JPS58213623A - Preparation of high purity silicon - Google Patents

Preparation of high purity silicon

Info

Publication number
JPS58213623A
JPS58213623A JP9614982A JP9614982A JPS58213623A JP S58213623 A JPS58213623 A JP S58213623A JP 9614982 A JP9614982 A JP 9614982A JP 9614982 A JP9614982 A JP 9614982A JP S58213623 A JPS58213623 A JP S58213623A
Authority
JP
Japan
Prior art keywords
silicon
reactor
reflected
seed crystal
high purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9614982A
Other languages
Japanese (ja)
Inventor
Nobuo Nakamura
信夫 中村
Masanobu Miyao
正信 宮尾
Juichi Shimada
嶋田 寿一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9614982A priority Critical patent/JPS58213623A/en
Publication of JPS58213623A publication Critical patent/JPS58213623A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1836Heating and cooling the reactor

Abstract

PURPOSE:To prepare high purity silicon, continuously for a long period, preventing the deposition of silicon to the inner wall of the reactor of the fluidized bed process, by heating the high purity silicon granules with laser beam. CONSTITUTION:SiHCl3 vapor and H2 gas are introduced into the reactor 1 through the inlet 2 at a molar ratio of 1:10 to float the silicon seed particles introduced into the reactor 1 through the inlet 3. The floating particles are irradiated with CW argon laser 4 reflected from a part of the octagonal mirrors 5 separating gradually from each other from the bottom to the top. When there is no silicon seed crystal in the path of the laser beam, the beam is reflected by the mirror, and the process is repeated until the beam reaches the top part 5', where it is reflected by the mirror facing downward and returned to the lower part of the mirrors. When there is a seed crystal in the light path, the beam is disturbed, and the seed crystal is heated uniformly at e.g. 1,050 deg.C to obtain silicon granule having a diameter of e.g. 2mm.. Since the reactor is not heated directly, there is little deposition of silicon on the inner wall of the reactor, and accordingly, the production of silicon granules can be continued continuously and infinitely.

Description

【発明の詳細な説明】 本発明は流動床法によりシリコン顆粒上にシリコンを析
出させて高純度シリコン原材料する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a high purity silicon raw material by depositing silicon on silicon granules by a fluidized bed method.

半導体デバイスの急激な発展により、半導体級の単結晶
シリコンの需要が増大している。従来、単結晶シリコン
はチョクラルスキー法を用いて製造されているが、単結
晶シリコンの需要増大のためその供給原料である多結晶
シリコンの供給不足又は価格上昇を招込てめる。特に、
太陽電池の場合コストに占めるシリコン原材料の割合が
高く、コスト低減に関する技術開発が切望されている。
With the rapid development of semiconductor devices, the demand for semiconductor-grade single crystal silicon is increasing. Conventionally, single-crystal silicon has been manufactured using the Czochralski method, but the increasing demand for single-crystal silicon has led to a shortage of supply or an increase in the price of polycrystalline silicon, which is its raw material. especially,
In the case of solar cells, silicon raw materials account for a high proportion of the cost, and there is a strong need for technological development to reduce costs.

従来、多結晶シリコンはノ・ロシランガスの水素還元反
応によシリコン棒上に析出して製造されている。この方
法ではトリクロロシラン又はジクロロシランを水素還元
し、電気を通して加熱したシリコン棒上にシリコンを析
出させる。シリコン棒は、抵抗加熱で約1100〜12
00t:’ に加熱され、石英ガラス製ベルジャ型反応
容器は約300Cに保ってその内壁にシリコンが析出し
ない様にしている。しかし、この本性では析出面積が小
さいため、時間当りのシリコン析出量が少なく、製造に
要するエネルギー消費量も多いとhう欠点を有していた
Conventionally, polycrystalline silicon has been produced by depositing it on a silicon rod through a hydrogen reduction reaction of silane gas. In this method, trichlorosilane or dichlorosilane is reduced with hydrogen, and silicon is deposited on a silicon rod heated by electricity. The silicon rod is heated to about 1100~1200 by resistance heating.
The quartz glass bell jar type reaction vessel was kept at about 300C to prevent silicon from depositing on its inner wall. However, due to this nature, the deposition area is small, so the amount of silicon deposited per hour is small, and the energy consumption required for production is large.

