JPS58207928A - Composite reactor for desulfurization and denitration - Google Patents

Composite reactor for desulfurization and denitration

Info

Publication number
JPS58207928A
JPS58207928A JP57092359A JP9235982A JPS58207928A JP S58207928 A JPS58207928 A JP S58207928A JP 57092359 A JP57092359 A JP 57092359A JP 9235982 A JP9235982 A JP 9235982A JP S58207928 A JPS58207928 A JP S58207928A
Authority
JP
Japan
Prior art keywords
gas
gas passage
reactor
adsorbent
desulfurization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57092359A
Other languages
Japanese (ja)
Other versions
JPS6134852B2 (en
Inventor
Hiromi Tanaka
田中 裕実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP57092359A priority Critical patent/JPS58207928A/en
Publication of JPS58207928A publication Critical patent/JPS58207928A/en
Publication of JPS6134852B2 publication Critical patent/JPS6134852B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

PURPOSE:To reduce an installation area, by flowing waste gas to the upper part of a reactor from the lower part thereof to improve mixing in an up-and-down direction in the reactor. CONSTITUTION:Waste gas is supplied to the inside gas passage provided to the lower stage of a reactor and contacted with activated carbon so as to cross the same at right angles to be desulfurized. The desulfurized gas is raised through the outside gas passage while mutually mixed with gases passing the upper part, the intermediate part and the lower part of a lower stage moving layer to be homogenized and, after the resulting gas mixture is injected with ammonia, it is contacted with activated carbon in the upper stage of the reactor so as to cross the same at right angles top be converted to the denitrated gas which is in turn exhausted through the inside gas passage. Desulfurization is carried out in the lower stage of the reactor while denitration in the upper stage thereof and the adsorbent supplied from the to part of the upper stage is fallen through the moving layer and reaches the lower stage moving layer through a seal part to be able to be taken out to the outside through an exhaust port.

Description

【発明の詳細な説明】 本発明は、脱硫部と脱硝部を有する脱硫脱硝用複合形反
応器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a composite reactor for desulfurization and denitration having a desulfurization section and a denitrification section.

イオウ分を含有する化石燃料を燃燐させるゼイン、ある
いはイオウ分含有鉱石を焼結する焼結機等の排ガスはば
いじん、イオウ酸化物および窒素酸化物等を含み、環境
保全のため集じべ7、脱硫および脱硝等が行なわれてい
る。脱硫、脱硝は一般に個別に行なわれ、脱硫方法とし
ては湿式石灰石・石こう法、乾式活性炭法等が実用化さ
れておシ、脱硝方法としては接触還元法が実用化されて
いる。そして、これらを組合わせた同一プロセス内での
排ガスの脱硫、脱硝方法として炭素質吸着剤をアンモニ
ア注入下で用いる方法が知られており、単一の充てん層
反応器による同時脱硫脱硝方法、値数段数の充てんノー
反応器の組合せにより脱硫・脱硝を別々に行う方法等が
提案されている。前者は単一の光てん床で良いことから
装置をコンノぞクトに出来るメリフトがあるが、比軟的
高濃度(500,ppm以上)のSOxが共存すると3
0〜40%程度の脱硝率しか得られず、補足的に脱硝が
可能であるといった程度のものである。
Exhaust gas from zein, which burns sulfur-containing fossil fuels, or sintering machines, which sinter sulfur-containing ores, contains soot, sulfur oxides, nitrogen oxides, etc., and must be collected for environmental protection. , desulfurization, denitrification, etc. Desulfurization and denitrification are generally carried out separately, and the wet limestone/gypsum method, dry activated carbon method, etc. have been put into practical use as desulfurization methods, and the catalytic reduction method has been put into practical use as the denitrification method. As a method for desulfurizing and denitrating exhaust gas in the same process that combines these methods, a method using a carbonaceous adsorbent under injection of ammonia is known, and a method for simultaneous desulfurization and denitration using a single packed bed reactor is known. A method has been proposed in which desulfurization and denitrification are performed separately by combining several stages of unfilled reactors. The former requires only a single photovoltaic bed, making it possible to construct a complete system, but if a relatively high concentration of SOx (more than 500 ppm) coexists, 3
Only a denitrification rate of about 0 to 40% can be obtained, and supplementary denitrification is only possible.

