JPS5820885B2 - Koujiyundoba - tagatatankakeisonoseizohouhou - Google Patents

Koujiyundoba - tagatatankakeisonoseizohouhou

Info

Publication number
JPS5820885B2
JPS5820885B2 JP50123074A JP12307475A JPS5820885B2 JP S5820885 B2 JPS5820885 B2 JP S5820885B2 JP 50123074 A JP50123074 A JP 50123074A JP 12307475 A JP12307475 A JP 12307475A JP S5820885 B2 JPS5820885 B2 JP S5820885B2
Authority
JP
Japan
Prior art keywords
silicon carbide
product
type silicon
heating furnace
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50123074A
Other languages
Japanese (ja)
Other versions
JPS5246399A (en
Inventor
榎本亮
横山隆夫
吉岡道博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP50123074A priority Critical patent/JPS5820885B2/en
Publication of JPS5246399A publication Critical patent/JPS5246399A/en
Publication of JPS5820885B2 publication Critical patent/JPS5820885B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】 本発明は高純度β型炭化珪素の製造方法に係り、詳しく
はシリカと炭素とを反応させて主としてβ型炭化珪素よ
りなる生成物を製造し、さらに前記生成物中に含有され
る残留炭素を酸化除去する高純度β型炭化珪素の製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing high-purity β-type silicon carbide, and more specifically, it involves reacting silica and carbon to produce a product mainly consisting of β-type silicon carbide, and further comprising: The present invention relates to a method for producing high-purity β-type silicon carbide by oxidizing and removing residual carbon contained in the silicon carbide.

ところで、本発明者らは、先に特願昭49−12642
5号によりβ型炭化珪素の連続製造方法に係る発明を提
案している。
By the way, the present inventors previously filed a patent application in 1972-12642.
No. 5 proposes an invention relating to a method for continuous production of β-type silicon carbide.

前記発明はシリカと炭。素とからなる原料混合物を21
00℃以下の温度に制御された竪型の加熱炉内をできる
だけ均一に通過させて、微細結晶のβ型炭化珪素を連続
的に取出すものである。
The invention involves silica and charcoal. A raw material mixture consisting of 21
Microcrystalline β-type silicon carbide is continuously taken out by passing it as uniformly as possible through a vertical heating furnace whose temperature is controlled to 00° C. or less.

しかしながら、従来、主としてシリカと炭素とを反応さ
せることによって製造される炭化珪素中には不可避的に
遊離炭素が炭化珪素と付着した状態で残留しており、こ
の残留している遊離炭素を除去精製することは高純度の
炭化珪素を製造する上で重要な工程となっている。
However, conventionally, free carbon inevitably remains in silicon carbide produced by reacting silica and carbon, and this remaining free carbon is removed and purified. This is an important step in producing high-purity silicon carbide.

本発明は、炭化珪素中に残留している遊離炭素を酸化除
去することによって遊離炭素含有率の低い高純度のβ型
炭化珪素を製造するに際し、反応生成物の有する顕熱を
有効利用することができ、工程上簡単で、しかも熱効率
的に優れた高純度のβ型炭化珪素の製造方法を提供する
ことを目的とするものである。
The present invention aims to effectively utilize the sensible heat of the reaction product when producing high-purity β-type silicon carbide with a low free carbon content by oxidizing and removing free carbon remaining in silicon carbide. It is an object of the present invention to provide a method for producing high-purity β-type silicon carbide that is simple in terms of process and excellent in thermal efficiency.

本発明によれば、シリカと炭素とを主体とする原料を2
100℃以下の温度に維持された竪型の加熱炉内で連続
的に加熱反応させて主としてβ型炭化珪素よりなる生成
物となし、さらに前記生成物を前記加熱炉に連接された
断熱容器内へ高温状態を維持したまま装入し、前記断熱
容器内で酸化性ガスと接触させて、前記生成物中に含有
される遊離炭素を酸化除去することによって前記目的を
達成することができる。
According to the present invention, two raw materials mainly composed of silica and carbon are used.
A continuous heating reaction is performed in a vertical heating furnace maintained at a temperature of 100° C. or less to produce a product mainly consisting of β-type silicon carbide, and the product is further heated in an insulated container connected to the heating furnace. The above object can be achieved by charging the product while maintaining a high temperature state and contacting it with an oxidizing gas in the insulated container to oxidize and remove free carbon contained in the product.

次に本発明の詳細な説明する。Next, the present invention will be explained in detail.

