JPS5820701A - Semiconductor element for hydrogen generation - Google Patents

Semiconductor element for hydrogen generation

Info

Publication number
JPS5820701A
JPS5820701A JP56116125A JP11612581A JPS5820701A JP S5820701 A JPS5820701 A JP S5820701A JP 56116125 A JP56116125 A JP 56116125A JP 11612581 A JP11612581 A JP 11612581A JP S5820701 A JPS5820701 A JP S5820701A
Authority
JP
Japan
Prior art keywords
semiconductor
hydrogen generation
water
semiconductor element
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56116125A
Other languages
Japanese (ja)
Inventor
Motomu Yoshimura
求 吉村
Makoto Tsunoda
誠 角田
Shohei Eto
江藤 昌平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP56116125A priority Critical patent/JPS5820701A/en
Publication of JPS5820701A publication Critical patent/JPS5820701A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

PURPOSE:A semiconductor element for hydrogen generation that is made by effecting uniform adhesion of a fine powder of semiconductor to an insulation support, thus showing increased efficiency of hydrogen generation. CONSTITUTION:A fine powder and/or fine particles of semiconductor 18 are uniformly adhered to the surface of the insulation support 19 with an epoxy resin or silicone insulation adhesive to form a semiconductor element. When the resultant elements are arranged in water or an aqueous electrolyte so that they are uniformly distributed in it, they effectively absorb irradiated rays to increase the efficiency of hydrogen generation. The substance for the semiconductor 18 is, e.g., TiO2, SrTiO3 or CdS, its particle size is about 1,000Angstrom -10 microns and Egap is more than 1.23 eV. The desired semiconductor element is made by passing glass fiber coated with a thin film of adhesive 22 through a vessel containing the semiconductor at a constant speed.

Description

【発明の詳細な説明】 本発明は新規な水素発生用半導体素子に関する。[Detailed description of the invention] The present invention relates to a novel semiconductor device for hydrogen generation.

さらに詳しくは、半導体が光を吸収して半導体中の伝導
帯にエレク)oンを励起し、価、電子帯にはホールを生
成させて半導体中にエレクトロンとホールとの電荷分離
を惹起し、水の還元電位に達したエレクトロンが水を還
元分解して水素を発生させ、沓の酸化電位に達Fたホー
ルが水を酸化分解して酸素を発生させる半導体の光電気
化学作用を利用し、先主ネルギーと半導体とで、水から
水素を発生させる半導体素子に、関する。
More specifically, the semiconductor absorbs light, excites electrons in the conduction band in the semiconductor, generates holes in the valence and electronic bands, and causes charge separation between electrons and holes in the semiconductor. Using the photoelectrochemical action of semiconductors, electrons that have reached the reduction potential of water reductively decompose water to generate hydrogen, and holes that have reached the oxidation potential of the shoe oxidize and decompose water to generate oxygen. It relates to semiconductor elements that generate hydrogen from water using primary energy and semiconductors.

従来、半導体に光を吸収させて、水を分解し水素を発生
させる装置としては第1図および第2図に示すものがあ
る。
2. Description of the Related Art Conventionally, there are devices shown in FIGS. 1 and 2 that allow a semiconductor to absorb light to decompose water and generate hydrogen.

第1図において(1)は半導、体、(2)は半導体と金
属とのオーミックコンタクトを形成するための材料であ
り、半導体がn型のばあいにはインジウムα荀などの仕
事関数の小さい金属が用いられ、半導体がp型のばあい
には金(Ag)などの仕事関数の大きい金属が用いられ
る。(8)は絶縁のための樹脂、(4)は白金(Pt)
やパラジウム(Pa)またはカーボンブラックなどから
なる電極、(5)は表面が絶縁された金属尋線である。
In Figure 1, (1) is a semiconductor, a material, and (2) is a material for forming an ohmic contact between the semiconductor and metal.If the semiconductor is an n-type semiconductor, it is a material with a work function such as indium α A small metal is used, and if the semiconductor is p-type, a metal with a large work function such as gold (Ag) is used. (8) is resin for insulation, (4) is platinum (Pt)
(5) is a metal wire with an insulated surface.

(6)は水または電解質を含む水溶液、(7)は水また
は電解質を含む水溶液(6)を入れるガラス製の容器で
ある。
(6) is an aqueous solution containing water or an electrolyte, and (7) is a glass container containing the aqueous solution (6) containing water or an electrolyte.