これに対して後者は、脱硫後に脱硝を行うため80チ程
度の高い脱硝率が達成可能であシ、今後の脱硫脱硝方法
はこの方式が主流となろう。
On the other hand, the latter method performs denitration after desulfurization, so it is possible to achieve a high denitration rate of about 80%, and this method will likely become the mainstream desulfurization and denitration method in the future.

しかしながら、この方法には実用上解決しなければなら
ない問題点がある。それは、通常2基の反応器を組合わ
せるため前記の1段方式に比べ、吸着剤使用量及び設置
面積が大きくなることである。
However, this method has problems that must be solved in practice. The reason is that since two reactors are usually combined, the amount of adsorbent used and the installation area are larger than in the one-stage system described above.

吸着剤使用量の問題に対しては、本発明者は第1図忙示
すように排ガスのNH,注入下で吸着剤をa!1反応器
1→再生塔2→第2反応器3→第1反応器1へ循環使用
することで高い脱硫、脱硝率を維持しつつ吸着剤使用量
が低減できることを提案(特許顧s r −o6604
8参照)したが、設置面積の問題は未解決のままであっ
た、。
Regarding the problem of the amount of adsorbent to be used, the inventor of the present invention solved the problem of adsorbent using a. We proposed that the amount of adsorbent used could be reduced while maintaining high desulfurization and denitrification rates by circulating the adsorbent from reactor 1 to regeneration tower 2 to second reactor 3 to first reactor 1. o6604
8), but the issue of installation space remained unresolved.

一方、反応器の基本構造としては稽々の方式が知られて
いるが、大容量の排ガスを処理する忙は直交流(または
十字流)と呼ばれる排ガスと重力で降下する充てん物が
直交的(あるいは十字的)に接触する方式が設置面積が
少なくコンノクトにできるため適しており、実用プロセ
スの主流となっている。
On the other hand, the basic structure of a reactor is known to be a simple system, but the process of processing a large volume of exhaust gas is called a cross flow (or cross flow), in which the exhaust gas and the filling material that descends due to gravity are orthogonal to each other ( The contact method (or cross-shaped) is suitable because it requires less installation space and can be made into a connoct, and is the mainstream in practical processes.

この直交流移動床の重要な特性の1つとして充てん床上
部では脱硫脱硝ともに十分に行なわれ、下部では不十分
にしか行なわれないので、充てん床出口の上下方向に8
0xおよびNOx濃度分布が生じ、上方ではNOx、 
Box 、8度共に低く下方では共に高くなることが知
られている。
One of the important characteristics of this cross-flow moving bed is that desulfurization and denitrification are sufficiently carried out in the upper part of the packed bed, but insufficiently in the lower part.
0x and NOx concentration distributions occur, and in the upper part NOx,
It is known that both Box and 8 degrees are low and both become high in the downward direction.

(特開55−106526参照コしたがって前記2段階
の反応工程で脱硫脱硝を行なう方法では両反応工程を接
続する場合に前段工程出口排ガスの上方と下方を十分に
混合させてSox、 NOx  濃度レベルを平均化し
て低めに抑え、後段の反応工程で効果的に脱硝を行なわ
せる必要がある。
(Refer to JP-A-55-106526) Therefore, in the method of performing desulfurization and denitration in the two-stage reaction process, when both reaction processes are connected, the upper and lower parts of the exhaust gas at the outlet of the first stage are sufficiently mixed to reduce the Sox and NOx concentration levels. It is necessary to average it out and keep it low so that denitrification can be carried out effectively in the later reaction process.