本発明によれば、シリカと炭素とを主体とする原料を2
100℃以下の温度に維持された竪型の加熱炉内で連続
的に加熱反応させて主としてβ型炭化珪素よりなる生成
物となすことが必要である。
According to the present invention, two raw materials mainly composed of silica and carbon are used.
It is necessary to carry out a continuous heating reaction in a vertical heating furnace maintained at a temperature of 100° C. or lower to produce a product mainly consisting of β-type silicon carbide.

前記シリカと炭素とを主体とする原料を2100℃以下
の温度で加熱反応させる理由は、前記温度を2100℃
よりも高くすると一旦生成したβ型炭化珪素が結晶成長
し、α型に転移するため、β型炭化珪素を主体とする生
成物となすことが困難になるばかりでなく、前記結晶成
長によって大きな結晶塊が生成す不ため、炭素が結晶の
内部に残留したりして除去し難くなるからである。
The reason why the raw materials mainly composed of silica and carbon are heated and reacted at a temperature of 2100°C or lower is that the temperature is set to 2100°C.
If the temperature is higher than that, the β-type silicon carbide once formed will crystallize and transform to the α-type, which will not only make it difficult to produce a product mainly composed of β-type silicon carbide, but also cause the crystal growth to produce large crystals. This is because, due to the formation of lumps, carbon remains inside the crystal and becomes difficult to remove.

また、竪型の加熱炉を使用して連続的に加熱反応させる
理由は、竪型の加熱炉を使用することによって、高温状
態を維持したままの生成物を容易に装入することができ
るからである。
In addition, the reason why a vertical heating furnace is used to conduct a continuous heating reaction is that by using a vertical heating furnace, it is possible to easily charge the product while maintaining a high temperature state. It is.

また、本発明によれば、前記生成物を前記加熱炉に連接
された断熱容器内へ高温状態を維持したまま装入し、前
記断熱容器内で酸化性ガスと接触させて、前記生成物中
に含有される遊離炭素を酸化除去することが必要である
Further, according to the present invention, the product is charged into an insulated container connected to the heating furnace while maintaining a high temperature state, and brought into contact with an oxidizing gas in the insulated container, so that the product is It is necessary to oxidize and remove the free carbon contained in the carbon.

その理由は、前記生成物を前記加熱炉に連接された断熱
容器内へ高温状態を維持したまま装入することにより、
前記断熱容器内を高温に維持することができ、生成物中
に含有される遊離炭素を酸化性ガスと接触させることに
よって容易にかつ効率的に酸化除去することができるか
らである。
The reason is that by charging the product into an insulated container connected to the heating furnace while maintaining the high temperature,
This is because the interior of the heat insulating container can be maintained at a high temperature, and free carbon contained in the product can be easily and efficiently oxidized and removed by contacting it with an oxidizing gas.

前記断熱容器内の温度は700〜1000℃の範囲内と
することが好ましい。
It is preferable that the temperature inside the heat insulating container is within the range of 700 to 1000°C.

その理由は、700℃以下では遊離炭素の酸化を効率よ
く進めることができず、また1000℃以上では、製品
であるβ型炭化珪素の酸化が著しくなるからである。
The reason for this is that at temperatures below 700°C, the oxidation of free carbon cannot proceed efficiently, and at temperatures above 1000°C, the oxidation of the product β-type silicon carbide becomes significant.

前記断熱容器内の温度は、生成物の装入時における温度
、装入量、酸化性ガスの吹込み量および断熱容器の寸法
などを適宜選択することにより制御することが有利であ
る。
It is advantageous to control the temperature inside the heat-insulating container by appropriately selecting the temperature at the time of charging the product, the amount charged, the amount of oxidizing gas blown, the dimensions of the heat-insulating container, and the like.

本発明によれば、前記断熱容器として例えばロータリー
キルンあるいはシャフトキルン等を使用することができ
るが、なかでもロータリーキルンは生成物を均一に攪拌
しながら酸化性ガスと接触させ、効率的に遊離炭素を酸
化除去することができるため有利に使用することができ
る。
According to the present invention, for example, a rotary kiln or a shaft kiln can be used as the heat insulating container. Among them, the rotary kiln brings the product into contact with an oxidizing gas while stirring the product uniformly, thereby efficiently oxidizing free carbon. Since it can be removed, it can be used advantageously.