第2図において(8)は微粉末状の半導体、(9)は水
または電解質を含む水溶液、00)は水または電解質を
含む水溶液(9)を入れるガラス製の容器である。
In FIG. 2, (8) is a finely powdered semiconductor, (9) is an aqueous solution containing water or an electrolyte, and 00 is a glass container containing the aqueous solution (9) containing water or an electrolyte.

用いられる半導体としては第1図および第2図に示され
る両方式とも、n型の酸化チタン(rto2)またはn
型のストロンチウムチタネート(5rTi03)などの
バンドギャップが3.OeV以上のn型の半導体であり
、その構造としては、単結晶体、多結晶体および焼結体
のいずれのものも用いられている。
The semiconductor used in both the systems shown in Figures 1 and 2 is n-type titanium oxide (rto2) or n-type titanium oxide (rto2).
The band gap of strontium titanate (5rTi03) is 3. It is an n-type semiconductor with a voltage of OeV or higher, and its structure includes any of a single crystal, a polycrystal, and a sintered body.

つ皆に半導体が光を吸収して水を分解し、水素を発生さ
せる原理を述べる・。
We will explain to everyone the principle behind how semiconductors absorb light, decompose water, and generate hydrogen.

第6図は牛導体(ロ)のバンド構造を示す説明図であ葛
Figure 6 is an explanatory diagram showing the band structure of the cow conductor (b).

半導体中のエネルギーレベルは連続しておらず、伝導帯
02)、禁止帯08)および価電子帯0→よりなるバン
ド構造を形成している。外部バイアスを印加し4い状態
では、電子はほとんど価電子帯に存在すギー傘キップ(
以下、Ijgapという)以上のエネルギーを有する光
を照射すれば、半導体がその光を吸収して価電子帯のエ
レクトロンが伝導帯に励起され、伝導帯にはエレクトロ
ンが生成し、価電子帯には励起されたエレクトロンの抜
けからのホールが生成し、半導体内で壬しクトロ、ンと
ホールによる電荷の分離が起る。分離生成した電荷のう
ちエレクトロンは水の還元電位に達し、水を還元し′水
素を生成する。一方、ホールは水の酸化電位に達し、水
を酸化し酸素を生成する。以上の原理から、水を分解し
て水、素を発生させるために用いられる半導体としては
、igapが水の電気分解電圧、すなわち水の還元電位
と酸化電位の差(室温では約1.25eV)以上のもの
でなければならない。
The energy levels in the semiconductor are not continuous, and form a band structure consisting of a conduction band 02), a forbidden band 08), and a valence band 0→. When an external bias is applied and the electrons are in the 4-state state, most of the electrons exist in the valence band.
When irradiated with light having an energy greater than (hereinafter referred to as Ijgap), the semiconductor absorbs the light and the electrons in the valence band are excited to the conduction band. Holes are generated from the exit of excited electrons, and charge separation occurs within the semiconductor due to electrons and holes. Among the separated and generated charges, electrons reach the reduction potential of water, reducing water and producing hydrogen. On the other hand, the holes reach the oxidation potential of water, oxidizing water and producing oxygen. Based on the above principle, as a semiconductor used to decompose water and generate water and elements, igap is the electrolytic voltage of water, that is, the difference between the reduction potential and oxidation potential of water (approximately 1.25 eV at room temperature). It must be more than that.

つぎに、従来の装置について、その動作原理を述べる。Next, the operating principle of the conventional device will be described.