このため両反応器の中間に何らかの排ガス混合部を設け
る必要がt)b設置面積を小さくする上での障害となっ
ていた。例えば、特開56−163739  に開示さ
れた方法は一体化噛れた反応器において両反応工程の中
間に隔壁を設けることによシ、結果的に上下方向の排ガ
スの混合が行なわれているが、両反応工程が平面的に配
置されているために設置面積はさほど小さくできない欠
点がある。
For this reason, it is necessary to provide some kind of exhaust gas mixing section between the two reactors, which is an obstacle to reducing the installation area. For example, in the method disclosed in JP-A-56-163739, a partition wall is provided between both reaction steps in an integrated reactor, and as a result, the exhaust gases are mixed in the vertical direction. However, since both reaction steps are arranged on a flat surface, the installation area cannot be made very small.

本発明者は第1図のプロセスにおいて、吸着剤の流れと
排ガスの流れが1糧の向流となっていること虻着目し種
々検討した結果、2基の反応器を上下に積重ね一体化し
て1反応器とし、排ガスを反応器の下部よシ上部へ流す
こと妃よυ反応器上下方向の排ガスの混合と設置面積の
問題が一挙Km決された。
The inventor of the present invention noticed that in the process shown in Figure 1, the flow of adsorbent and the flow of exhaust gas are countercurrent, and as a result of various studies, he integrated two reactors by stacking them one above the other. By using one reactor and flowing the exhaust gas from the bottom to the top of the reactor, the problems of mixing the exhaust gas in the vertical direction of the reactor and the installation area were resolved at once.

即ち、本発明は、直立部忙ガスシール部を介して連設し
てなる炭素質吸着剤移動層を外ケーシング内1.に収容
し、外ケーシングと吸IMi1移動層との間に外側ガス
通路を形成し吸着剤移動層に狭まれた内側には内側ガス
通路を形成すると共に、ガスシール部付近に横方向のガ
ス遮断板を内側ガス通路又は外側ガス通路に設けて内側
ガス連路又は外側ガス通路を上下段に区分し、外ケー、
シンクには上段ガス通路に連通中るガス排出口と下段ガ
ス通路に連通するガス供給口とを設け ガスシール部付
近の遮断されていないガス通路内にアンモニア圧入口を
開口さ−i’、−、吸着剤移動層上部に吸着剤供給口を
下部に吸着剤排出口を設け、ガスシール部を除き、外側
及び内側ガス通路に接する移動層の側壁を3M気性とす
る仁とを特徴とするものである。
That is, in the present invention, a carbonaceous adsorbent moving layer is connected to the outer casing 1. An outer gas passage is formed between the outer casing and the absorbent IMi1 moving layer, and an inner gas passage is formed inside narrowed by the adsorbent moving layer, and a lateral gas cutoff is provided near the gas seal part. A plate is provided in the inner gas passage or the outer gas passage to divide the inner gas communication passage or the outer gas passage into upper and lower stages, and the outer case,
The sink is provided with a gas discharge port that communicates with the upper gas passage and a gas supply port that communicates with the lower gas passage, and an ammonia pressure inlet is opened in the unblocked gas passage near the gas seal. , an adsorbent supply port is provided in the upper part of the adsorbent moving bed, an adsorbent outlet is provided in the lower part, and the side wall of the moving bed in contact with the outer and inner gas passages, excluding the gas seal part, is characterized by having a 3M temper. It is.

