JPS58209175A - Josephson tunnel junction element - Google Patents

Josephson tunnel junction element

Info

Publication number
JPS58209175A
JPS58209175A JP57091824A JP9182482A JPS58209175A JP S58209175 A JPS58209175 A JP S58209175A JP 57091824 A JP57091824 A JP 57091824A JP 9182482 A JP9182482 A JP 9182482A JP S58209175 A JPS58209175 A JP S58209175A
Authority
JP
Japan
Prior art keywords
layer
electrode layer
tunnel junction
voltage
josephson tunnel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57091824A
Other languages
Japanese (ja)
Other versions
JPS603797B2 (en
Inventor
Susumu Takada
進 高田
Haintsu Gundoratsuha Kaaru
カ−ル・ハインツ・グンドラツハ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP57091824A priority Critical patent/JPS603797B2/en
Publication of JPS58209175A publication Critical patent/JPS58209175A/en
Publication of JPS603797B2 publication Critical patent/JPS603797B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/10Junction-based devices
    • H10N60/12Josephson-effect devices

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To enable to satisfy both electrical and physical characteristics required for a millimeter wave heterodyne mixer and the like by a method wherein, in the case of Josephson tunnel junction element having the construction wherein an insulating film is pinched between a pair of upper and lower superconductive electrode layers, an alloy material of Pb and Bi is used for the upper electrode layer and for the lower electrode layer, while In is added to the above- mentioned material. CONSTITUTION:A lower part electrode material layer 2', consisting of Pb/Bi with Bi content of 29wt%, is vapor-deposited on a substrate 1 made of crystal and the like in the film thickness of 2,000Angstrom . Then, an In layer 3' of 100-200Angstrom in thickness is coated on the above and said layer 3', which will be turned to an insulating film, is converted to an In2O3 layer 3 and, at the same time, the lower electrode 2' is converted to an electrode layer 2 of Pb/Bi/In composition by diffusing In into the layer 3. Subsequently, the upper electrode layer 4 consisting of Pb/Bi containing 29wt% of Bi is coated in the thickness of approximately 2,000Angstrom , and a Josephson tunnel junction part 5 is generated between the above- mentioned layers.

Description

【発明の詳細な説明】 本発明は、ジョセフソン・トンネル接合素子殊に、電波
望遠鏡におけるミ’)波のヘテロダイン・ミクサとして
とかビデオ・ディテクタとして使用するに好適なジョセ
フソン・トンネル接合素子に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a Josephson tunnel junction device, particularly a Josephson tunnel junction device suitable for use as a microwave heterodyne mixer in a radio telescope or as a video detector.

絶縁層乃至トンネル障壁層を一対の超電導体電極層で挾
んで成るジョセフソン・トンネル接合素子ぽ、超電導体
−絶縁層−超電導体(Superconductor 
 −In@ulator  −Sup@rconduc
tor)構造、略してSIS構造と呼ばれ、以下、本書
でもこれに従い、SIS型ジョセフソン素子と略称する
が、このSIS型ジョセフソン素子は、昨今に至って、
受動素子であシながらも童子効果によう電力ゲインが採
れること等から、上記したミリ波のヘテロダイン・ミク
サとしてとかビデオ・ディテクタとして卓越した性能を
示し得ることが顕らかにされ、この種アナログ用途に適
したSIS構造の研究、電極材質の研究が、なされてき
た。
Josephson tunnel junction device consisting of an insulating layer or tunnel barrier layer sandwiched between a pair of superconducting electrode layers, superconductor-insulating layer-superconductor
-In@ulator -Sup@rconduc
tor) structure, abbreviated as SIS structure, and hereinafter also referred to as SIS type Josephson element in accordance with this structure, but this SIS type Josephson element has recently been
Although it is a passive element, it is possible to obtain a power gain similar to the Doji effect, and it has been revealed that it can exhibit outstanding performance as the above-mentioned millimeter wave heterodyne mixer or video detector. Research has been carried out on SIS structures and electrode materials suitable for various applications.

本発明もこうした一連の研究過程の延長線上にあるもの
で、よシ優れた電気的、物理的緒特性を持つこの種アナ
ログ用SIS型ジョセフソン素子を提供するものでめる
が、ここで、要求される電気的緒特性とはどのような類
いのものであるかを説明するために、先つ第1図に、一
般的7kSIS型ジヨセフソン素子の戒流亀圧特性(I
−Vカーブ)を挙げる。に←セー→で周知のように、こ
うしたSIS型ジョセフシン素子大は、絶縁層を狭む両
岨極層が超亀導遣移する極低温環境下に置かれて動作す
るが、素子電流工が成る臨界電流値工。を越えるまでは
、当該素子電流は所謂ジョセフソン・トンネル奄啼とな
り、従って当該SIS構造から成る接合両端(両電極層
間)には電工の発生しない状態が続く。これを接合が零
電圧状態にあると言う。
The present invention is an extension of this series of research processes, and is intended to provide this kind of analog SIS type Josephson device with excellent electrical and physical characteristics. In order to explain what kind of electrical characteristics are required, Figure 1 shows the current tortoise pressure characteristics (I
-V curve). As is well known, these SIS-type Joseph Shinn devices operate in an extremely low temperature environment where the two polar layers narrowing the insulating layer undergo a supertorque transition. critical current value. Until the value exceeds 0, the device current becomes a so-called Josephson tunnel flow, and therefore, a state in which no electric current occurs at both ends of the junction (between both electrode layers) of the SIS structure continues. This state is said to be that the junction is in a zero voltage state.

面して、素子電流が臨界電流Icに至ると、第1図中、
矢印fTで示すように、接合両端に電極層材質で定まる
所定の電圧値(ギャップ電圧)■、の発生する点pic
a移して、接合は所n電圧状態となる。
When the element current reaches the critical current Ic, in Fig. 1,
As shown by the arrow fT, the point where a predetermined voltage value (gap voltage) determined by the electrode layer material occurs at both ends of the bond (pic)
After moving a, the junction is in the n voltage state.