まず第1図に示す方式では、水の分解電圧以上のIgi
pを有する半導体が、Iligap以上のエネルギーを
有する光を吸収し1.伝導帯にエレクトロンが生成し、
価電子帯にホールが生成する。生成したエレクトロンと
ホールは、電解質水溶液と半導体とで形成される半導体
のエネルギーバンドの勾配に沿って、半導体がn型のば
あいにはホールが牛導体と電解質水溶−との界面に移動
し、水を酸化し酸素を発生させる。一方、エレクトロン
は半導体バルクから対極へ移動し、対極と電解質水溶液
との界面に移動し、水を還元して水素を発生させる。半
導体がp型のばあいでは、エレクトロンが牛導体と電解
質水溶液との界面に移動し、水を還元して水素を発生さ
せる。−一方、ホールは牛導体バルクから対極へ移動し
、対極と電解質水溶液との、界面で水を酸化して酸素を
発生させる。
First, in the method shown in Fig. 1, Igi is higher than the water decomposition voltage.
A semiconductor having p absorbs light having an energy higher than Iligap, and 1. Electrons are generated in the conduction band,
Holes are generated in the valence band. The generated electrons and holes move along the gradient of the energy band of the semiconductor formed by the electrolyte aqueous solution and the semiconductor, and if the semiconductor is n-type, the holes move to the interface between the conductor and the electrolyte aqueous solution. Oxidizes water and generates oxygen. On the other hand, electrons move from the semiconductor bulk to the counter electrode, move to the interface between the counter electrode and the aqueous electrolyte solution, reduce water, and generate hydrogen. When the semiconductor is p-type, electrons move to the interface between the conductor and the electrolyte aqueous solution, reduce water and generate hydrogen. - On the other hand, the holes move from the bulk conductor to the counter electrode, oxidize water at the interface between the counter electrode and the electrolyte aqueous solution, and generate oxygen.

第2図に示す方式では、半導体が水の酸化と還元を同時
に行なう。すなわち水の分解電圧以上の11tgapを
有する半、導体がICgり以上のエネルギーを有する光
を吸収し、伝導帯に生成したエレクトロンと価電子帯に
生成したホールが、それぞれ別方向に、半導体と電解質
水溶液との界面に移動し、エレクトロンは水を還元して
水素を発生させ、ホールは永を酸化して酸素を発生させ
る。
In the system shown in FIG. 2, a semiconductor simultaneously oxidizes and reduces water. In other words, a semiconductor with a gap of 11 tgap, which is higher than the decomposition voltage of water, absorbs light with an energy higher than ICg, and electrons generated in the conduction band and holes generated in the valence band move in different directions to the semiconductor and electrolyte. Moving to the interface with an aqueous solution, electrons reduce water and generate hydrogen, and holes oxidize hydrogen and generate oxygen.

従来法は前記の2つの方式が中心であったが・、水素生
成に対して、装置に照射゛さ社る光エネルギーの有効利
用率と、°半導体の有効利用率の面から誓れぞれ欠点を
有している。すなわち光を;導体に照射して水から水素
を発生さするばあい装置全体としての水素発生効率を支
配するものとして、(1)装置に照射させる光全体に対
する半導体の吸収効率および(→生成したエレク)oン
とホールが水の酸化還元反応を行なう反応の場としての
半導体の有効表面積の2つが考えらむる。
Conventional methods have mainly focused on the two methods mentioned above, but for hydrogen generation, there are two approaches that are important in terms of the effective utilization rate of the light energy irradiated to the device and the effective utilization rate of the semiconductor. It has its drawbacks. In other words, when light is irradiated onto a conductor to generate hydrogen from water, the following factors govern the hydrogen generation efficiency of the entire device: (1) absorption efficiency of the semiconductor for the entire light irradiated to the device; Two factors can be considered: the effective surface area of the semiconductor as a reaction site where electrons and holes perform the redox reaction of water.

、第1図に示す方式においては、半導体の一形状を大き
くして表面積を拡大すれば装置に照射する光を半導体が
有効に吸収しうるが、1枚板形状であるため半導体単位
箪量あたりの表面積の割合を大きくできず、エレクトロ
ンおよびホールが水を分解する反応の場が小さいため、
光を有効に吸収し、エレクトロンとホールを有効に生成
したとしても、水素の発生効率は半導体単位重置あたり
で考えたばあいわるくなる。
In the method shown in Figure 1, if the shape of the semiconductor is enlarged to increase the surface area, the semiconductor can effectively absorb the light irradiating the device, but since it is in the form of a single plate, the amount per unit amount of semiconductor is It is not possible to increase the proportion of the surface area of the water, and the reaction field for electrons and holes to decompose water is small.
Even if light is effectively absorbed and electrons and holes are effectively generated, the efficiency of hydrogen generation will be poor if considered per semiconductor unit stack.

一方、第21に示す方式は、半導体単位重置あたりの表
面積番拡大させ、エレクトロンとホールの水分解反応。
On the other hand, the method shown in the 21st method expands the surface area per stacked semiconductor unit and causes a water splitting reaction of electrons and holes.