次に1図面にそって本発明の一丈施例に係る反応器の構
成を説明する。、該反応器は、第2〜第4しiK示す1
#Lh、直立部にガスシール部4を介して連設してなる
炭素貫吸着剤移動tip sを外ケーシング6に収容し
た構造である。外ケーシング6と吸着剤移動層5との間
には外側ガス通路7が形成され、吸着剤移動ノー5に狭
まれた内側には内側ガス通路8が形成される。更に、ガ
スシール部4付近に横方図のガス麟断板9を内側ガス通
路8に設け、内側ガス通路は上ド段に区分される2又、
外ケーシング6には上段の内側ガス通路8に連通ずるガ
ス排出口10と下段の内側ガス通路8に連通ずるガス供
給口11とを設けである。ガスシール部4付近の遮断さ
れていない外側ガス通路7内には、アンモニア注入口P
を開口させである。吸着剤移動層5上部には吸着剤供給
口12が設けられ、下部には吸着剤排出口13が設けら
れ、ロールフィーダーの如き排出機14が設置されてい
る。又、吸着剤の均一流下を行なわしめるために、ガス
シール部4の上方及び吸着剤排出口13の上方に整流体
15を設けることが望ましい。ガスシール部4を除いて
、両ガス通路に接する移動層の両側壁は、外孔板、ルー
パー等の通気性板状体で構成される。なお、16はロー
タリーバルブ、17はホツノぞ−を示す。
Next, the configuration of a reactor according to an embodiment of the present invention will be explained with reference to one drawing. , the reactor has the second to fourth iK 1
#Lh, this is a structure in which tips for moving adsorbent through carbon, which are connected to an upright part via a gas seal part 4, are housed in an outer casing 6. An outer gas passage 7 is formed between the outer casing 6 and the adsorbent transfer layer 5, and an inner gas passage 8 is formed inside the adsorbent transfer nozzle 5. Further, a gas cutting plate 9 shown in a lateral view is provided in the inner gas passage 8 near the gas seal portion 4, and the inner gas passage is divided into two upper stages,
The outer casing 6 is provided with a gas discharge port 10 communicating with the inner gas passage 8 in the upper stage and a gas supply port 11 communicating with the inner gas passage 8 in the lower stage. In the unblocked outer gas passage 7 near the gas seal part 4, there is an ammonia inlet P.
Let's open it. An adsorbent supply port 12 is provided at the top of the adsorbent transfer layer 5, an adsorbent discharge port 13 is provided at the bottom, and a discharge device 14 such as a roll feeder is installed. Further, in order to uniformly flow down the adsorbent, it is desirable to provide a flow regulator 15 above the gas seal portion 4 and above the adsorbent outlet 13. Except for the gas seal portion 4, both side walls of the moving layer in contact with both gas passages are composed of air permeable plate-like bodies such as external hole plates and loopers. In addition, 16 indicates a rotary valve, and 17 indicates a hot spring.

以上ぐ第2〜第4図に示した例によれば、排ガスは反応
器下段の内側ガス通路に供°給され、活性炭と直交流の
形で接触して脱硫器れる(第2図、第4図参照)。脱硫
されたガスは外側ガス通路を通って上昇する間に下段移
M層の上方部、下方部、中間位部を通過したガスが互い
に混合されて平均化しアンモニア注入後、反応器上段に
て活性炭と直交流の形で接触して脱硝され、内側ガス通
路を通って排出される(第2図、第3図参照)。
According to the examples shown in Figures 2 to 4 above, the exhaust gas is supplied to the inner gas passage in the lower stage of the reactor, contacts the activated carbon in a cross-flow form, and is passed through the desulfurizer (Figures 2 and 4). (See Figure 4). While the desulfurized gas rises through the outer gas passage, the gases that have passed through the upper, lower, and intermediate portions of the lower stage M layer are mixed and averaged, and after ammonia is injected, activated carbon is produced in the upper stage of the reactor. The gas is denitrified by contacting the gas in a cross-flow manner and is discharged through the inner gas passage (see Figures 2 and 3).