次に本発明の方法において使用することのできる装置の
1例を図面を参照しながら説明する。
Next, one example of an apparatus that can be used in the method of the present invention will be described with reference to the drawings.

本発明の方法において使用することのできる装置は第1
図に示したように竪型の加熱炉1とその下部に連接して
設けられた断熱容器2とからなる。
The apparatus that can be used in the method of the present invention is the first
As shown in the figure, it consists of a vertical heating furnace 1 and a heat insulating container 2 connected to the lower part of the heating furnace 1.

この竪型の加熱炉1の中心部には円筒状の反応筒3が設
けられ、前記反応筒3の中央加熱部は黒鉛でつくられて
いる。
A cylindrical reaction tube 3 is provided at the center of this vertical heating furnace 1, and the central heating section of the reaction tube 3 is made of graphite.

前記反応筒3の中央加熱部外周は、黒鉛製発熱体4で囲
まれており、前記黒鉛製発熱体4は黒鉛製導体5と銅製
ホルダー6によって電源と接続され電力が供給される。
The outer periphery of the central heating part of the reaction tube 3 is surrounded by a graphite heating element 4, which is connected to a power source through a graphite conductor 5 and a copper holder 6, and is supplied with electric power.

黒鉛製発熱体4は酸化消耗を防止するため、黒鉛製の保
護外筒7の内側におさめられており、その中の雰囲気は
非酸化性に保たれる。
In order to prevent the graphite heating element 4 from being consumed by oxidation, the graphite heating element 4 is housed inside a graphite protective outer cylinder 7, and the atmosphere therein is kept non-oxidizing.

反応温度の制御は、測温パイプ8を通じて元高温度計も
しくは熱電対を用いて反応筒3の外壁温度を測定し、こ
の測定値を電源の制御回路もしくは負荷電圧と対応させ
ることによってなされる。
The reaction temperature is controlled by measuring the outer wall temperature of the reaction tube 3 through the temperature measuring pipe 8 using a thermometer or thermocouple, and by correlating this measured value with the control circuit of the power supply or the load voltage.

断熱容器2は竪型の加熱炉1の反応生成物取出し手段9
と断熱容器2の反応生成物装入口10とが対応するよう
に連接されている。
The heat insulating container 2 is a reaction product extraction means 9 of the vertical heating furnace 1.
and the reaction product charging port 10 of the heat insulating container 2 are connected so as to correspond to each other.

前記断熱容器2の内部は断熱耐火物11でライニングさ
れている。
The inside of the heat insulating container 2 is lined with a heat insulating refractory 11.

また前記断熱容器2には操業開始時に断熱容器2内を炭
素の酸化温度にまで加熱するための補助加熱手段12を
設けることができる。
Further, the heat insulating container 2 can be provided with auxiliary heating means 12 for heating the inside of the heat insulating container 2 to the oxidation temperature of carbon at the start of operation.

本発明によれば、原料は炉の最上部に取付けられた原料
ホッパー13より連続的に装入さね。
According to the present invention, the raw material is continuously charged from the raw material hopper 13 installed at the top of the furnace.

反応筒3内を下降しながら予熱され、加熱反応した後、
反応生成物取出し手段9によって取出され、反応生成物
装入口10より断熱容器2内へ装入される。
After being preheated while descending inside the reaction tube 3 and undergoing a heating reaction,
The reaction product is taken out by the reaction product removal means 9 and charged into the heat insulating container 2 through the reaction product charging port 10.

前記断熱容器2内へは下端の酸化性ガス導入口14より
酸化性ガスが導入され、反応生成物中に含有される遊離
炭素は前記酸化性ガスと接触して酸化除去される。
An oxidizing gas is introduced into the heat insulating container 2 from the oxidizing gas inlet 14 at the lower end, and free carbon contained in the reaction product is oxidized and removed by contacting with the oxidizing gas.

酸化反応によって生成するCO□ガスはガス排出口15
より排出される。
The CO□ gas generated by the oxidation reaction is discharged from the gas outlet 15.
more excreted.

次に本発明を実施例について具体的に説明する。Next, the present invention will be specifically explained with reference to examples.