を合がこのようにして、一度び電圧状態に4移すると、
素子電流工が零に戻されるまでは、この電圧状態に保た
れ、素子電流工が零となると再び零電圧状態に戻る。
In this way, once transferred to the voltage state, we get
This voltage state is maintained until the element current is returned to zero, and when the element current becomes zero, it returns to the zero voltage state again.

しかして、このようなヒステリシスカーブにあって、本
発明対象となるアナログ用達と、そうでないデジタル用
途では、電気的に注目すべき個所は本来的に異なったも
のとなる。
However, in such a hysteresis curve, the points to be electrically noted are essentially different between analog applications, which are the object of the present invention, and digital applications, which are not the object of the present invention.

デジタル系の用途では、零電圧状態から電圧状態への遷
移部分に重きが置かれる。例えば臨界電流工が素子毎に
バラ付くこともなく、設計仕様を満足しているか否か、
等である。
In digital applications, emphasis is placed on the transition from zero voltage state to voltage state. For example, whether the critical current flow does not vary from element to element and satisfies the design specifications.
etc.

これに対して、アナログ系のミクサとかテイテクタとし
ての用途では、電圧状態における曲線領域、即ち、点P
を含んで、ギャップ電圧うを維持したまま電流値工を可
変できる略々垂直に立った曲線部分CcLと、ギャップ
電圧V、を維持し得すに急開に原点0に向かう略々電圧
軸Vに沿った曲′S部分Cb1及び、両面線部分の選ぎ
目となる、ニー(Knee ;ひざ)と呼はれる部分C
kに着目される。
On the other hand, when used as an analog mixer or detector, the curve region in the voltage state, that is, the point P
, a nearly vertical curve section CcL that can vary the current value while maintaining the gap voltage V, and an approximately voltage axis V that rapidly opens toward the origin 0 while maintaining the gap voltage V. ``S part Cb1 along the line, and a part C called the knee, which is the selection point of the double-sided line part.
Attention is focused on k.

ここで、電磁波受信系に用いられる場合に要求される、
乃至は改善すると望ましい電気的特性を列挙してみる。
Here, required when used in an electromagnetic wave receiving system,
Let us enumerate the electrical characteristics that would be desirable to improve.

1)<ニー特性〉 ニー特性とは、第1図中、模式的に角度θで示したよう
に、ギャップ電圧V、を維持したままで電流値工を可変
できるI−V曲線中のクエサイパーティクルなVILL
立ち上がり部分C7と、ギヤツブ電圧V、から零電圧状
態に戻る部分Cbとのなす角度θが、90°に対してど
の程度鈍角側に開いているか、乃至はどの程度90°に
近いかということを目安として云々され、90°よυ開
く程、ニーは丸いと言わわ、90°に近い程、ニーは説
い、等と表現される。
1) <Knee characteristic> The knee characteristic is a question mark in the IV curve that allows the current value to be varied while maintaining the gap voltage V, as schematically shown by the angle θ in Fig. 1. Particle VILL
How obtuse is the angle θ between the rising portion C7 and the portion Cb where the gear voltage V returns to zero voltage state relative to 90°, or how close is it to 90°? As a guideline, it is said that the wider the knee is 90 degrees, the rounder the knee is, and the closer it is to 90 degrees, the rounder the knee is.

結論から言えば、ニーは鋭い程、良いとされ、別な見方
をすれ打曲@部分Cbが電圧軸Vと平行で、電流軸方向
への浮き上がり峠斜の傾きか小さい程、良いとされる。
In conclusion, the sharper the knee is, the better it is, and from a different perspective, the more parallel the part Cb is to the voltage axis V, and the smaller the slope of the rising slope in the direction of the current axis, the better it is. .

というのも、この部分Cb  の浮き上が部分は等測的
にS■S接合の漏洩電流分を示す本のとかるからで、ミ
クサ等として用いる場合には、漏洩電流が少い柵、変換
効率が増すことは当然である。
This is because the floating portion of Cb is equivalent to the leakage current of the S■S junction, and when used as a mixer etc. Naturally, efficiency increases.

結局は、第1図中に仮想線で示す目標曲線Ca1.Ck
l、′Cb、に近いカーブとなるもの、即ち、ニ一部分
Ckiの角度θ1中90°で示されるように、ギャップ
電圧vqにおけるクエサイパーテイクルな電流の立ち上
がりが需峻で、ギャップ電圧V、から零電圧状態への曲
線部分Cbiが略々電圧軸上に暖るような曲線に近いカ
ーブを採るもの程、望ましい強い非直線性を持ち、廃い
変換効率が得られることになる。
In the end, the target curve Ca1. shown by the virtual line in FIG. Ck
1, 'Cb, that is, as shown at 90° in the angle θ1 of the second part Cki, there is a strong demand for a quasi-particular current rise at the gap voltage vq, and the gap voltage V, The closer the curve portion Cbi from to the zero voltage state is to the curve that warms up on the voltage axis, the more desirable the strong nonlinearity will be, and the higher the conversion efficiency will be obtained.

しかして、ニー特性を云々するのに既述のようにニーが
丸いとか・或いはニーが鋭い、乃至はニーが良い等と角
度的な肖い表し方をするにしても、測定系では角度θで
は定量化が不便なため、実際にはギャップ電圧vqに対
してΔV(一般にはQ、5 ?FIV )  高い電圧
値における抵抗値R,!と、ΔV低い電圧値における抵
抗値Rbとの比Ra/Rb k採って正規化し、ニー特
性を判断している。
However, even if we describe the knee characteristics in terms of angles, such as the knee being round, the knee being sharp, or the knee being good, as mentioned above, in the measurement system, the angle θ Since it is inconvenient to quantify, in reality, the gap voltage vq is ΔV (generally Q, 5?FIV), and the resistance value R,! at a high voltage value. The knee characteristic is determined by taking the ratio Ra/Rb k of the resistance value Rb and the resistance value Rb at a voltage value lower than ΔV and normalizing it.

