JPS58206926A - Mass flowmeter - Google Patents

Mass flowmeter

Info

Publication number
JPS58206926A
JPS58206926A JP7403982A JP7403982A JPS58206926A JP S58206926 A JPS58206926 A JP S58206926A JP 7403982 A JP7403982 A JP 7403982A JP 7403982 A JP7403982 A JP 7403982A JP S58206926 A JPS58206926 A JP S58206926A
Authority
JP
Japan
Prior art keywords
pipe
piezo
duct
electric
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7403982A
Other languages
Japanese (ja)
Inventor
Kyoichi Ikeda
恭一 池田
Takaharu Matsumoto
松本 高治
Fumitaka Ohashi
大橋 章隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Yokogawa Hokushin Electric Corp
Yokogawa Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp, Yokogawa Hokushin Electric Corp, Yokogawa Electric Works Ltd filed Critical Yokogawa Electric Corp
Priority to JP7403982A priority Critical patent/JPS58206926A/en
Publication of JPS58206926A publication Critical patent/JPS58206926A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8413Coriolis or gyroscopic mass flowmeters constructional details means for influencing the flowmeter's motional or vibrational behaviour, e.g., conduit support or fixing means, or conduit attachments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • G01F1/8468Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
    • G01F1/849Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having straight measuring conduits

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To obtain a vibration type mass flowmeter having a simple constitution and a low electric power consumption, by driving by a piezo-electric element attached to a duct. CONSTITUTION:A mass flowmeter is constituted by using a straight pipe instead of a U-shape pipe and a piezo-electric element 7 is distorted by an electric distortion effect by applying an alternating current voltage e1 to the element for driving 7 and then, a duct 1 is driven by transmitting this distortion to the duct 1. At this time, two kinds of vibration patterns of a symmetric bending vibration pattern given in a straight pipe 1 at each moment and the asymmetric bending vibration pattern shown by Coriolis' force acting to a fluid which is flowed in the pipe 1, are vibrated in an overlapped condition. Output signals e2, e3 from piezo-electric elements 63, 64 are added to a phase difference detecting circuit 8 and a phase difference output e0 is obtained. The mass flow rate is obtained because the output e0 is proportional to the mass flow rate.

Description

【発明の詳細な説明】 本発明は、コリオリの力を利用した質量流量計の改良に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a mass flow meter that utilizes the Coriolis force.

181図はコリオリ流量計の動作原理を説明するだめの
構成説明図である。1は測定流体の流れる0字管で、七
の先端中央部VCは永久磁石2が固定され、0字管1の
両端はベース3に固定されている。4は0字管1に対向
して設置された電磁駆動・検出用コイル、5はこの電磁
駆動・検出用コイルをその先端において支持する支持ビ
ームで、他端はベース5に固定されている。0字管1と
支持ビーム5とは互に音叉構造を形成している。即ち、
0字管1とビーム5は丁度音叉の歯が振動するように、
互いに相対向して振動し、かつ音叉のようにベース50
部分が扱動の節点となp振動エネルギーを失うことが少
ない構成となっている。61゜62はU字管10両脚の
変位全検出するための変位検出器である◎ 駆動コイル4とこれに対抗する0字管1に固定された永
久磁石20間に動く電磁力で、0字管1をその固有振動
数で励振すると(縦振動(対称たわみ振動):第2−(
4)のMl 、 M2 、Misは各瞬間のパターンを
示す)、U字管1内を流れる流体にコリオリの力が発生
する。このコリオリカの大きさは、U字管1内を流れる
流体の質量とその速度に比例し、力の方向は流体の運動
方向と0字管1を励振する角速度のベクトル積の方向に
一致する。また0字管1の入力側と出力側では流体の方
向が逆になるので、両脚側のコリオリカによって、0字
管1にねじ)(非対称たわみ)のトルクが発生する。
FIG. 181 is a structural explanatory diagram for explaining the operating principle of a Coriolis flowmeter. Reference numeral 1 denotes a 0-shaped tube through which the measurement fluid flows, a permanent magnet 2 is fixed to the center portion VC of the tip 7, and both ends of the 0-shaped tube 1 are fixed to a base 3. Reference numeral 4 denotes an electromagnetic drive/detection coil installed opposite to the O-shaped tube 1, 5 is a support beam that supports the electromagnetic drive/detection coil at its tip, and the other end is fixed to the base 5. The 0-shaped tube 1 and the support beam 5 mutually form a tuning fork structure. That is,
The 0-shaped tube 1 and the beam 5 vibrate just like the teeth of a tuning fork.
The base 50 vibrates opposite to each other and acts like a tuning fork.
The structure is such that the parts serve as nodal points of handling motion and there is little loss of p-vibration energy. 61 and 62 are displacement detectors for detecting the entire displacement of both legs of the U-shaped tube 10. The electromagnetic force that moves between the drive coil 4 and the permanent magnet 20 fixed to the opposing O-shaped tube 1 causes the zero-shaped When tube 1 is excited at its natural frequency (longitudinal vibration (symmetrical flexural vibration): 2nd - (
4) Ml, M2, and Mis indicate the patterns at each instant), Coriolis force is generated in the fluid flowing inside the U-shaped tube 1. The magnitude of this Coriolis is proportional to the mass of the fluid flowing in the U-shaped tube 1 and its velocity, and the direction of the force corresponds to the direction of the vector product of the fluid motion direction and the angular velocity that excites the O-shaped tube 1. Furthermore, since the direction of the fluid is reversed on the input side and output side of the 0-shaped tube 1, a screw (asymmetrical deflection) torque is generated in the 0-shaped tube 1 due to the Coriolis on both leg sides.