一方、第5〜第7図に示した実施例は外側ガス通路7の
ガスシール部4付近に横方向のガス遮断板9を設けて外
側ガス通路7を上下段に区分した場合を示す7 この場
合アンモニア圧入口Pは、ガスシール部4付近の遮断さ
れていない内側ガス通路8に開口される。又、外ケーシ
ング6には上段の外側ガス通路7に連通するガス排出口
10と1段の外側ガス通路7に連通ずるガス供給口11
が設けられる。。
On the other hand, the embodiments shown in FIGS. 5 to 7 show a case where a horizontal gas blocking plate 9 is provided near the gas seal portion 4 of the outer gas passage 7 to divide the outer gas passage 7 into upper and lower stages. In this case, the ammonia inlet P is opened into the unblocked inner gas passage 8 near the gas seal portion 4 . The outer casing 6 also has a gas exhaust port 10 communicating with the upper outer gas passage 7 and a gas supply port 11 communicating with the first outer gas passage 7.
will be provided. .

従って、排ガスは反応器下段の外側ガス通路に供給され
、活性炭と直交流の形で接触して脱硫され、脱硫された
ガスは内側ガス通路を通ってアンモニア注入後、反応器
上役にて活性炭と直交流の形で接触して脱硝され、外側
ガス通路を通って排出される。
Therefore, the exhaust gas is supplied to the outer gas passage in the lower stage of the reactor, and is desulfurized by contacting the activated carbon in a cross-flow form, and the desulfurized gas passes through the inner gas passage, after which ammonia is injected, and then in the upper stage of the reactor, it is sent to the activated carbon. It is denitrified in cross-flow contact with the gas and discharged through the outer gas passage.

なお、前記実施例は、反応器及び移動層が平面断面的に
見て角形としたものであるが、円筒形としても効果に何
ら差異はなく、移動層最上部への吸着剤の供給は1つの
ホッノ9−から分岐し下方向にそれぞれ開いたパイプを
用いるいわゆるスパイダーレッグ方式を用いても良い。
In the above example, the reactor and moving bed were square in planar cross-section, but there is no difference in the effect even if they are cylindrical, and the supply of adsorbent to the top of the moving bed is 1. A so-called spider leg system may also be used in which pipes are branched from two pipes and opened downward.

本発明において、ガスシール部は重要な構成要件となっ
ている。もし、ガスシール部ヲ設ケないと、移動!−前
後の差圧によシ未処理ガスが移動層内を経由してガスの
出口側へノ々イパスしてしまい、高い脱硝効果が得られ
ない。従って、ガスシール部を設けて、シール部の通風
抵抗によって未処理ガスのノイパスが生じないようにす
るのである。
In the present invention, the gas seal portion is an important component. If you don't install a gas seal, move it! - Due to the pressure difference between the front and rear, untreated gas passes through the moving bed to the gas outlet side, making it impossible to obtain a high denitrification effect. Therefore, a gas seal section is provided to prevent the untreated gas from passing due to the ventilation resistance of the seal section.

又、ガスシール部は吸着剤自体によるマテリアルシール
′で十分であるが、第8図はロータリーバルブによシ完
全シールを行なった場合(第2〜第4図の実施例に対応
する)を示すづこの場合、上段移動層底部にロールフィ
ーダ等の吸着剤排出機13を設ける必要があシ、f段移
動層底部に設けられた吸着剤排出機14と連動させる必
要がある。
Furthermore, although it is sufficient for the gas seal part to be a material seal made of the adsorbent itself, Fig. 8 shows a case in which complete sealing is achieved by a rotary valve (corresponding to the embodiments shown in Figs. 2 to 4). In this case, it is necessary to provide an adsorbent discharging machine 13 such as a roll feeder at the bottom of the upper moving bed, and it is necessary to interlock with the adsorbent discharging machine 14 provided at the bottom of the f-stage moving bed.