反融。場ヶ拡大8せ工、11114:示す方式が有する
欠点を改善し水 素の生成効率を向上せしめようとした
ものである。
Antimelt. Baga Enlargement 8 Section, 11114: This is an attempt to improve the drawbacks of the method shown and improve the efficiency of hydrogen production.

しかしdから、この方式においても半導体を三次元的に
均一に分散させる必要があり、半導体の粒径が制限され
るという欠点を有する。さらに最適粒径が決ったとして
も、実際には電解質水溶液中に、常に均一に分散させる
のは不可能であり、長時間経過後には凝集沈瞬を起し、
装置に入射する光を半導体が有効に吸収することが困難
となり、単位重量あたりの半導体の表面積が拡大されて
も照射光あた″りの水素発生効率がわるくなるというム 欠点を有する。
However, from d, even in this method, it is necessary to uniformly disperse the semiconductor in three dimensions, which has the disadvantage that the particle size of the semiconductor is limited. Furthermore, even if the optimum particle size is determined, it is actually impossible to always uniformly disperse the particles in the electrolyte aqueous solution, and after a long period of time, agglomeration and sedimentation may occur.
It becomes difficult for the semiconductor to effectively absorb the light incident on the device, and even if the surface area of the semiconductor per unit weight is expanded, the hydrogen generation efficiency per irradiated light decreases.

本発明者らは以上の欠点を克服するべく鋭意研究を重ね
た結果、絶縁性支持体に微粉末状および(または)微粒
子状の半導体を均一に接着せしめてなる半導体素子を水
または電解質水溶層中に配置するときは、照射される光
を半導体が有効に吸収し、かつ半導体単位重量あたりの
表面積を拡大することができ、水素の発生効率を増大せ
しめうることを見出し、本発明を完成させるにいたった
The present inventors have conducted extensive research to overcome the above-mentioned drawbacks, and as a result, we have developed a semiconductor device made by uniformly adhering a semiconductor in the form of fine powder and/or fine particles to an insulating support with a layer of water or an aqueous electrolyte. It was discovered that when the semiconductor is placed inside the semiconductor, the irradiated light can be effectively absorbed by the semiconductor, and the surface area per unit weight of the semiconductor can be expanded, thereby increasing the hydrogen generation efficiency, and the present invention has been completed. It arrived.

また本発明において微粉末状および(または)微粒子状
の半導体を均一に接着せしめた絶縁性支持体を上下2枚
の絶縁性基板間に均一な間隔で固定せしめてもよい。
Further, in the present invention, an insulating support to which fine powder and/or particulate semiconductor is uniformly adhered may be fixed between two upper and lower insulating substrates at uniform intervals.

本発明iおいて゛用い゛る微粉末状および(または)微
粒子状の半導体の材料としては、たとえばT iO,%
5rTiOOdSなどがあげられその粒径としては任S 意の大きさが可能であるが、1ooo1〜10μのもの
が好適である。
The fine powder and/or particulate semiconductor material used in the present invention (i) includes, for example, TiO,%
Examples include 5rTiOOdS, and the particle size can be any size, but 1001 to 10μ is preferable.

また牛導体の物理的構造としては単結晶体、多結晶体、
焼結体など任卑のものが選ばれ、mgapが1.23e
V以上、好ましくは2.5eV以上のものが用いられる
In addition, the physical structure of the cow conductor is single crystal, polycrystal,
A suitable material such as a sintered body was selected, and the mgap was 1.23e.
V or more, preferably 2.5 eV or more is used.

また微粉末状および(または)微粉末状の半導体を均一
に絶縁性支持体に接着せしめるには、たとえば、接着剤
を表面にうずく塗りつけたガラス繊維あるいはナイロン
繊維などを、微粉末状および(または)微粒子状の半導
体を入れた容器の中を一定速度で通過させるなどの方法
が採用されうる。
In addition, in order to uniformly adhere a finely powdered and/or finely powdered semiconductor to an insulating support, for example, a finely powdered and/or ) A method such as passing at a constant speed through a container containing particulate semiconductors may be adopted.

つぎに実施例をあげて本発明の水素発生用半導体素子を
説明する。
Next, the semiconductor device for hydrogen generation of the present invention will be described with reference to Examples.

第4図は本発−の水素発生装置の断面図である。FIG. 4 is a sectional view of the hydrogen generator of the present invention.