このトルクは、励振周波数と同一な周波数で変化し、そ
の振幅値は流体の質量流量に比例する。第2図(6)は
このねじりトルクによって表われる振動モード(コリオ
リ振動モード)を示し、M4. MS。
This torque varies with the same frequency as the excitation frequency, and its amplitude value is proportional to the mass flow rate of the fluid. FIG. 2 (6) shows the vibration mode (Coriolis vibration mode) caused by this torsional torque, and M4. M.S.

M6は各瞬間の振動パターンを示す。したがって、との
ねじシ振動(非対称たわみ振動)トルクの振幅を、変位
検出器61.42によって、例えばパルス幅などの形で
検出すれば、質量流量を知ることができる。
M6 shows the vibration pattern at each moment. Therefore, by detecting the amplitude of the screw vibration (asymmetrical flexural vibration) torque with the displacement detector 61.42 in the form of a pulse width, for example, the mass flow rate can be determined.

上記の様な原理を用いた質量流置引は従来から公知であ
る(例えば特開昭54−52570号)が、この場合に
下記の様な問題点がある。即ち、従来管路を励振する手
段として電磁駆動方式が一般的に用いられているが、構
成が複雑で比較的大きな電力を消費し、発熱などの問題
もあった。
Mass flow displacement using the above-mentioned principle has been known for some time (for example, Japanese Patent Application Laid-Open No. 54-52570), but this method has the following problems. That is, although an electromagnetic drive system has been generally used as a means to excite a conduit, it has a complicated structure, consumes a relatively large amount of power, and has problems such as heat generation.

本発明は上記の欠点を解消するためになされたもので、
構成が簡単で電力消費の少ない振動式のiM m k 
M計を実現することを目的とする。
The present invention has been made to solve the above-mentioned drawbacks.
Vibrating iMk with easy configuration and low power consumption
The purpose is to realize M meter.

本発明によれば、管路に取りつけた圧電素子で励振を行
なうことにより上記の目的を達成することができる。
According to the present invention, the above object can be achieved by exciting a piezoelectric element attached to a conduit.

以下図面にもとすいて本発明を説明する。The present invention will be explained below with reference to the drawings.

第3図は、本発明の一実施例を示す要部構成平面図であ
る・1は測定流体を流す管路、3はこの管路1をその両
端で固定するペース、7は前配管路1の表面に取りつけ
られ、これを励振する駆動用圧電素子、63と64は前
記管路10表面に取りつけられ、その振動を検出する検
出用圧電素子、8はこの圧電素子65の出力信号e2と
圧電素子64の出力信号c3とを入力とし、両信号間の
位相差を検出する位相差検出回路である。
FIG. 3 is a plan view showing the main parts of an embodiment of the present invention. Reference numeral 1 indicates a pipe line through which the fluid to be measured flows, 3 indicates a pace for fixing the pipe line 1 at both ends thereof, and 7 indicates a front pipe line 1. drive piezoelectric elements 63 and 64 are attached to the surface of the conduit 10 and detect the vibrations thereof; 8 is a detection piezoelectric element that is attached to the surface of the pipe 10 and detects the vibration; This is a phase difference detection circuit which receives the output signal c3 of the element 64 as an input and detects the phase difference between both signals.