かかる現状技術の欠点を克服するため、流動化した実質
的に析出面積の大きな微細なシリコン顆粒上にシリコン
を析出させる方法が提案されてきた、。しかし、との流
動末法では反応器全体を加熱するため、顆粒シリコン表
面上のみならず、反応器内壁にも析出する。これにより
、反応器の破壊や反応室が狭まくなって連続運転ができ
なくなるなどの問題を生じていた。
In order to overcome the drawbacks of the current state of the art, methods have been proposed in which silicon is deposited on fluidized fine silicon granules with a substantially large deposition area. However, since the fluidized powder method heats the entire reactor, it precipitates not only on the surface of the silicon granules but also on the inner walls of the reactor. This has caused problems such as destruction of the reactor and narrowing of the reaction chamber, making continuous operation impossible.

本発明の目的は、反応器内壁への析出を防ぎ、反応器等
の連続かつ長時間運転を可能にすること、ならびに照射
されたレーザー光を有効に利用することにある。
An object of the present invention is to prevent precipitation on the inner wall of a reactor, to enable continuous and long-term operation of a reactor, etc., and to effectively utilize irradiated laser light.

反応器内壁への反応物の析出は反応器全体を加熱するこ
とによって生ずるものであり、反応器内のシリコン顆粒
のみを加熱すれば解決できるものである。通常、これら
反応器は石英で作られており、石英はレーザー光を透過
するので、外部からレーザー光を照射すれば反応器内の
シリコン顆粒のみが加熱されることになり、反応器内壁
への析出は防止できる。特に、流動床法におhてはシリ
コン顆粒が気体中に浮遊しており、レーザー光加熱法に
よる光照射部分のみが加熱されるという欠点がなく、全
体が均一に加熱されることになる。
The precipitation of reactants on the inner wall of the reactor is caused by heating the entire reactor, and can be solved by heating only the silicon granules within the reactor. Normally, these reactors are made of quartz, and quartz transmits laser light, so if laser light is irradiated from the outside, only the silicon granules inside the reactor will be heated, and the inner wall of the reactor will be heated. Precipitation can be prevented. In particular, in the fluidized bed method, the silicon granules are suspended in the gas, and there is no drawback that only the portion irradiated with light by the laser beam heating method is heated, and the entire surface is uniformly heated.

しかし、この方法においても照射されたレーザー光のう
ち、シリコン顆粒で吸収される以外の光は外部に逃げて
しまうので、これを反射鏡で繰り返し反射されれば、よ
シ高温で均一に加熱することができる。加熱用レーザー
としてはアルゴンレーザーの他、CO!レーザーを用し
れば反応ガスも加熱される。加熱方法として、本発明で
はレーザー光を用すたが、X Iアークランプ、K T
アークランプ、x、ランプとhつたランプや電子ビーム
によっても同様の加熱が可能である。
However, even with this method, the irradiated laser light that is not absorbed by the silicon granules escapes to the outside, so if it is repeatedly reflected by the reflecting mirror, it will be heated evenly at a higher temperature. be able to. As a heating laser, in addition to argon laser, CO! If a laser is used, the reactant gas will also be heated. As a heating method, laser light was used in the present invention, but XI arc lamp, KT
Similar heating is also possible with arc lamps, x- and h-lamps, and electron beams.

実施ガ1 第1図は、本発明の流動床法による高純度シリコン製造
装置の全体図、第2図は、その断面図である。直径10
0ξすの反応器1の供給管2から三塩化シリコンと水素
ガスをモル比1:10で送給する。この混合ガスの流量
は50t/分である。
Embodiment 1 FIG. 1 is an overall view of a high-purity silicon production apparatus using the fluidized bed method of the present invention, and FIG. 2 is a sectional view thereof. diameter 10
Silicon trichloride and hydrogen gas are fed at a molar ratio of 1:10 from the supply pipe 2 of the reactor 1 at 0ξ. The flow rate of this mixed gas was 50 t/min.