第″4図において、0ηは微、粉末状および(または)
微粒子状にした半導体(ホ)を絶縁性支持体側に接着せ
しめた水素発生用半導体素子である。に)は前記支持体
(19)に半導体を接着せしめた半導体素子αりを固定
す・るために絶縁性の支柱ψりで固定された絶縁性基板
であり、形状は円板状または方形状など任意に設計され
に半導体素子α7)が均一に画定されたものである。Q
5)は水または電解質を含む水溶液、θB)は水または
電解質d含む水溶液を入れるためのガラスなどの透明な
材料からなる容器である。
In Figure 4, 0η means fine, powdery and/or
This is a semiconductor element for hydrogen generation in which a semiconductor (e) in the form of fine particles is adhered to an insulating support. 2) is an insulating substrate fixed with an insulating support ψ in order to fix a semiconductor element α with a semiconductor adhered to the support (19), and the shape is a disk-like or rectangular shape. The semiconductor elements α7) are arbitrarily designed and uniformly defined. Q
5) is an aqueous solution containing water or an electrolyte, and θB) is a container made of a transparent material such as glass for containing water or an aqueous solution containing an electrolyte d.

第5客は、第4図の(17)で示される半導体素子の断
面図である。第5図において、(ト)は微粉末状および
(または)微粒子状にされた半導体、ψ枠はエポキシ樹
脂系、シリコーン系の絶縁性の接着剤、0→は半導体に
)の絶縁性支持体であり、ナイロン、テフロン、ガラス
繊維などが用いられ、径は任意に選ばれる。
The fifth figure is a cross-sectional view of the semiconductor element shown at (17) in FIG. In Figure 5, (g) is a semiconductor in the form of fine powder and/or fine particles, the ψ frame is an epoxy resin-based or silicone-based insulating adhesive, and 0→ is an insulating support for the semiconductor. Nylon, Teflon, glass fiber, etc. are used, and the diameter is arbitrarily selected.

本発明においては、−微粉末状および(または)微粒子
状にした牛導体を絶縁性支持体に接着した半導体素子を
1下2枚の基板の間に均一に固定せしめたユニットコン
ポーネントを電解質水溶液中に入れるため、半導体は常
に均一に分布しており、装置に照射される光の半導体に
よる吸収効率は、従来の方式に比べていちじるしく高め
られ、また半導体の沈殿現象がおこらず、光の吸収効率
は経時変化をおこさない。また牛導体の粒径は前記した
ごとく任意の大きさが可能であり、半導体単位重量あた
りの表面積が拡大される。以上の効果により、本発明の
半導体素子を用いた装置による水素の発、生動2率は1
、従来のものに比べいちじるしく高められる。さらに半
導体は絶縁性支持体に固定されているめで、本発明にお
いては半導体素子の回収および交換が容易に行なわれる
In the present invention, - a unit component in which a semiconductor element in which a fine powder and/or particulate conductor is adhered to an insulating support is uniformly fixed between two substrates is placed in an electrolyte aqueous solution; Because the semiconductor is always distributed uniformly, the absorption efficiency of the light irradiated to the device by the semiconductor is significantly increased compared to the conventional method, and there is no precipitation phenomenon of the semiconductor, which increases the light absorption efficiency. does not change over time. Further, the grain size of the conductor can be arbitrary as described above, and the surface area per unit weight of the semiconductor can be expanded. As a result of the above effects, the rate of hydrogen generation and generation by the device using the semiconductor element of the present invention is 1.
, which is significantly improved compared to the conventional one. Furthermore, since the semiconductor is fixed to the insulating support, the semiconductor element can be easily recovered and replaced in the present invention.

つぎに本発明の水素発生用半導体素子を島いた装置によ
って水素側発車させたばあいの結果を、従来のものと比
較して示す。
Next, the results obtained when a hydrogen-side train is started using a device incorporating the semiconductor device for hydrogen generation of the present invention will be shown in comparison with a conventional device.