仁の実施例は0字管の代わりに直管を用いて質量fLt
引を構成したものである。交流電圧c1を駆動用圧電素
子7に加えると、電歪効果によって圧電素子7が゛歪み
、これが管路1に伝わって管#l&1は励振される。こ
のときに直管1が各瞬間に表わす対称たわみ振動パター
ンを第4図のM7.MSに示す。この図のM?、MIO
は直管1中を流れる流体に働くコリオリカにより表われ
る非対称たわみ振動のパターンである。実際にはこの2
種の振動パターンが重畳した形で振動する。圧電素子6
5.64からの出力信号e2+ 、e5は位相差検出回
路8に加えられ、位相差出力・。を得ている。この位相
差出力!(1は質量流量に比例するので上記の構成によ
り質量流量を得ることができる。
Jin's embodiment uses a straight pipe instead of a 0-shaped pipe to reduce the mass fLt.
This is a set of quotations. When an alternating current voltage c1 is applied to the driving piezoelectric element 7, the piezoelectric element 7 is distorted due to the electrostrictive effect, and this is transmitted to the pipe line 1, so that the pipe #l&1 is excited. At this time, the symmetrical deflection vibration pattern that the straight pipe 1 exhibits at each moment is M7 in FIG. Shown in MS. M in this figure? , MIO
is a pattern of asymmetrical flexural vibrations caused by Coriolika acting on the fluid flowing through the straight pipe 1. Actually these 2
The seeds vibrate in a superimposed vibration pattern. Piezoelectric element 6
The output signals e2+ and e5 from 5.64 are applied to the phase difference detection circuit 8, which outputs the phase difference. I am getting . This phase difference output! (Since 1 is proportional to the mass flow rate, the mass flow rate can be obtained by the above configuration.

また、圧電素子を用いたため駆動部分の構成が簡単にな
るだけでなく駆動回路も簡単な構成となる。更に電力消
費も電磁駆動方式などと比較して小さくなる。
Furthermore, since the piezoelectric element is used, not only the structure of the driving part becomes simple, but also the structure of the drive circuit becomes simple. Furthermore, power consumption is also lower compared to electromagnetic drive systems.

第5図は本発明の第二の実施例を示す要部構成平面図で
、第一の実施例との相違は2つの駆動用圧電素子71.
72を管路の両端近辺に取りつけて、同一駆動電圧c1
で励振させたところにある。
FIG. 5 is a plan view showing a main part configuration of a second embodiment of the present invention, which differs from the first embodiment in two driving piezoelectric elements 71.
72 near both ends of the conduit, and the same driving voltage c1
This is where it is excited.

このように構成することによシ、励振による振動モード
中に偶数次高調波を含まないようにすることができ、振
動の安定性が向上する。
With this configuration, it is possible to prevent even-order harmonics from being included in the vibration mode due to excitation, and the stability of vibration is improved.

また駆動用圧電素子71.72及び検出用圧電素子65
、64を左右対称の位置に取シつけたことによシ、駆!
11用圧電素子71.72から主に管路部分を直接伝わ
ってノイズとなる弾性波成分は2つの検出用圧電素子6
5.64に同じように加わるので、位相差検出回路8に
おいて互いにキャンセルでき、位相差出力の安定性を内
子させる。
In addition, drive piezoelectric elements 71 and 72 and detection piezoelectric elements 65
, 64 was installed in a symmetrical position.
The elastic wave components that mainly propagate directly through the conduit section from the piezoelectric elements 71 and 72 for noise and become noise are transferred to the two piezoelectric elements 6 for detection.
5.64 in the same way, they can cancel each other out in the phase difference detection circuit 8, thereby improving the stability of the phase difference output.

