合してペースト状にした活物質をローラ
等により、厚み0.5ffの活物質シートに圧延する。
An active material made into a paste by kneading PbO and water is rolled into an active material sheet with a thickness of 0.5 ff using a roller or the like.

50X50寵の規定寸法に裁断した一対の前記活物質シ
ートを、陽極集電体の両面にローラブレスにより圧着し
て厚み1.2Mの陰極板を得る。
A pair of the active material sheets cut to a specified size of 50×50 mm are pressed onto both sides of an anode current collector using a roller press to obtain a cathode plate with a thickness of 1.2M.

以上のようにして得た1枚の陽極板(′IO1と2枚の
陰極板0404とをガラス繊維セパレータαη乞介して
One anode plate ('IO1) and two cathode plates 0404 obtained as described above were interposed with a glass fiber separator αη.

交互に積重した電極群を樹脂性の電槽tX8内に介挿し
、ついで比重1.50の硫酸電解液を106c注液して
極板およびセパレータに含浸保持せしめたのち、陰、陽
極外部端子住9■ン取付(すた電膚着Cυを装着して容
量IAHの鉛蓄電池を化成して使用可能と下る。
The alternately stacked electrode groups were inserted into a resin container tX8, and then 106c of sulfuric acid electrolyte with a specific gravity of 1.50 was injected to impregnate the electrode plates and separators, and then the negative and anode external terminals were connected. Attached to the housing 9 ■ (I put on the electric skin Cυ and chemically converted a lead-acid battery with a capacity of IAH to make it usable.

第4図は本発明電池(A)と、陽極板の活物質充填密度
が1種類の陽極活物質層で構成されていること以外は本
発明電池と同様の比較電池(B)(C)との過放電特性
!比較したものであり、比較電池(B)のペースト密度
は(lQp/ceで、比較電池(C)のペースト密度は
4.Ojl/eeである。
Figure 4 shows a battery of the present invention (A) and comparative batteries (B) and (C) that are similar to the battery of the present invention except that the active material packing density of the anode plate is composed of one type of positive electrode active material layer. Overdischarge characteristics! For comparison, the paste density of the comparative battery (B) is (lQp/ce), and the paste density of the comparative battery (C) is 4.0jl/ee.

測定は、先づ、上記化成後の電池を定電圧(2゜5v)
充電し、0.20電流で放電して放電終止電圧を1.7
Vと下るサイクル条件を10回繰返してその時の平均放
電容量を100とTる。
For the measurement, first, the battery after the above chemical formation was placed at a constant voltage (2°5V).
Charge and discharge at 0.20 current to reach a final discharge voltage of 1.7
The cycle condition of decreasing V is repeated 10 times, and the average discharge capacity at that time is 100T.

そしてこのように前処理した本発明電池(A)及び比較
電油(B)¥放電終了後200Ωの抵抗に接続し3ケ月
間放置した後、定電圧(2,5V)充電し、0.20電
流で放電して放電終止電圧ンl。
Then, the battery of the present invention (A) and the comparative electrolyte (B) pretreated in this way were connected to a 200Ω resistor after discharging, left for 3 months, and then charged at a constant voltage (2.5V) to 0.20Ω. The discharge end voltage is reached by discharging with a current.

7vとして各回の放電容量を測る方法を用いた。A method was used in which the discharge capacity was measured each time at 7V.

第4図より本発明電池によれば過放電特性が改善されて
いることがわかる。
It can be seen from FIG. 4 that the battery of the present invention has improved overdischarge characteristics.

以上詳述したように1本発明電池は、陽極板として、活
物質の充填密度の異なる2種類以上の陽極活物質層で構
成し、且、、集電体の近傍に位置下る活物W層の充填密
度乞、他の活物質層の充填密度より高くしているので、
集電体近傍の空孔体積。
As detailed above, the battery of the present invention is composed of two or more types of anode active material layers having different packing densities of active materials as an anode plate, and an active material W layer located near the current collector. Since the packing density of the active material layer is higher than that of other active material layers,
Hole volume near the current collector.

孔径等の低減が図られ、その結果、一種の細孔閉塞がお
こり、電解液の浸透性をおさえることになり、集電体近
傍への電解液の拡散が抑制される。
The pore diameter etc. are reduced, and as a result, a kind of pore clogging occurs, suppressing the permeability of the electrolytic solution and suppressing the diffusion of the electrolytic solution into the vicinity of the current collector.

このように、集電体近傍への電解液の拡散を防止Tると
、集電体表面のPbO2層が、電解液中の5o4−  
(硫酸イオン)と反応して、pbs。
In this way, by preventing the electrolyte from dispersing near the current collector, the PbO2 layer on the surface of the current collector acts as a 5o4-
(sulfate ion) to react with pbs.

4(これが放置中≦巳不活性化する。丁なわち、非可逆
性pbso4)化するのを抑制下ることができ、過放電
放置特性を改善しうるものである。
It is possible to suppress the formation of PBSO4 (which becomes inactive while left unused, that is, irreversible pbso4), and improve the overdischarge left characteristics.

また、陽極板を活”物質の充填密度の異なる2種類以上
の陽極活物質層で構成しているので、放電終了暗に陽極
板の一部が浅い放電状態で存在し。
Further, since the anode plate is composed of two or more types of anode active material layers having different filling densities of active materials, a part of the anode plate exists in a shallow discharge state even after the discharge has ended.