半導体として、多結晶体T iOzを用い、微粉末状(
平均粒径3000X )にしたちの5009をナイロン
糸(径0.05mm)に、エポキシ系接着剤で均一に、
かつ接着面がなるべく小さくなるように接着せしめたも
のを4amの長さに切って半導体素子を作製し、支、柱
をもつ4om角のアクリル板2枚の間に均一にとりつけ
たものを底面が5am角で高さ5om (7)ガラス製
容器中に入れ、水を120m1加えたのち、500Wキ
セノンランプで光照射して水素を発生させた。
As a semiconductor, polycrystalline TiOz is used, and fine powder (
5009 with an average particle size of 3000X) was uniformly coated with nylon thread (diameter 0.05 mm) using epoxy adhesive.
Then, we glued the pieces so that the adhesive surface was as small as possible, cut them into 4-am lengths to make semiconductor devices, and evenly attached them between two 4-ohm square acrylic plates with supports and pillars. (7) It was placed in a glass container, 120 ml of water was added thereto, and irradiated with light using a 500 W xenon lamp to generate hydrogen.

その結果、0.28μmci l/20hの速度で水素
が発生した。
As a result, hydrogen was generated at a rate of 0.28 μmci l/20 h.

〜 一方、TlO2を微粉末状(平均粒径3000A )に
したものを、単に水中に分散させた従来の装置では、同
一条件下でり、18μmol/2Dkの速度でしか水素
が発生しなかった。
~ On the other hand, in a conventional device in which finely powdered TlO2 (average particle size 3000 A) was simply dispersed in water, hydrogen was generated only at a rate of 18 μmol/2Dk under the same conditions.

以上のごとく、本発明の水素発生用半導体素子は、従来
のものに比べ水素発生効率を高めることができ、かつ微
粉末状および(または)微粒子状半導体を水溶液中に均
一に分布することができるため外部操作を必要とせず、
また半導体の回収および交換が容賜であり、(たがって
工業的価値がきわめて大である。
As described above, the semiconductor element for hydrogen generation of the present invention can improve hydrogen generation efficiency compared to conventional devices, and can uniformly distribute fine powder and/or particulate semiconductor in an aqueous solution. Therefore, no external operation is required.
In addition, it is possible to recover and replace semiconductors (therefore, the industrial value is extremely large).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は従来の水素発生装置の断面図、−
第3図は半導体のバンドi成を示す説明図、第4図は本
発明の半導体素子の一実施例を具備した水素発生装置の
断面図、第5図は本発明の絶縁支持体に半導体を接着せ
しめた半導体素子の断面図である。 (図面の主要符号) (ロ):水素発生用半導体素子 (18) :半導体 (19)’:絶縁性支持体 に):絶縁性基板 Ql):接着剤 代理人 葛 野 信 −(ほか1名) l:);1
Figures 1 and 2 are cross-sectional views of conventional hydrogen generators, -
FIG. 3 is an explanatory diagram showing the band i formation of a semiconductor, FIG. 4 is a sectional view of a hydrogen generator equipped with an embodiment of the semiconductor element of the present invention, and FIG. 5 is a diagram showing a semiconductor on an insulating support of the present invention. FIG. 3 is a cross-sectional view of a bonded semiconductor element. (Main symbols in the drawing) (b): Semiconductor element for hydrogen generation (18): Semiconductor (19)': Insulating support): Insulating substrate Ql): Adhesive agent Shin Kuzuno - (1 other person) ) l:);1

Claims (1)

【特許請求の範囲】[Claims] (1)絶縁性支持体に微粉末状および(または)微粒子
状の半導体を均一に接着せしめてなる水素発生用半導体
素子。、        、(2)微粉末状および(ま
たは)微粒子状の半導体を均一に接着せしめた絶縁性支
持体を、上下2枚の絶縁性基板間に均一な間隔で固定せ
しめてなる特許請求の範囲第(1)項記載の半導体素子
(1) A semiconductor element for hydrogen generation, which is formed by uniformly adhering a fine powder and/or particulate semiconductor to an insulating support. (2) An insulating support to which fine powder and/or particulate semiconductors are uniformly adhered is fixed between two upper and lower insulating substrates at uniform intervals. The semiconductor device described in (1).
JP56116125A 1981-07-23 1981-07-23 Semiconductor element for hydrogen generation Pending JPS5820701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56116125A JPS5820701A (en) 1981-07-23 1981-07-23 Semiconductor element for hydrogen generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56116125A JPS5820701A (en) 1981-07-23 1981-07-23 Semiconductor element for hydrogen generation

Publications (1)

Publication Number Publication Date
JPS5820701A true JPS5820701A (en) 1983-02-07

Family

ID=14679316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56116125A Pending JPS5820701A (en) 1981-07-23 1981-07-23 Semiconductor element for hydrogen generation