即ち、比Ra/R5が小さい程、ニー特性は優れている
ことにナシ、既述の目標曲線における比RcL’/Rb
’ は極めて小さくなる。
In other words, the smaller the ratio Ra/R5 is, the better the knee characteristics are.
' becomes extremely small.

以上のように、良いニー特性を得るということは、強い
非直線性を得るための一つの条件となシ、変換効率を向
上させる上で1要な因子となるのである。
As described above, obtaining good knee characteristics is one condition for obtaining strong nonlinearity, and is an important factor for improving conversion efficiency.

1)  <キャップ゛亀圧V、ン ギャップ電圧V、は、SIS接合に用いる電極−の材料
によって快定され、この電圧V、け高い程、良いとされ
る。というのも、このギャップ電圧vqは、当該電極層
材料のエネルギ・バンド・ギャップ2Δ/q(q:  
エレクトロンiE荷! )に相当するため、2Δ/q”
fmax・b(hニブランク定数)より、高い程、最高
動作周仮数fnia□を上げ、受信可能範囲を拡大する
ことができるからである。例えばミリ波帯明ヘテロタイ
ン・ミクサとしては当該ミリ波帯30−300 GHz
  f十分な余裕をもってカバーすることが望ましい。
1) The cap voltage V and the gap voltage V are determined by the material of the electrode used in the SIS junction, and it is said that the higher the voltage V, the better. This is because this gap voltage vq is determined by the energy band gap 2Δ/q (q:
Electron iE load! ), so 2Δ/q”
This is because the higher the value is than fmax·b (h blank constant), the higher the maximum operating frequency mantissa fnia□ can be raised and the receivable range can be expanded. For example, as a millimeter wave band bright heterotine mixer, the millimeter wave band 30-300 GHz
f It is desirable to cover with sufficient margin.

ミクサとしてではなくとも、最大受信可能周波数を上げ
られるということは、幅広いスペクトラム分布の受信能
力を持ち得るということであり、将来的な応用範囲の拡
大に擲ながるものとなるっ 1lI)<≧ヤツプ電圧V、における電流密度〉ギャッ
プ電圧V、にお灯る電流V;丈(A/d )は高い方が
良い。例ヌ、ば、第1図中でギャップ電圧V、における
最大電流を−とすると、面積パラメータ等地の条件か同
一ならけ、矢の目襟曲線上に示すように、篭流値工mi
 ’で採れれば、抵抗Ra′は、より小さくなる理とな
る。また、接合への入射エネルギ範囲も拡大され、ひい
てはタイナミツクマージンの拡大にも継すがる。具体的
には数百A/c++Iから100OA/〆以上程度が望
ましい。
Even if it is not used as a mixer, being able to increase the maximum receivable frequency means that it has the ability to receive a wide spectrum distribution, which will help expand the range of applications in the future. ≧Current density at gap voltage V>Current V lighting at gap voltage V; The higher the length (A/d), the better. For example, if the maximum current at the gap voltage V in FIG.
If ' is taken, the resistance Ra' will become smaller. Furthermore, the range of energy incident on the junction is expanded, which in turn leads to an expansion of the dynamic margin. Specifically, it is desirable to range from several hundred A/c++I to 100OA/c++I or more.

以上がミクサ等としてのアナロク用SIS素子に電気的
に要晴される主たる事項であるか、先に運べたように、
テジタル系用のそれとは不質的に異なっている。また、
I −V曲?gp Nは出ないか、テジタル系用途では
、障壁〜乃至自勉極層f’s’+絶縁膜9誘S、率にも
1目され、余りに太きいと副作速曳の低下か問題となる
が、本弁明のような用途ではその炉対(iiLは問題と
さnることかない。
The above are the main electrical requirements for analog SIS devices such as mixers, as mentioned earlier.
It is essentially different from that for digital systems. Also,
I-V song? In digital applications, the barrier to self-study layer f's' + insulating film 9KS is also considered, and if it is too thick, it may be a problem that the side production speed decreases. However, in applications such as this defense, the furnace pair (iiL) is not a problem.

しかし、両系に共通して要求される手積もめる。それは
専ら、物理的諸特性、特に所請熱サイクル有性乃至温度
サイクル特性である。
However, there is a common requirement for both types of labor. It is exclusively the physical properties, in particular the required thermal cycling properties or temperature cycling properties.

Ri、Iち、室温と1作温曵(一般には液体へリワム温
度4.2 K乃至は減圧雰囲気においてのそれ以下の温
度)との間’t (+’1回も往復させても素子か壊れ
ないこと(これを温度サイクル特性が良いと言う)が、
実用土からして満足させねばならない重要な因子となっ
てくるのである。
Ri, I, between room temperature and one operation temperature (generally the liquid heating temperature 4.2 K or lower temperature in a reduced pressure atmosphere) 't (+') Even if it is made to go back and forth even once, The fact that it does not break (this is called good temperature cycle characteristics) is
This is an important factor that must be satisfied in terms of practical soil.

以上を靴合してみると、注目丁べき電気的緒特性の樺類
の相異乃至特殊性から、本来的にミクサ寺の用途に向<
SIS型7ヨセフソン素子はそれ専用のものとして研究
、開発されて然るべきである。か、従来からも、物とし
ての物理的強度がとeこかくも採t′LなけfLに実用
上に無意味でりることから、アナログ糸量であるとテジ
タル糸用であると金問わず、とりあえず成る程曵の′$
!J理的強曳乃至温度サイクル特性を持つものの甲から
上記したミクサ用等としての: ) 、 ++ ) +
111)の諸元金製る程腿満足し俺るものがないかとの
比較対象研究がなされていた。
Taking all of the above into account, birch trees are originally suitable for use in Miksa temple due to their remarkable electrical properties.
The SIS type 7 Josephson device should be researched and developed exclusively for this purpose. In addition, it has been conventionally known that the physical strength of a product is practically meaningless unless it is measured in terms of physical strength. Well, I'll make it for the time being'$
! J For use in the above-mentioned mixers, etc. with mechanically strong stirring or temperature cycle characteristics: ), ++ ) +
111), a comparative study was being conducted to see if there was something that would be as satisfying as the specifications of gold.