以上の説明から明らかなように、本発明では反応器の下
段で脱硫、反応器の上段で脱硝が行表われ、上段の頂部
から供給された吸着剤は移動層を降下し、シール部を介
して下段移動層に達し排出口を介して外部へ取出すこと
ができるので1、第1図のプロセスにおける2つの反応
器の機能を1つの反応器で十分に来すことができる。
As is clear from the above explanation, in the present invention, desulfurization is performed in the lower stage of the reactor, and denitrification is performed in the upper stage of the reactor, and the adsorbent supplied from the top of the upper stage descends through the moving bed and passes through the seal section. Since the reactor can reach the lower moving bed and be taken out to the outside through the discharge port, one reactor can sufficiently perform the functions of the two reactors in the process shown in FIG.

それゆえ、設置面積が半減し、従来の単一反応器方式と
同等の面積とすることができる大きなメリットがあり、
さらに脱硝器から脱硫器へ吸着剤を移送するコンベアが
不要となる。メリット、両反応器を連結するダクトが不
要となるなど設備費を低減できるメリットもある。
Therefore, it has the great advantage of reducing the installation area by half, making it the same area as the conventional single reactor system.
Furthermore, there is no need for a conveyor to transfer the adsorbent from the denitrifier to the desulfurizer. There is also the advantage of reducing equipment costs, such as eliminating the need for ducts to connect both reactors.

なお、前記実施例は1種のモジュール形反応器と見るこ
とができ、大量の排ガスを取扱う場合は、°たて、横に
複数個配列して各モジュール間の隔壁を取シ去ることが
できる。第9図はその実施例を示し、6個の単位モジュ
ールを集積した場合であり、規則的に配列してガス分配
および吸着剤の分配供給が容易となるよう考慮したもの
であって全体的に見てもコンパクトな構造となる。なお
、第9図は平面的にみた図であシ、実線矢印は下段移動
層通過ガスを示し、破線矢印は上段移動層通過ガスを示
す。
The above embodiment can be seen as a type of modular reactor, and when handling a large amount of exhaust gas, multiple modules can be arranged vertically or horizontally, and the partition walls between each module can be removed. . Figure 9 shows an example of this, in which six unit modules are integrated, and are arranged regularly to facilitate gas distribution and adsorbent distribution and supply. It looks like a compact structure. Note that FIG. 9 is a plan view, where solid arrows indicate gas passing through the lower moving layer, and broken arrows indicate gas passing through the upper moving layer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は脱硫脱硝プロセスのフローシートの一一を示す
。第2図は本発明の一実施例である脱硫脱硝用複合形反
応器の縦断面図であシ、第3図は第2図のA−A線にお
ける水平断面図で17、第4図は第2図のB−B線にお
ける水平断面図である。第5図は本発明の別の実施例の
縦断面図であシ、第6図は第5図の0−C線における水
′午断面図でtりジ、[7図は第5図のD−D線におけ
る水平断面図である。第8′図は本発明に係るガスシー
ル部の一構成例をデすものである。第9図は本発明に係
る他の実施例を示す水平断面図である。 4・・・ガスクール部 5・・・炭素質吸着剤移動層6
・・・外ケーシング 1・・・外側ガス通路8・・・内
側ガス通路 9・・・ガス蔚断板10・・・ガス排出口
  11・・・ガス供給口12・・・吸着剤供給口 1
3・・・吸着剤排出口14・・・排出機    15・
・・整流体16・・・ロータリー/々ルブ 特許出願人 住友重機械工業株式会社 門5霞
FIG. 1 shows a flow sheet for the desulfurization and denitrification process. FIG. 2 is a longitudinal cross-sectional view of a composite reactor for desulfurization and denitrification which is an embodiment of the present invention, FIG. 3 is a horizontal cross-sectional view taken along line A-A in FIG. 2, and FIG. FIG. 3 is a horizontal sectional view taken along line BB in FIG. 2; FIG. 5 is a longitudinal cross-sectional view of another embodiment of the present invention, FIG. 6 is a horizontal cross-sectional view taken along line 0-C of FIG. 5, and FIG. It is a horizontal cross-sectional view taken along the DD line. FIG. 8' shows an example of the structure of the gas seal section according to the present invention. FIG. 9 is a horizontal sectional view showing another embodiment of the present invention. 4... Gas cool section 5... Carbonaceous adsorbent moving layer 6
...Outer casing 1...Outer gas passage 8...Inner gas passage 9...Gas sill plate 10...Gas discharge port 11...Gas supply port 12...Adsorbent supply port 1
3...Adsorbent discharge port 14...Discharge machine 15.
...Fluid regulation 16...Rotary/Trube patent applicant Sumitomo Heavy Industries, Ltd. Mon 5 Kasumi