Country Status (1)

Country Link
JP (1) JPS5820701A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6219245A (en) * 1985-07-19 1987-01-28 Agency Of Ind Science & Technol Optically functional film
JPS6266861A (en) * 1985-09-19 1987-03-26 松永 是 Sterilizing reactor
JPS6397234A (en) * 1986-10-14 1988-04-27 Nippon Sheet Glass Co Ltd Fixation photocatalyst
JPH07171408A (en) * 1993-06-28 1995-07-11 Ishihara Sangyo Kaisha Ltd Photocatalytic body and its production
JPWO2013035291A1 (en) * 2011-09-06 2015-03-23 パナソニック株式会社 Semiconductor material, photohydrogen generation device using the same, and method for producing hydrogen

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6219245A (en) * 1985-07-19 1987-01-28 Agency Of Ind Science & Technol Optically functional film
JPH0365231B2 (en) * 1985-07-19 1991-10-11
JPS6266861A (en) * 1985-09-19 1987-03-26 松永 是 Sterilizing reactor
JPH0550294B2 (en) * 1985-09-19 1993-07-28 Tadashi Matsunaga
JPS6397234A (en) * 1986-10-14 1988-04-27 Nippon Sheet Glass Co Ltd Fixation photocatalyst
JPH0417098B2 (en) * 1986-10-14 1992-03-25 Nippon Ita Garasu Kk
JPH07171408A (en) * 1993-06-28 1995-07-11 Ishihara Sangyo Kaisha Ltd Photocatalytic body and its production
US6498000B2 (en) 1993-06-28 2002-12-24 Ishihara Sangyo Kaisha, Ltd. Photocatalyst composite and process for producing the same
JPWO2013035291A1 (en) * 2011-09-06 2015-03-23 パナソニック株式会社 Semiconductor material, photohydrogen generation device using the same, and method for producing hydrogen
US9630169B2 (en) 2011-09-06 2017-04-25 Panasonic Corporation Semiconductor material, optical hydrogen generating device using same, and method of producing hydrogen

Similar Documents

Publication Publication Date Title
TW563259B (en) Solar cell and solar cell unit
O'regan et al. Vectorial electron injection into transparent semiconductor membranes and electric field effects on the dynamics of light-induced charge separation
Li et al. Sonochemical synthesis of nanocrystalline copper tellurides Cu7Te4 and Cu4Te3 at room temperature
Pejova et al. Size-dependent properties of sonochemically synthesized three-dimensional arrays of close-packed semiconducting AgBiS2 quantum dots
Stroyuk et al. Quantum size effects in semiconductor photocatalysis
CN104159669A (en) Electrode for photohydrolysis, and method for manufacturing same
CA2898871A1 (en) Radiolytic electrochemical generator
TW201348123A (en) Metal nanonetwork and method for producing same, and conductive film and conductive substrate using metal nanonetwork
Luo et al. Electrochemical deposition of mesoporous crystalline oxide semiconductor films from lyotropic liquid crystalline phases
JP2000325796A (en) Photocatalyst carrier and manufacture thereof
Brown et al. Interfacial electron transfer in titanium dioxide colloids
JPS5820701A (en) Semiconductor element for hydrogen generation
Bao et al. Large area α-Cu2S particle-stacked nanorod arrays by laser ablation in liquid and their strong structurally enhanced and stable visible photoelectric performances
Takahashi et al. Resistivity, carrier concentration, and carrier mobility of electrochemically deposited CdTe films
CA1242785A (en) Solar cells on the basis of cuins.sub.2
JPS62132371A (en) Solar cell module
JPS59112841A (en) Catalyst for photochemical reaction
Strbac et al. Oscillatory phenomena in oxygen and hydrogen peroxide reduction on the Au (100) electrode surface in alkaline solutions
JP2004535288A5 (en)
JPS61290355A (en) Electrochemical gas sensor
JP2008024578A (en) Method for producing thin film having photocatalytic activity in visible light range
JP2005072524A (en) Photoelectric conversion element and solar cell using it
JP2018123378A (en) Photochemical electrode, production method of photochemical electrode, and photolysis device of water
Rashid et al. Influence of electrochemical deposition parameters on morphological properties of ZnO on Si (100)
JP2008057003A (en) Method for producing functional article, and functional granular/powdery substance produced by using the same