こうした研究過性中で殊り上けられたものの一つに、こ
れは本来テシタル糸用として、1発されたものでりるが
、下部亀惨層としてPbftf= 、J増化−してトン
ネル障壁層としての暖化摸を惨勺、この素子は、温度サ
イクル特性が良く、500回以上の熱サイクルが採れる
ことで漫2tているが、ギャップ電圧V、は約2.3 
mVと満足できない値であり、lたAuのため、漏?!
l&IJI流が多く、良好な非直線性が得らnないとい
う欠点がある。
One of the things that has been highlighted in this research is that it was originally intended for use as a tesital thread, but it was used as a tunnel in the lower Kamesai layer. As a barrier layer, it suffers from global warming, but this element has good temperature cycle characteristics and can withstand more than 500 thermal cycles, so the gap voltage V is about 2.3.
mV, which is an unsatisfactory value, and because of the Au, there is no leakage. !
There are many I&IJI flows, and there is a drawback that good nonlinearity cannot be obtained.

これに対して、下部1!極層にAuの含まれていないP
、 /Intl−用いることによシ、ミクサ用として開
発されたものもあるが、とユもギャップ電圧は約2.8
mVと高くはなく、非直線性乃至ニー特性も、既述の抵
抗比Rtx/)tbを採ると、4.2にでα15と余シ
小さl値ではない。因みに、このP/I  下部′を極
層とP、/8i 上か電極層かn ら成る素子の東大釦作、側波数?叶算すると、光層の式
VgE:2Δ/q”” fm(LJ: ” h二’) 
、’n b50 G)Izとfkシ、それ程に高い値と
はならない。また、札の入っていない分だけ、濃洩砿流
もりくなってはいるが、極めて少いという程はない。
On the other hand, bottom 1! P whose polar layer does not contain Au
, /Intl-Although some have been developed for mixers, the gap voltage is about 2.8.
mV, which is not high, and the non-linearity or knee characteristic is 4.2, α15, which is not a small l value if the resistance ratio Rtx/)tb mentioned above is taken. By the way, this P/I lower part' is the pole layer and P, /8i is the upper electrode layer, or is the side wave number of the element made by Button of the University of Tokyo? When calculated, the formula of the optical layer is VgE: 2Δ/q"" fm (LJ: "h2')
, 'n b50 G) Iz and fk shi, the values are not that high. In addition, the number of coins is slightly smaller due to the lack of bills, but it is not extremely small.

これ等とはまた別な従来素子として、上下両電極層共、
Pb/B1 (29urt%)とした素子もある。
As a conventional element different from these, both upper and lower electrode layers,
There is also an element with Pb/B1 (29urt%).

ビスマスB1の29重量パーセントというのは、良好な
合金を形成するために一義的に定まる値である。
29 weight percent of bismuth B1 is a value uniquely determined to form a good alloy.

この素子では、ギャップ電圧V9i−1#I 3.4 
WV 。
In this element, the gap voltage V9i-1#I 3.4
WV.

従って最嘉動作周波版fは810GHzとかなりなワイ
ドレンジとなるが、8iは寧ろ物理的強度を下げる方向
に作用することが判かってンリ、現にこの素子では数回
の温度サイクルにも耐え得ないものとなっている。温度
サイクルは現時点におけるミクサ実用化への過渡期にお
いてさえ、少くとも、十回程度は必要とされる。
Therefore, the maximum operating frequency version f is 810 GHz, which is a fairly wide range, but it is known that 8i actually works in the direction of lowering the physical strength, and in fact, this element cannot withstand even several temperature cycles. It has become a thing. Temperature cycling is required at least ten times even in the current transition period for commercialization of mixers.

この外、そもそも物理的強度が鉛合金系に比べて高いN
、糸材料を用い丸ものも見られ、Nb/A2下部電極層
−酸化膜−Pb/BI 上部電極層とかNb下を・電極
層−希上頻酸化膜−Ph上部ml 、i層等のSIS構
造も提案されているが、デジタル用としてはとも角、ミ
クサ等としてはている。どちらかと言えば、Nb 系は
ミクサ用としては不向きであり、物理的強以の鳩さが逆
に災いして微細加工作業性を悪化させるという欠点の方
が目立ってしまう。
In addition, N has higher physical strength than lead alloys.
, Round ones using thread materials are also seen, Nb/A2 lower electrode layer - oxide film - Pb/BI upper electrode layer, Nb bottom electrode layer - dilute upper oxidation film - Ph upper ml, SIS such as i layer. Structures have also been proposed, but for digital use, they are used as horns, mixers, etc. If anything, Nb-based materials are unsuitable for use in mixers, and the drawback of their physical strength is that they adversely affect microfabrication workability, which is more noticeable.

不発明は、上記のように、各元素が様々な効果を引き起
こす複雑に絡み合った実情の中で、ミリ波へテロダイン
・ミクサとかビデオ・テイテクタとして既述の望ましい
電気重積特性))。
The inventiveness lies in the complex intertwined reality in which each element causes various effects, as described above, and the desirable electrostatic properties described above for millimeter-wave heterodyne mixers and video detectors.

+i)、1ii)を総て改番し、尚且つ第四盲目の目標
諸元としてiv)  物理的強度も満足でさる素子乃至
その出、極層組成を提供くんとしたものでるる。
+i), 1ii) are all renumbered, and as the target specifications of the fourth blindness, iv) is intended to provide an element with satisfactory physical strength and an extremely layered composition.