Claims (1)

【特許請求の範囲】[Claims] 1、 直立部にガスシール部を介して連設してなる炭素
質吸着剤移動層を外ケーシング内に収容し、外ケーシン
グと吸着剤移動層との間に外側ガス通路を形成し吸着剤
移動層に狭まれた内側には内側ガス通路を形成すると共
忙、ガスシール部付近に横方向のガス遮断板を内側ガス
通路又は外側ガス通路に設けて内側ガス通路又は外側ガ
ス通路を上下段に区分し外ケーシング忙は上役ガス通路
に遅過ずるガス排出口とT段ガス通路に遅過するガス供
給口とを設け、ガスシール部付近の遮断されていないガ
ス通路内にアンモニア注入口を開口させ(°吸着剤移動
層上部に吸着剤供給口を下部に吸着剤排出口を設け、ガ
スシール部を除き、外側及び内側ガス通路に接す7P移
動4の側壁を通気性とすることを特徴とする直交流式の
脱硫脱硝用複合形反応器
1. A carbonaceous adsorbent transfer layer, which is connected to an upright portion through a gas seal, is housed in an outer casing, and an outer gas passage is formed between the outer casing and the adsorbent transfer layer to allow adsorbent transfer. If an inner gas passage is formed on the inside narrowed by the layers, a horizontal gas shielding plate is provided in the inner gas passage or the outer gas passage near the gas seal part, and the inner gas passage or the outer gas passage is divided into upper and lower stages. For the outer casing, a delayed gas discharge port is provided in the upper gas passage and a delayed gas supply port is provided in the T-stage gas passage, and an ammonia inlet is provided in the unblocked gas passage near the gas seal. Open (°provide an adsorbent supply port at the top of the adsorbent transfer layer and an adsorbent discharge port at the bottom, and make the side wall of the 7P transfer 4 in contact with the outer and inner gas passages permeable, excluding the gas seal part). Features: Cross-flow type composite reactor for desulfurization and denitrification
JP57092359A 1982-05-31 1982-05-31 Composite reactor for desulfurization and denitration Granted JPS58207928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57092359A JPS58207928A (en) 1982-05-31 1982-05-31 Composite reactor for desulfurization and denitration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57092359A JPS58207928A (en) 1982-05-31 1982-05-31 Composite reactor for desulfurization and denitration

Publications (2)

Publication Number Publication Date
JPS58207928A true JPS58207928A (en) 1983-12-03
JPS6134852B2 JPS6134852B2 (en) 1986-08-09

Family

ID=14052206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57092359A Granted JPS58207928A (en) 1982-05-31 1982-05-31 Composite reactor for desulfurization and denitration

Country Status (1)

Country Link
JP (1) JPS58207928A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60220124A (en) * 1982-09-09 1985-11-02 ユ−オ−ピ− インコ−ポレイテツド Gas treatment using moving bed