放置後定電圧充電すると、不活性になっていない(浅い
放電部分)部分を陽極の起点として、陰極の間で充電さ
れていき、順次不活性化部分も活性化していくとともに
、充゛亀された喰陽極板から804−一 が生成され、
電解液a度が上昇し内部抵抗が減少し、より大きい充電
1流か流れて活性化が進むtXど、その工業的価値は極
めて大きい。
When the battery is charged at a constant voltage after being left unused, the non-inactive part (shallow discharge part) will be charged between the anode and the cathode. 804-1 is generated from the Tabu anode plate,
Its industrial value is extremely great, such as tX, which increases the electrolyte a degree, reduces internal resistance, and advances activation by flowing a larger charge flow.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は陽極板の集電体表面に非可逆性のpbS04層
が生成するメカニズムを説明下るための図、第2図は本
発明電池の縦断面図、第6図は活物質ペースト中に添加
下るH2S04(硫e)量とペースト密度との関係を示
す図、第4図は本発明電池(A)と比較電池(B)(C
)との過放電特性比較図である。
Figure 1 is a diagram for explaining the mechanism by which an irreversible pbS04 layer is formed on the surface of the current collector of the anode plate, Figure 2 is a vertical cross-sectional view of the battery of the present invention, and Figure 6 is a diagram showing the formation of an irreversible pbS04 layer on the surface of the current collector of the anode plate. A diagram showing the relationship between the amount of H2S04 (sulfur e) added and the paste density.
) is a comparison diagram of overdischarge characteristics.

Claims (1)

【特許請求の範囲】[Claims] (1)  陰陽極板と、これら極板間に介在せるセパレ
ータと、@記極板およびセパレータに含浸保持され遊離
の電解液が存在しないようC:制限された量の電解液と
を備え、@記陽極板は、活物質の充填密度の異なる2種
類以上の陽極活物質層で構成され、且、鉛または鉛合金
よりなる集電体の近傍に位置下る活物質層の充填密度を
、他の活物質層の充填密度まり高くしたことを特徴とす
る鉛蓄電池。
(1) Comprising cathode and anode plates, a separator interposed between these plates, and a limited amount of electrolyte that is impregnated and held in the electrode plates and separator so that no free electrolyte exists; The anode plate is composed of two or more types of anode active material layers having different packing densities of active materials, and the packing density of the active material layer located near the current collector made of lead or lead alloy is different from that of the other active material layers. A lead-acid battery characterized by a high packing density of an active material layer.
JP57097990A 1982-06-07 1982-06-07 Lead-acid battery Pending JPS58214274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57097990A JPS58214274A (en) 1982-06-07 1982-06-07 Lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57097990A JPS58214274A (en) 1982-06-07 1982-06-07 Lead-acid battery

Publications (1)

Publication Number Publication Date
JPS58214274A true JPS58214274A (en) 1983-12-13

Family

ID=14207103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57097990A Pending JPS58214274A (en) 1982-06-07 1982-06-07 Lead-acid battery

Country Status (1)

Country Link
JP (1) JPS58214274A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60227357A (en) * 1984-04-24 1985-11-12 Shin Kobe Electric Mach Co Ltd Manufacture of plate for lead storage battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55163769A (en) * 1979-06-08 1980-12-20 Matsushita Electric Ind Co Ltd Manufacture of electrode plate for lead acid battery
JPS5734663A (en) * 1980-08-07 1982-02-25 Matsushita Electric Ind Co Ltd Manufacture of pasted lead electrode
JPS58112252A (en) * 1981-12-25 1983-07-04 Matsushita Electric Ind Co Ltd Production method of electrode for lead storage battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55163769A (en) * 1979-06-08 1980-12-20 Matsushita Electric Ind Co Ltd Manufacture of electrode plate for lead acid battery
JPS5734663A (en) * 1980-08-07 1982-02-25 Matsushita Electric Ind Co Ltd Manufacture of pasted lead electrode
JPS58112252A (en) * 1981-12-25 1983-07-04 Matsushita Electric Ind Co Ltd Production method of electrode for lead storage battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60227357A (en) * 1984-04-24 1985-11-12 Shin Kobe Electric Mach Co Ltd Manufacture of plate for lead storage battery

Similar Documents

Publication Publication Date Title
JP5079324B2 (en) Lead acid battery
EP2586082B1 (en) Separator for lead acid battery
JP5016306B2 (en) Lead acid battery
JP2017063001A (en) Lead storage battery
JP5138391B2 (en) Control valve type lead acid battery
WO2017047054A1 (en) Lead storage battery
WO2013114822A1 (en) Lead-acid battery
JP6525167B2 (en) Lead storage battery
WO2004010526A1 (en) Control valve type lead battery
JPS58214274A (en) Lead-acid battery
JP2004014283A (en) Valve regulated lead battery
CN112038686A (en) Lithium ion battery with potential difference double cathodes
JPH04206468A (en) Sealed alkali-zinc storage battery
JPH0677449B2 (en) Lead acid battery
JPS5933754A (en) Lead-acid battery
US20220393181A1 (en) Lead-acid battery having fiber electrode with lead-calcium strap
JP6730406B2 (en) Lead acid battery
JP3511858B2 (en) Lead storage battery
JP2006155901A (en) Control valve type lead-acid storage battery
JPS58158874A (en) Lead storage battery
JP3211087B2 (en) Lead storage battery
JP2021144798A (en) Lead acid battery
JP2023154163A (en) lead acid battery
JPS5840780A (en) Lead storage battery
JP2002343359A (en) Sealed type lead storage battery