因みに、上記した従来例の素子では、いやれも、例え微
力・でも艮いから上記一つの%注総ての改善をすし得た
、というものは一つもなく、どれか一つは少くとも悪化
さぞる紬来に終わっていたのである。
Incidentally, in the conventional elements mentioned above, there is not a single one that has been able to improve all of the above % notes even if it is by a small amount of effort, and at least one of them has been improved. It ended with Tsumugi Sazoru.

本発明SIS型素子は、端的VC言えば、少くとも、丁
部隼、億層をPb/B1/工。・組成としたものである
。イ//ウムInVこ就いてハ彼述するが、ビスマスB
iの重量パーセントは、先に説明したように、鉛P5と
良好な合金を形成するために29.wt%となる。
To put it simply, the SIS type element of the present invention has at least 100 million layers of Pb/B1/N.・The composition is as follows. I//Um InV, he says, but Bismuth B
The weight percent of i is 29.5% to form a good alloy with lead P5, as explained earlier. wt%.

以下、本発明一実施例のSIS型ジョセフソン素子の一
製作例を第2図KjtDして説明する。
Hereinafter, an example of manufacturing a SIS type Josephson element according to an embodiment of the present invention will be described with reference to FIG. 2KjtD.

先づ、第2図Aに示すように、水晶基板等の適当な基板
/上K、所要の下部1に極層用のメタル・マスク(図示
せず)を施し、スパッタ蒸着装置内で真空雰囲気、室温
にてP5/B、から成る下部電橋母材層2′を形成する
。P5/B 、合金のB1のi量パーセントは既述の2
9 wt駕である。また、71!硬厚は200OAで“
ある。
First, as shown in FIG. 2A, a metal mask (not shown) for an electrode layer is applied to a suitable substrate such as a quartz substrate/upper K and a required lower part 1, and then a vacuum atmosphere is applied in a sputter deposition apparatus. , P5/B at room temperature. P5/B, the i content percentage of B1 in the alloy is 2 as described above.
It is a 9wt palanquin. Also, 71! The hard thickness is 200OA.
be.

ここで、下部電極”母材”%Jとしたのは、この時点で
は、まだrnが導入されていないからで、将来、本発明
で言うPb/B、、/I、下部電極層が形成される元と
なる聯という意味であり、但し、平面形状自体は所要の
下部電極層と■1じにしておく。
Here, the lower electrode "base material" %J is used because rn has not yet been introduced at this point, and in the future, the Pb/B, /I, lower electrode layer referred to in the present invention will be formed. However, the planar shape itself is the same as the required lower electrode layer.

次に、第2図Bに示すように、上記のP、/B。Next, as shown in FIG. 2B, the above P and /B.

f 層二′上に、真空を破ることなく、同じスパッタT≦着
装賃で100乃至200Aの■。層3′全形成する。
f On layer 2', without breaking the vacuum, sputter 100 to 200 A with the same T≦deposition cost. Layer 3' is completely formed.

この層3′を、第2図Cに示すように乾燥酸素02の雰
囲気に基板温度室温で数分間、晒すと、酸化膜3として
の酸化インジウム層が得られる。
When this layer 3' is exposed to an atmosphere of dry oxygen 02 at a substrate temperature of room temperature for several minutes as shown in FIG. 2C, an indium oxide layer as the oxide film 3 is obtained.

同時に、この酸化工程において、■。が下地層コ′内に
拡散するものと考えられ、結果として、所要のP、/B
、/I。下部電極層λが形成されている。より実質的に
は、P、/Bi層ユ′の比較的表面に近い領域面がPb
/B、/一層重を構成していると考えることができる。
At the same time, in this oxidation step, ■. is thought to diffuse into the underlying layer, and as a result, the required P, /B
,/I. A lower electrode layer λ is formed. More substantially, the area surface relatively close to the surface of the P,/Bi layer unit is Pb.
/B, / can be thought of as constituting a heavier layer.

その後、上部電極層用のマスクを施した後、Pb/B、
 (29vat%)から成る」チル約2000^ の上
部電極層グを形成し、第2図りのようにSIS接合部S
を形成した。
After that, after applying a mask for the upper electrode layer, Pb/B,
An upper electrode layer of about 2,000^ thick is formed, and the SIS junction S is formed as shown in the second figure.
was formed.

本発明ジョセフソン素子/θは、5ISi合部jに上述
した特依、殊に少くとも下部電噛層のP5/B1/In
組成を持てば良いが、よシ実際的に、例えばミリ波ヘテ
ロダインの他励ミクサ素子として応用する場合には、上
下両電極層ユ。
The Josephson element/θ of the present invention has the above-mentioned special characteristics in the 5ISi junction j, especially P5/B1/In of at least the lower electric mesh layer.
However, in practice, for example, when applied as a millimeter-wave heterodyne separately excited mixer element, both the upper and lower electrode layers are sufficient.

qの中、少くとも一方において、第3図の平面図に示す
ように、上記した接合部左から出力端子面部乙に至る電
路部分にに、キャパシタンス及びインダクタンスから成
るフィルタ部7を幾何形態の調整により所要の値として
設けると良い。
At least on one side of Q, as shown in the plan view of Fig. 3, a filter part 7 consisting of capacitance and inductance is adjusted in geometric form in the electric circuit section from the left side of the junction part to the output terminal surface part A. It is better to set it as the required value.

このようにすれば、中間周波のみを出力端子乙、乙間に
採り出すことができ、第3図の素子/θけ一つのミクサ
・セルとなる。但し、フィルタ部7は図示の場合、双方
の電極層ユ、グの電路部分gに設けられているが、いづ
れか一方のみでも良い。
In this way, only the intermediate frequency can be extracted between the output terminals B and O, resulting in a mixer cell with only one element/θ as shown in FIG. However, in the illustrated case, the filter part 7 is provided in the electric circuit part g of both electrode layers Y, G, but it may be provided only in one of them.