供給管3から直径0.1〜0.5ミリのシリコン種粒子
を入れると、この種粒子は混合ガスの流速によって、浮
遊状態となる。この状態において第2図5の様な上部に
広がりをもち8角形をした反射鏡の一部より、レンズに
よって直径10ミリに広げた出力20WのCWアルゴン
に一ザー4vi−照射した。レーザー光は、シリコン種
結晶がなh場合は第2図に示す様に反射を繰り返し、し
だhに上部へ反射して最上部5′に達し、ここで内側に
向けられた反射鏡によって再び下方へ反射される。この
様に、浮遊したシリコン種結晶がない場合には、レーザ
ー光はきまった光路をたどるが、種結晶がある場合には
光路が乱され、この結果、反応器内の種結晶はレーザー
光を照射して10分後に1050Cに均一に加熱された
。この状態で20時間の連続運転を行ない、直径約2き
りのシリコン顆粒を3〜裳造した。
When silicon seed particles with a diameter of 0.1 to 0.5 mm are introduced from the supply pipe 3, the seed particles become suspended due to the flow rate of the mixed gas. In this state, 4 vi of CW argon with an output of 20 W, which was expanded to a diameter of 10 mm by a lens, was irradiated from a part of an octagonal reflecting mirror with a wide upper part as shown in FIG. If there is no silicon seed crystal, the laser beam will be reflected repeatedly as shown in Figure 2, and will gradually be reflected upward until it reaches the top 5', where it will be reflected again by a reflecting mirror directed inward. reflected downward. In this way, if there is no floating silicon seed crystal, the laser beam will follow a fixed optical path, but if there is a seed crystal, the optical path will be disturbed, and as a result, the seed crystal in the reactor will not follow the laser beam. Ten minutes after irradiation, it was uniformly heated to 1050C. Continuous operation was carried out in this state for 20 hours, and three to three silicon granules each having a diameter of about 2 mm were formed.

実施例2 実施例1と同様の構成として、供給管2よシ四塩化シリ
コンと水素ガス全モル比で1:5の割合で送給した。レ
ーザー光としては、CWアルゴンレーザー4の他に、反
射鏡の他の一部より出力30Wのcwco、  レーザ
ー6を照射したところ、照射して10分後にシリコン種
結晶はl100Cに均一に加熱された。この状態で20
時間の連続運転を行ない、直径約2ミリのシリコン顆粒
子fi5Kg製造した。
Example 2 With the same configuration as in Example 1, silicon tetrachloride and hydrogen gas were fed through the supply pipe 2 at a total molar ratio of 1:5. In addition to the CW argon laser 4, the laser beam was irradiated with a CWCO laser 6 with an output of 30 W from another part of the reflecting mirror, and 10 minutes after irradiation, the silicon seed crystal was uniformly heated to 1100 C. . 20 in this state
Continuous operation was carried out for several hours to produce 5 kg of silicon granules with a diameter of about 2 mm.

流動床法において、浮遊したシリコン種結晶にレーザー
光を照射した場合、反射鏡がなり時はし一ザー光が照射
された部分の種結晶しか加熱されないが、本発明の反射
鏡を設けれは、レーザー光を照射して10分後には全体
が均一に1ioocに加熱された。また、本方式では、
反応器が直接加熱されないので、反応器内壁にシリコン
がほとんど析出しなh0従って、無限に連続的にシリコ
ン顆粒を製造することができる。
In the fluidized bed method, when a floating silicon seed crystal is irradiated with a laser beam, the reflecting mirror turns off and only the part of the seed crystal that is irradiated with the laser beam is heated. After 10 minutes of laser beam irradiation, the whole was uniformly heated to 1iooc. In addition, in this method,
Since the reactor is not directly heated, almost no silicon is deposited on the inner wall of the reactor, so silicon granules can be produced continuously indefinitely.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施’lAJw実施する装置の全体
構成図、第2図は、第1図の横断面図である。
FIG. 1 is an overall configuration diagram of an apparatus for carrying out one embodiment of the present invention, and FIG. 2 is a cross-sectional view of FIG. 1.