第6図は本発明の第三の実施例を示す要部構成平面図で
、第二の実施例との相違は検出用圧電素子65.66を
追加して検出用圧電素子65.64と管路中心軸に関し
て対称の位置に取りつけた点にある。
FIG. 6 is a plan view showing the main part configuration of the third embodiment of the present invention, and the difference from the second embodiment is that piezoelectric detection elements 65 and 66 are added, and the piezoelectric detection elements 65 and 64 and tubes are It is located at a symmetrical position with respect to the central axis of the road.

互いに管路1をはさ6−関係にある検出用圧電素子63
と65.64と66の出力の差(1!2−e4及びe5
− e5 )を引算B a+、 82において求めるこ
とによシ、流体による内圧変動やポンプ等により管路を
伝わる弾性波などの同相ノイズを除去し、逆相成分であ
る信号成分について出力を2倍に増やすことができるO ′!g7図は本発明の第四の実施例を示す要部構成・肌 平面図で、第8図はA〜五線に沿う断面図である。
Detection piezoelectric elements 63 in a relationship with each other across the pipe line 1
and 65. The difference between the outputs of 64 and 66 (1!2 - e4 and e5
- e5) by subtracting B a+, 82, removes in-phase noise such as internal pressure fluctuations due to fluid and elastic waves transmitted through pipes due to pumps, etc., and outputs 2 for signal components that are anti-phase components. O' that can be doubled! Fig. g7 is a plan view showing the main part structure and skin of the fourth embodiment of the present invention, and Fig. 8 is a sectional view taken along the line A to staff.

第二の実施例との相違は、検出用圧電素子67、68を
駆動用圧電素子と検出用圧電素子の中間の管路表面に取
りつけた点にある。即ち、検出用圧電素のみが含まれる
ので、これを引算器81.82において検出用圧電素子
65.64の出力e2+ 115からそれぞれ差し引く
ことによシ、同相ノイズを除去した検出出力を得ること
ができる。
The difference from the second embodiment is that detection piezoelectric elements 67 and 68 are attached to the pipe surface between the drive piezoelectric element and the detection piezoelectric element. That is, since only the piezoelectric element for detection is included, by subtracting this from the output e2+115 of the piezoelectric element for detection 65, 64 in the subtracters 81 and 82, respectively, a detection output with common mode noise removed can be obtained. I can do it.

なお上記各実施例は管路形状が直管の場合であるが、こ
れに限らず、第1図のU字管やその他の形状の管路にも
同様に適用できる。
Although each of the above-mentioned embodiments deals with the case where the conduit shape is a straight pipe, the present invention is not limited to this, and can be similarly applied to the U-shaped pipe shown in FIG. 1 and other shapes of conduits.

以上述べたように、本発明によれば構成が簡単で電力消
費の少ない質p流量計を実現できる。
As described above, according to the present invention, it is possible to realize a high-quality flowmeter with a simple configuration and low power consumption.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はコリオリ流量計の動作原理図、第2図(A) 
(B)は第1図の動作説明図、第5図は本発明の一実施
例の要部構成平面図、第4図は第3図の動作説明図、第
5図は本発明の第二の実施例の要部構成平面図、第6図
は本発明の第三の実施例の要部構成平面図、第7図は本
発明の第四の実施例の要♂ 部構成平面図、第8は第7図におけるA−^断面図であ
る。 1・・・管路、7.71.72・・・駆動用圧電素子、
As、44゜65、66、67.68・・・検出用圧電
素子、e2+ 63+ 64+ 65+66、 e7・
・・検出用圧電素子の出力信号。 代理人   弁理士  小 洪 ffl  助\°゛・
パ( 1 宅 1 哨 第 zcI (A〕 (B) 気 J 劉 篤 4 q
Figure 1 is a diagram of the operating principle of a Coriolis flowmeter, Figure 2 (A)
(B) is an explanatory diagram of the operation of FIG. 1, FIG. 5 is a plan view of the main part configuration of an embodiment of the present invention, FIG. 4 is an explanatory diagram of the operation of FIG. 3, and FIG. 5 is a diagram of the second embodiment of the present invention. FIG. 6 is a plan view of the main part structure of the third embodiment of the present invention, and FIG. 7 is a plan view of the main part structure of the fourth embodiment of the present invention. 8 is a sectional view taken along line A-^ in FIG. 1... Pipeline, 7.71.72... Drive piezoelectric element,
As, 44°65, 66, 67.68...Piezoelectric element for detection, e2+ 63+ 64+ 65+66, e7・
...Output signal of piezoelectric element for detection. Agent Patent Attorney Ko Hung ffl \°゛・
Pa (1 house 1 guard zcI (A) (B) Qi J Liu Atsushi 4 q