第3図中のTI −■絹に沿う接合部5の断面が第2図
りに示す断面構造に相当し、また、第3図示の平面図形
においては、接合部5は両寧極層u、4の先端のナイフ
エッチ状の重なり部分となっており、その重なり面積、
即ち接合面積は、本出願人の製作例では3〜12ja″
である。
The cross section of the joint 5 along the TI-■silk in FIG. 3 corresponds to the cross-sectional structure shown in the second diagram, and in the plan view shown in FIG. There is a knife-etched overlapping part at the tip of the , and the overlapping area is
In other words, the joint area is 3 to 12 ja'' in the example produced by the present applicant.
It is.

また、図示は、していないが、基板/と出力端面部乙、
6間にはクロム接点面層を設ける等しても良い。
Also, although not shown in the diagram, the board/and the output end surface part B,
A chrome contact surface layer may be provided between 6 and 6.

本素子10乃至ミクサ・セルIOは、第4図示のように
、公知通常のミリ波導波管//内に据付けて用いること
ができる。導波v//には公知構造を援用して、通常、
備えられる/ヨード・プランジャ/2やチューニング・
スタブ/3・・・等も併示し、また、本素子10は要部
のみで基板を省略して示しているが、こうした構成にお
いて、導波管//内にミリ仮入力角周鼓数信号岨(一般
にはω2−ω、−ω0)を得ることができる。
The present device 10 to mixer cell IO can be used by being installed in a known ordinary millimeter wave waveguide, as shown in the fourth figure. A known structure is used for the waveguide v//, and usually,
Equipped with/iodine plunger/2 and tuning/
Stub/3... etc. are also shown, and only the main parts of this device 10 are shown with the board omitted. can be obtained (generally ω2-ω, -ω0).

而して、上記製作例に応じた本開明素子10の接合部S
の特性に就き言及していくと、以下のような好結果に至
る。
Thus, the joint portion S of the device 10 of the present invention according to the above manufacturing example
By referring to the characteristics of , we arrive at the following favorable results.

1流密度は上記製作例ではインジウム層を10分間、約
200 Torrめ環境下で酸化すると、約100 O
A/cdは採れ、種々な条件を採ったとしても、少くと
もzsoA/dという十分な値から最大では16ooA
/cy+に及び、完全に満足できる範囲を得ることがで
きる。
In the above fabrication example, the first current density is approximately 100 O when the indium layer is oxidized for 10 minutes in an environment of approximately 200 Torr.
A/cd can be obtained, and even if various conditions are adopted, it will range from a sufficient value of at least zsoA/d to a maximum of 16ooA.
/cy+, a completely satisfactory range can be obtained.

第5図は、十分ではあるが本発明素子の中では比較的低
い電流密+125OA/LCdの素子(接合部面積6μ
m′;各啼厚は既述の通り)を、液体ヘリウム温度と室
温間で十回、往復させた後に採ったデータで、このデー
タが採れたこと自体、温度サイクル特性も決して損なわ
れていないことが裏付けられるが、更に電気重積特性を
精査すると次のことが言える。
Figure 5 shows a device with a current density of +125OA/LCd (junction area: 6μ), which is sufficient but relatively low among the devices of the present invention.
m' (each thickness is as described above) was taken after reciprocating ten times between liquid helium temperature and room temperature, and the fact that this data was taken means that the temperature cycle characteristics have not been impaired in any way. This is supported by further examination of the electrical intussusception characteristics, and the following can be said.

先づ、本発明素子自体における動作温間に関する相対的
な関係としては、実線で示す4.2にの時のカーブより
も仮想線で示す2にの動作温肋下での特性が優れている
ことは血らかで、2に′におけるI−V曲線は兄事であ
る。一般的にも、動作温斐は像い方が良好な特性を示す
First, regarding the relative relationship regarding the operating temperature of the device of the present invention itself, the characteristics under the operating temperature shown by the virtual line 2 are better than the curve 4.2 shown by the solid line. The fact is that the IV curve in 2' is the older brother. In general, the operating temperature exhibits better characteristics as the image quality increases.

冒頭に述べた従来例との比較のために、今度は具体的数
値例を挙けてみると、本例のギャップ電圧は約3.4m
Vと極めて良好な値である。従来例でも、Pb/B1下
部箋極層素子では、やはりこの程段の値が採れてはいた
が温度サイクル特性が問題にならない程、悪かったこと
は既述した。逆に、温度サイクル特性が成る程度満足で
きる従来例素子のギャップ電圧に比せば、本発明素子で
は約15〜30%の改善率となっている。
For comparison with the conventional example mentioned at the beginning, let's take a concrete numerical example: The gap voltage in this example is approximately 3.4 m.
V, which is an extremely good value. As already mentioned, in the conventional example, the Pb/B1 lower electrode layer element was able to obtain a similar value, but the temperature cycle characteristics were so bad that they were not a problem. On the other hand, compared to the gap voltage of the conventional element, which has satisfactory temperature cycle characteristics, the element of the present invention has an improvement rate of about 15 to 30%.

このギャップ電圧に基づく最高動作1司波数f□工を求
めると、先掲の式より約810GHzとなって完全に満
足すべ@値が得られる。
When the highest operating frequency f□ is determined based on this gap voltage, it is approximately 810 GHz from the above equation, which is a completely satisfactory value.

次に、ニー特性乃至非直線性はどうかと言えば、既述し
た所でギャップ電圧V、からの偏差電圧ΔVfCJ、5
mVとして、V q (’5−4 mV )±ΔV(0
,5mV)の所で採った抵抗値(直流抵抗分)札、Rb
の比R,/R,を求めると、4.2にでもR+2/Rb
(4,2K)=0.06と優れた値を示し、2にではR
,/R5(2K ) =0.013 と極めて優れた値
となる。
Next, regarding the knee characteristics or nonlinearity, as mentioned above, the deviation voltage ΔVfCJ from the gap voltage V, 5
As mV, V q ('5-4 mV) ± ΔV (0
, 5mV) resistance value (DC resistance) label, Rb
When calculating the ratio R, /R, even if it is 4.2, R+2/Rb
It shows an excellent value of (4,2K)=0.06, and in 2, R
, /R5(2K) =0.013, which is an extremely excellent value.