Claims (1)

【特許請求の範囲】[Claims] 1、流動床式反応器を用すて高純度シリコン顆粒上にシ
リコン含有ガスからシリコンを析出させる高純度シリコ
ン製造方法において、高純度シリコン顆粒をレーザー光
を用いて加熱すること全特徴とする高純度シリコンの製
造方法。
1. A method for producing high-purity silicon in which silicon is precipitated from a silicon-containing gas onto high-purity silicon granules using a fluidized bed reactor, which is characterized by heating the high-purity silicon granules using laser light. Method of manufacturing purity silicon.
JP9614982A 1982-06-07 1982-06-07 Preparation of high purity silicon Pending JPS58213623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9614982A JPS58213623A (en) 1982-06-07 1982-06-07 Preparation of high purity silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9614982A JPS58213623A (en) 1982-06-07 1982-06-07 Preparation of high purity silicon

Publications (1)

Publication Number Publication Date
JPS58213623A true JPS58213623A (en) 1983-12-12

Family

ID=14157319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9614982A Pending JPS58213623A (en) 1982-06-07 1982-06-07 Preparation of high purity silicon

Country Status (1)

Country Link
JP (1) JPS58213623A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02233514A (en) * 1989-03-06 1990-09-17 Osaka Titanium Co Ltd Production of polycrystalline silicon
JPH0761808A (en) * 1993-08-26 1995-03-07 Koujiyundo Silicon Kk Method for crushing polycrystalline silicon
US10105669B2 (en) 2012-08-29 2018-10-23 Hemlock Semiconductor Operations Llc Tapered fluidized bed reactor and process for its use

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02233514A (en) * 1989-03-06 1990-09-17 Osaka Titanium Co Ltd Production of polycrystalline silicon
JPH0761808A (en) * 1993-08-26 1995-03-07 Koujiyundo Silicon Kk Method for crushing polycrystalline silicon
US10105669B2 (en) 2012-08-29 2018-10-23 Hemlock Semiconductor Operations Llc Tapered fluidized bed reactor and process for its use
US10265671B2 (en) 2012-08-29 2019-04-23 Hemlock Semiconductor Operations Llc Tapered fluidized bed reactor and process for its use

Similar Documents

Publication Publication Date Title
US4806321A (en) Use of infrared radiation and an ellipsoidal reflection mirror
CN103373730B (en) Granulated polycrystalline silicon and preparation thereof
TW541367B (en) Method and apparatus for silicon deposition
JP2001146412A (en) Fluidized bed reactor and method for producing high- purity polycrystalline silicon
JP2000511154A (en) Preparation method of polysilicon using exothermic reaction
AU5667001A (en) Polycrystalline silicon and process and apparatus for producing the same
US4265859A (en) Apparatus for producing semiconductor grade silicon and replenishing the melt of a crystal growth system
GB2213837A (en) Electronic device manufacture with deposition of material, particularly cadmium mercury telluride
CN201665729U (en) Device for pulling thin silicon shell with curved surface
JP2010241673A (en) Apparatus and method of manufacturing polysilicon
WO1991017952A1 (en) Process for producing crystalline silicon ingot in a fluidized bed reactor
JPS58213623A (en) Preparation of high purity silicon
JPH0317768B2 (en)
WO1992000245A1 (en) Method of producing polycrystalline silicon rods for semiconductors and thermal decomposition furnace therefor
JPH0560901A (en) Infrared optical device and production therefor
JP2003054933A (en) Reaction apparatus for producing silicon
JPS5936927A (en) Vapor phase growth apparatus for semiconductor
JPH03215310A (en) Production of polycrystal silicon
JPH06127923A (en) Fluidized bed reactor for producing polycrystalline silicon
JPH02279513A (en) Production of high-purity polycrystal silicon
JPH0230611A (en) Method and device for producing polycrystalline silicon
CN108394904A (en) A kind of monosilane thermal decomposition furnace of truncated cone-shaped cooling jacket
JPH02279512A (en) Production of high-purity polycrystal silicon
JPS59107917A (en) Apparatus for manufacturing polycrystalline silicon
KR20130038167A (en) Apparatus and process for deposition of polycrystalline silicon