実施例 1 200メツシユ以下に粉砕した珪砂粉100部と、32
5メツシユ以下に粉砕した石油コークス65 部と20
0メツシユ以下に粉砕したピッチ粉10部とを均一に混
合し、酢酸ビじ−ル水溶液を用いて、パン型造粒機にて
57I17IL〜10關の粒状に成型し、これを第1図
に示した加熱炉に連続的に装入し、反応温度を2000
℃に保持して反応筒内を通過させ、更に約1500℃で
取り出されたβ型炭化珪素中の不純物の未反応炭素を加
熱炉の下部に取り付けたロータリーキルン内で、あらか
じめ200℃に予熱した空気を吹き込みながら酸化させ
て高純度のβ型炭化珪素を得た。
Example 1 100 parts of silica sand powder crushed to 200 mesh or less, and 32
65 parts of petroleum coke crushed to less than 5 mesh and 20
10 parts of pitch powder ground to 0 mesh or less was mixed uniformly and molded into granules of 57I17IL to 10 mesh using a pan-type granulator using an acetic acid vinyl aqueous solution. Continuously charged into the heating furnace shown, the reaction temperature was set at 2000℃.
The unreacted carbon impurities in the β-type silicon carbide taken out at about 1500°C are heated to 200°C in a rotary kiln installed at the bottom of the heating furnace. High purity β-type silicon carbide was obtained by oxidation while blowing.

このとき、ロータリーキルン内の温度は約800°Cで
あり、吹き込みの空気量は、1.5772”/―であっ
た。
At this time, the temperature inside the rotary kiln was about 800°C, and the amount of air blown was 1.5772''/-.

また、取り出したβ型炭化珪素の品位は97%であり、
未反応炭素残留時のβ型炭化珪素の品位は86%であっ
た。
In addition, the quality of the extracted β-type silicon carbide was 97%,
The grade of β-type silicon carbide when unreacted carbon remained was 86%.

実施例 2 200メツシユ以下に粉砕した珪石粉末100部と無煙
炭70部とピッチ粉10部とを均一に混合し、CMC水
溶液を用いて、パン型造粒機にて5mm〜101mの粒
状に成型して、これを実施例1と同様にして高純度のβ
型炭化珪素を得tう このとき、ロータリーキルン内の温度は約800℃であ
り、吹き込みの空気量は1.5m’/winであった。
Example 2 100 parts of silica powder crushed to 200 mesh or less, 70 parts of anthracite, and 10 parts of pitch powder were uniformly mixed and formed into granules of 5 mm to 101 m in size using a pan-shaped granulator using a CMC aqueous solution. Then, in the same manner as in Example 1, high purity β
When mold silicon carbide was obtained, the temperature inside the rotary kiln was about 800°C, and the amount of air blown was 1.5 m'/win.

また、取り出したβ型炭化珪素の品位は95%であり、
未反応炭素残留時のβ型炭化珪素の品位は83%であっ
た。
In addition, the quality of the extracted β-type silicon carbide is 95%,
The grade of β-type silicon carbide when unreacted carbon remained was 83%.

実施例 3 11部m〜2mrnの珪石粒100部と1mvt〜2m
mの木炭78部とを均一に混合し、これを実施例1と同
様にして高純度のβ型炭化珪素を得た。
Example 3 100 parts of silica grains of 11 parts m to 2 mrn and 1 mvt to 2 m
78 parts of charcoal was mixed uniformly with 78 parts of charcoal, and the mixture was treated in the same manner as in Example 1 to obtain highly pure β-type silicon carbide.

このとき、ロータリーキルン内の温度は850°Cであ
り、吹き込みの空気量は1.Orrt/minであった
At this time, the temperature inside the rotary kiln was 850°C, and the amount of air blown was 1. Orrt/min.

また、β型炭化珪素の品位は91%であり、未反応炭素
残留時のβ型炭化珪素の品位は80%であった。
Further, the grade of β-type silicon carbide was 91%, and the grade of β-type silicon carbide when unreacted carbon remained was 80%.

以上説明した如く、本発明の製造方法によれば、主とし
てβ型炭化珪素よりなる生成物中に含有される遊離炭素
を工程上簡単に、しかも効率よく酸化除去することがで
きるものであって、産業上極めて有用なものである。
As explained above, according to the production method of the present invention, free carbon contained in a product mainly composed of β-type silicon carbide can be easily and efficiently oxidized and removed in the process, It is extremely useful industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例において使用した、竪型の加
熱炉とロータリーキルン型の断熱容器の縦断面図である
。 ・ 1・・・竪型の加熱炉、2・・・断熱容器、3・
・・反応筒、4・・・黒鉛製発熱体、5・・・黒鉛製導
体、6・・・銅製ホルダー、7・・・黒鉛製保護外筒、
8・・・測温パイプ、9・・・反応生成物取出し手段、
10・・・反応生成物装入口、11・・・断熱耐火物、
12・・・補助加熱手段、13・・・原料ホッパー。
FIG. 1 is a longitudinal sectional view of a vertical heating furnace and a rotary kiln type heat insulating container used in an example of the present invention.・ 1... Vertical heating furnace, 2... Insulated container, 3...
... Reaction tube, 4... Graphite heating element, 5... Graphite conductor, 6... Copper holder, 7... Graphite protective outer cylinder,
8... Temperature measuring pipe, 9... Reaction product extraction means,
10... Reaction product charging port, 11... Heat insulating refractory,
12... Auxiliary heating means, 13... Raw material hopper.