尚、不例の素子の等価常導電抵抗は140Ωとミクサと
して用いた場合のインピーダンス整合性も十分にある。
Incidentally, the equivalent normal conductive resistance of the exceptional element is 140Ω, and the impedance matching when used as a mixer is also sufficient.

上述のように、この第5図示のデータは、既に十回の温
度サイクルkMでいるが、サイクル数をパラメータとし
て上述の素子のI−V曲線を採ると、第6図示のように
なう。
As mentioned above, the data shown in Figure 5 has already been subjected to ten temperature cycles (kM), but if the IV curve of the above-mentioned element is taken using the number of cycles as a parameter, it becomes as shown in Figure 6.

この測定は、この素子が第4図示のような実際の装置内
の構成子としてmまれだ場合の状況にできるだけ近い−
ものとなるように勘案して行った。
This measurement is as close as possible to the situation where this element is rare as a component in a real device such as that shown in Figure 4.
I took this into consideration so that it would be a success.

サンプルホルダ甲にヘリウムカスを満たし、本素子を密
封した。ヘリウムカスは液体ヘリウム中にホルダごと浸
漬した時に素子と液体ヘリウムとが熱結合するように図
るために充填された。先づこの状態で、測定に先立ち、
密封庫内−8℃の温度下で6日出]、保存した。第6図
中、円で囲った数字がサイクル回数で、それが示す曲線
がそのサイクル回数後のI−Vカーブであるが、11回
のサイクルを二連間に亘って行なった。途中で適宜、ヘ
リウムガスの排気をし、大気環境に素子を触れさせても
いるし、ぼた液体ヘリウムに直接させてもいる。
The sample holder instep was filled with helium gas and the device was sealed. The helium scum was filled in to ensure thermal bonding between the device and liquid helium when the holder was immersed in liquid helium. Before starting the measurement,
It was stored in a sealed storage at a temperature of -8°C for 6 days. In FIG. 6, the circled numbers indicate the number of cycles, and the curve shown by the circle is the IV curve after the number of cycles; 11 cycles were performed over two consecutive cycles. During the process, helium gas is pumped out to expose the element to the atmospheric environment, or it is exposed directly to liquid helium.

而して、第6図示のデータによれば、最初の数サイクル
では抵抗値が減少し、その後増加した後、10回目から
11回目においては再ひ減少している。
According to the data shown in Figure 6, the resistance value decreases during the first few cycles, increases thereafter, and then decreases again from the 10th to the 11th cycle.

このように、I−V−曲°線は厳密には完全に安定では
ないが、その変化は全く微力であり、他の従来例に比し
ても十分に小さなものである。
In this way, although the IV curve is not completely stable, the changes are very slight and are sufficiently small compared to other conventional examples.

第7図は、本発明による他の実施例素子の第5図同様の
■−■曲線であるが、この素子では、動作温度2,3K
において、接合面積10 /’m’で電流密度1000
A/m、ギヤツブ電圧的5−45 m V 。
FIG. 7 is a ■-■ curve similar to FIG. 5 for another example device according to the present invention, but in this device, the operating temperature is 2.3K.
, current density 1000 with junction area 10/'m'
A/m, gear voltage 5-45 mV.

ニー特性Ra/R5(2,3K) = 0.043、等
価抵抗22Ωと、これまた十分な値が得られている。
Knee characteristic Ra/R5 (2,3K) = 0.043, equivalent resistance 22Ω, which are also sufficient values.

ところで、本発明においての下部電極層コにあって、I
nの含有量をどの程度の範囲に採るがということである
が、温度サイクル特性を始め電気的緒特性のどれ一つを
も大きく損うことがないという本発明の基本的効果を全
うするには、本発明者の研究、実験によれば約1〜’I
、 Q wt%の範囲と言うことができる。
By the way, in the lower electrode layer in the present invention, I
Regardless of the range of the n content, it is important to realize the basic effect of the present invention of not significantly impairing any of the electrical characteristics including temperature cycle characteristics. According to the research and experiments of the present inventor, approximately 1 to 'I
, Q can be said to be in the range of wt%.

余シに工□が多過ぎると、Pb−B 、の結合よりもP
b−1,の関係が強くなシ、先に述べたP 、/I n
系の従来例の欠点が出始めるからである。
If there is too much work □ in the remainder, P is stronger than the bond of Pb-B.
The relationship between b-1, is strong, and the previously mentioned P , /I n
This is because the drawbacks of the conventional system begin to appear.

また、上記した実施例では、上部電極層はPb/B1で
あって、In−1含まないが、P、/B。
Further, in the above embodiment, the upper electrode layer is made of Pb/B1 and does not contain In-1, but contains P and /B.

合金系であれは■。は勿論、他の元素を含んでいて良い
If it's an alloy type, ■. Of course, it may contain other elements.

というのも、下部電極層はその後の殊々な素子製作上の
各素工程に耐えねばならないが、殆ど最後に形成される
下部電極層はその必号がないからである。逆に言えは、
素子製作工程中に何等かの悪影響を下部電極層が受ける
と、素子完成後にその温度サイクルに問題か出てくると
いうことだからである。これHf来例の開発過程を見て
も顕らかである。
This is because, although the lower electrode layer must withstand each of the subsequent special steps in manufacturing the device, the lower electrode layer, which is formed almost last, is not required to do so. On the contrary,
This is because if the lower electrode layer is affected by any adverse effects during the device manufacturing process, problems will arise in the temperature cycle after the device is completed. This is obvious when looking at the development process of the Hf model.