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5199666A (en) * 1975-02-28 1976-09-02 Kobe Steel Ltd
JPS5282676A (en) * 1975-12-29 1977-07-11 Takeda Chem Ind Ltd Gas adsorption equipment of moving bed type
JPS544709A (en) * 1977-06-10 1979-01-13 Kazuo Nomura Culture method with spreading solution of fine granular manure
JPS5444266A (en) * 1977-09-13 1979-04-07 Kobe Steel Ltd Water slag dryer on net conveyer
JPS55129127A (en) * 1979-03-27 1980-10-06 Kawasaki Heavy Ind Ltd Dust collecting unit
US4272497A (en) * 1979-02-08 1981-06-09 Sumitomo Heavy Industries, Ltd. Method for treating a nitrogen oxide- and sulphur oxide-containing waste gas
DE3039477A1 (en) * 1979-03-24 1982-05-06 Bergwerksverband Gmbh, 4300 Essen Desulphurisation and denitrification of waste gas - by passing across two travelling beds of partly charged and then fresh carbonaceous adsorbent

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5199666A (en) * 1975-02-28 1976-09-02 Kobe Steel Ltd
JPS5282676A (en) * 1975-12-29 1977-07-11 Takeda Chem Ind Ltd Gas adsorption equipment of moving bed type
JPS544709A (en) * 1977-06-10 1979-01-13 Kazuo Nomura Culture method with spreading solution of fine granular manure
JPS5444266A (en) * 1977-09-13 1979-04-07 Kobe Steel Ltd Water slag dryer on net conveyer
US4272497A (en) * 1979-02-08 1981-06-09 Sumitomo Heavy Industries, Ltd. Method for treating a nitrogen oxide- and sulphur oxide-containing waste gas
DE3039477A1 (en) * 1979-03-24 1982-05-06 Bergwerksverband Gmbh, 4300 Essen Desulphurisation and denitrification of waste gas - by passing across two travelling beds of partly charged and then fresh carbonaceous adsorbent
JPS55129127A (en) * 1979-03-27 1980-10-06 Kawasaki Heavy Ind Ltd Dust collecting unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60220124A (en) * 1982-09-09 1985-11-02 ユ−オ−ピ− インコ−ポレイテツド Gas treatment using moving bed

Also Published As

Publication number Publication date
JPS6134852B2 (en) 1986-08-09

Similar Documents

Publication Publication Date Title
CN105413326B (en) A kind of activated coke flue gas purification system
CN102580455A (en) Sintering smoke treatment system and sintering smoke treatment method
US5294420A (en) Process for the desulfurization and denitrification of a waste gas containing halogen-containing materials
CN102341155B (en) Adsorption tower of dry exhaust gas treatment device
CN102824809A (en) Adsorption tower
CN112675698B (en) Desulfurization, denitrification and dust removal device of turbulent bed in separate bin and process thereof
CN109806723A (en) A kind of cross-flow type activated coke moving bed sintering flue gas purifying tower
CN111888925B (en) Dry desulfurization assembly, desulfurization dust removal unit, integrated equipment and system
CN109482050B (en) Moving bed flue gas purification device
JPS58207928A (en) Composite reactor for desulfurization and denitration
CN212663178U (en) Integrative device of SOx/NOx control
CN207221629U (en) A kind of low temperature charcoal base combined desulfurization and denitration flue gas system
CN210057817U (en) Cross-flow active coke moving bed sintering flue gas purification tower
CN213050066U (en) Integrated equipment and system for flue gas purification
CN205435367U (en) Different structure fluidized bed device of multilayer of active carbon desulfurization
CN111151095B (en) Flue gas desulfurization and denitrification system and method
WO2018119812A1 (en) Activated carbon adsorption tower and gas purification device
CN208161318U (en) A kind of upper and lower overlaying structure of activated carbon adsorption device module group
CN111871177A (en) Modular flue gas desulfurization and denitrification purification system and purification method adopting same
JPS58189024A (en) Moving bed type reactor for carbonaceous adsorbent
CN202638271U (en) Smoke cleaning reactor of partition bin type moving bed
CN207745673U (en) It is a kind of using absorption in bulk and/or the smoke eliminator of adsorbent
CN108325385A (en) It improves low-temperature SCR catalyst activity and inhibits by-product N2The SCR reactors of O
CN217367763U (en) Waste gas adsorption tank
CN111545028A (en) Integrative device of SOx/NOx control