Claims (1)

【特許請求の範囲】[Claims] 1 シリカと炭素とを主体とする原料を2100℃以下
の温度に維持された竪型の加熱炉内で連続的に加熱反応
させて主としてβ型炭化珪素よりなる生成物となし、さ
らに前記生成物を前記加熱炉に連接された断熱容器内へ
高温状態を維持したまま装入し、前記断熱容器内で酸化
性ガスと接触させて、前記生成物中に含有される遊離炭
素を酸化除去することを特徴とする高純度β型炭化珪素
の製造方法。
1 A raw material mainly composed of silica and carbon is continuously heated and reacted in a vertical heating furnace maintained at a temperature of 2100° C. or less to produce a product mainly composed of β-type silicon carbide, and further the product is is charged into an insulated container connected to the heating furnace while maintaining a high temperature state, and brought into contact with an oxidizing gas in the insulated container to oxidize and remove free carbon contained in the product. A method for producing high-purity β-type silicon carbide, characterized by:
JP50123074A 1975-10-13 1975-10-13 Koujiyundoba - tagatatankakeisonoseizohouhou Expired JPS5820885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50123074A JPS5820885B2 (en) 1975-10-13 1975-10-13 Koujiyundoba - tagatatankakeisonoseizohouhou

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50123074A JPS5820885B2 (en) 1975-10-13 1975-10-13 Koujiyundoba - tagatatankakeisonoseizohouhou

Publications (2)

Publication Number Publication Date
JPS5246399A JPS5246399A (en) 1977-04-13
JPS5820885B2 true JPS5820885B2 (en) 1983-04-26

Family

ID=14851534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50123074A Expired JPS5820885B2 (en) 1975-10-13 1975-10-13 Koujiyundoba - tagatatankakeisonoseizohouhou

Country Status (1)

Country Link
JP (1) JPS5820885B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0393377U (en) * 1990-11-30 1991-09-24

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE788734A (en) * 1971-09-13 1973-01-02 Amada Ltd Us TAPPING HEAD FOR DRILL

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0393377U (en) * 1990-11-30 1991-09-24

Also Published As

Publication number Publication date
JPS5246399A (en) 1977-04-13

Similar Documents

Publication Publication Date Title
US4292276A (en) Apparatus for producing silicon carbide
US6022515A (en) Process for producing silicon carbide
US2178773A (en) Silicon carbide and manufacture thereof
JPS59182221A (en) Manufacture of silicon
US3032398A (en) Process and furnace for the continuous production of aluminum nitride
JPS6232227B2 (en)
EP0177894A2 (en) Method of producing metallic silicon particularly for use in the photovoltaic industry
US2028105A (en) Method of producing sponge iron
JPS643803B2 (en)
US3019084A (en) Production of refractory carbides, borides and the like
JPS5820885B2 (en) Koujiyundoba - tagatatankakeisonoseizohouhou
CN107954718A (en) A kind of preparation method of boron carbide smelting device and boron carbide
JPH0211521B2 (en)
US4302433A (en) Process for producing anhydrous magnesium chloride and suitable apparatus
US2681943A (en) Furnace for treating material with corrosive gas
JPH0643244B2 (en) Method for producing silicon tetrachloride
US1442033A (en) Method of operating electric furnaces
US3956454A (en) Process for producing aluminum trichloride
US1650894A (en) Process for the production of magnesium from dolomite
US4085201A (en) Process for manufacturing aluminum oxide
US3010793A (en) Electric furnace silicon tetrachloride process
JPS5818325B2 (en) Beta Gatatankakeisono Lenzokuseizohouhou
US2984577A (en) Process for the production of boron phosphide
JPS616109A (en) Manufacture of sic
EP0044867B2 (en) Methods for the continuous production of silicon carbide