ともかくも、本発明によれは、ミリ仮ヘテロタイン・ミ
クサとかヒテオ・テイテクタ等として要求される電気的
@特性及び・物理的特性の甲、そのいづれの一つもの慟
性なく、バランスの採れたSIS型7ヨセフソン素子が
提供できることは因より、望めは極めて改善率の高い特
性の素子を得ることかでき、従来では全く達し得なj・
つた極めて顕著な効果を呈するものである。
In any case, the present invention provides a well-balanced SIS without any of the electrical and physical characteristics required for millimeter heterotine mixers, hiteo testers, etc. By being able to provide type 7 Josephson elements, we hope to be able to obtain elements with extremely high improvement rates, and we can achieve j.
It exhibits extremely remarkable effects.

【図面の簡単な説明】[Brief explanation of drawings]

m1ff?J!dsIs型ジヨセフノン・トンネル接合
素子の各要求諸有性金液明するだめの笛流−電圧曲紳に
よる孜明図、第2図は本発明素子の製作工程の紗明図、
第3図(グミフサ用としだ本発明−実施伜:素子の平面
図1、第4図は同じく第3図示の素子の使用例の要部破
砕した斜視図、第5区は第−実施例素子の賢気的判性の
詐明図、第6図は同じく沓気的特性に化体した物理的特
性の説明図、填7噛は第二実施例素子の第5図同様の説
明図でるる。 図中、コ(ζ下部電極層、3は絶稼層乃至酸化膜、4’
に下部電極層、より1ジヨセフノン・トンネル接合部、
10は全体としての素子である。 指定代理人  工 業 技 術 院 電子技術縫、合研究所i゛ 等々力 庫 卸1tFNJ
m1ff? J! The various requirements of the dsIs type diosefnon tunnel junction device are shown in Fig. 2, which is a diagram of the process of fabricating the device of the present invention.
Figure 3 (Toshida for gummy fusa) The present invention - implementation: A plan view of the element 1, Figure 4 is a fragmented perspective view of the main part of an example of the use of the element shown in Figure 3, and Section 5 is an example element of the example shown in Figure 3. Fig. 6 is an explanatory diagram of the physical characteristics that are also embodied in the mechanical properties, and filler 7 is an explanatory diagram similar to Fig. 5 of the second embodiment element. . In the figure, ko(ζ lower electrode layer, 3 is a dead layer or oxide film, 4'
the bottom electrode layer, one diosefnon tunnel junction,
10 is the element as a whole. Designated Agent Industrial Technology Institute Electronic Technology Sewing, Joint Research Institute Todoroki Warehousing 1tFNJ

Claims (1)

【特許請求の範囲】[Claims] 絶縁膜を一対の上下の超電導体電極層で挾んだジョセフ
ソン・トンネル接合素子において、上部電極層はP、と
Biの合金系材料とすると共に、下部電極層はP、とB
、の合金材料にInを含ませて成ることを特徴とするジ
ョセフソン・トンネル接合素子。
In a Josephson tunnel junction device in which an insulating film is sandwiched between a pair of upper and lower superconductor electrode layers, the upper electrode layer is made of an alloy material of P and Bi, and the lower electrode layer is made of an alloy material of P and B.
1. A Josephson tunnel junction element comprising an alloy material containing In.
JP57091824A 1982-05-29 1982-05-29 Josephson tunnel junction device Expired JPS603797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57091824A JPS603797B2 (en) 1982-05-29 1982-05-29 Josephson tunnel junction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57091824A JPS603797B2 (en) 1982-05-29 1982-05-29 Josephson tunnel junction device

Publications (2)

Publication Number Publication Date
JPS58209175A true JPS58209175A (en) 1983-12-06
JPS603797B2 JPS603797B2 (en) 1985-01-30

Family

ID=14037359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57091824A Expired JPS603797B2 (en) 1982-05-29 1982-05-29 Josephson tunnel junction device

Country Status (1)

Country Link
JP (1) JPS603797B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5049543A (en) * 1988-04-05 1991-09-17 U.S. Philips Corporation Device and method of manufacturing a device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5049543A (en) * 1988-04-05 1991-09-17 U.S. Philips Corporation Device and method of manufacturing a device

Also Published As

Publication number Publication date
JPS603797B2 (en) 1985-01-30

Similar Documents

Publication Publication Date Title
JPS61126770A (en) All solid type lithium cell
Gittleman et al. Nonlinear reactance of superconducting films
Müller et al. Magnetic field robust high quality factor NbTiN superconducting microwave resonators
JPS58209175A (en) Josephson tunnel junction element
Newhouse et al. High‐Speed Superconductive Switching Element Suitable for Two‐Dimensional Fabrication
JPS60140885A (en) Superconductive element ic
JP3690823B2 (en) Superconducting joint
JP3085492B2 (en) Micro-bridge type Josephson device and stacked type Josephson device
JPS6139589A (en) Tunnel-junction type josephson element
JPH0296386A (en) Superconducting element
JPS63259980A (en) Oxide superconductor film
Takashima et al. Nb3Al paste for superconducting connections
JP3473201B2 (en) Superconducting element
JPH04188881A (en) Superconductive element
JPS58112378A (en) Josephson ic
JPH0496283A (en) Superconducting element
JPS61111589A (en) Manufacture of tunnel type josephson element
JP2641972B2 (en) Superconducting element and manufacturing method thereof
JPS63234574A (en) Superconducting element
JPH0519220A (en) Optical modulating element
Chan REVERSIBLE LASER MODIFICATION OF HIGH TEMPERATURE SUPERCONDUCTING Y-Ba-Cu-O FILMS
JPS582082A (en) Josephson junction device
JPS60182783A (en) Josephson junction element
JPH0475265A (en) Manufacture of electrochemical element
Tame et al. Design and fabrication of 800-to 900-GHz Pb-alloy SIS mixing device incorporating an on-substrate tuning element