Claims (1)

【特許請求の範囲】 管路を変形振動する構成の質重R1l計において、前記
管路を励振する駆動手段と、この管路の振動を検出する
振動検出手段とを備え、前記駆動手段として前記管路に
取9つゆだ圧電素子を用いたことを特徴とする質量ii
i計。 (2)振動検出手段として管路に増りっけた圧電素子を
用いた特許請求の範囲881項記載の質量流量計。 (5)  振動検出手段として管路の軸方向に沿った同
一位置の外周上に取りつけた2個の圧電素子を用いると
ともに1これら2個の圧電素子の出力信号からの差信号
を利用する特許請求の範囲@2]jN記載の質m流量計
[Scope of Claims] A weight R1l meter configured to deform and vibrate a pipe line, comprising a drive means for exciting the pipe line, and a vibration detection means for detecting vibration of the pipe line, and as the drive means, the A mass ii characterized in that a piezoelectric element is used in the conduit.
i total. (2) A mass flowmeter according to claim 881, which uses a piezoelectric element installed in the pipe as the vibration detection means. (5) A patent claim that uses two piezoelectric elements mounted on the outer periphery of the same position along the axial direction of the pipe as a vibration detection means, and uses a difference signal between the output signals of these two piezoelectric elements. range @2]jN quality m flowmeter.
JP7403982A 1982-04-30 1982-04-30 Mass flowmeter Pending JPS58206926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7403982A JPS58206926A (en) 1982-04-30 1982-04-30 Mass flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7403982A JPS58206926A (en) 1982-04-30 1982-04-30 Mass flowmeter

Publications (1)

Publication Number Publication Date
JPS58206926A true JPS58206926A (en) 1983-12-02

Family

ID=13535617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7403982A Pending JPS58206926A (en) 1982-04-30 1982-04-30 Mass flowmeter

Country Status (1)

Country Link
JP (1) JPS58206926A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0316908A2 (en) * 1987-11-20 1989-05-24 Endress + Hauser Flowtec AG Process for the measurement of mass flow rate using the Coriolis principle and mass flow rate measuring apparatus using the Coriolis principle
EP0329700A1 (en) * 1986-10-28 1989-08-30 Foxboro Co Coriolis-type mass flowmeter.
US5321991A (en) * 1991-08-01 1994-06-21 Micro Motion Incorporated Coriolis effect mass flowmeter
US5343764A (en) * 1986-10-28 1994-09-06 The Foxboro Company Coriolis-type mass flowmeter
JP2008064494A (en) * 2006-09-05 2008-03-21 Tsurumi Seiki:Kk Water leak determination device and method, and pressure wave sensor
JP2008268227A (en) * 1998-12-08 2008-11-06 Emerson Electric Co Coriolis mass flow sensor
JP2009300462A (en) * 2000-08-18 2009-12-24 Emerson Electric Co Coriolis mass flow sensor
WO2024096040A1 (en) * 2022-11-04 2024-05-10 株式会社AlphiTechnology Coriolis mass flowmeter

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0329700A1 (en) * 1986-10-28 1989-08-30 Foxboro Co Coriolis-type mass flowmeter.
US5343764A (en) * 1986-10-28 1994-09-06 The Foxboro Company Coriolis-type mass flowmeter
EP0329700B1 (en) * 1986-10-28 1996-06-12 The Foxboro Company Coriolis-type mass flowmeter
EP0316908A2 (en) * 1987-11-20 1989-05-24 Endress + Hauser Flowtec AG Process for the measurement of mass flow rate using the Coriolis principle and mass flow rate measuring apparatus using the Coriolis principle
US4949583A (en) * 1987-11-20 1990-08-21 Flowtec Ag Method of mass flow measurement by the coriolis principle and mass flow meter operating by the coriolis principle
US5321991A (en) * 1991-08-01 1994-06-21 Micro Motion Incorporated Coriolis effect mass flowmeter
JP2008268227A (en) * 1998-12-08 2008-11-06 Emerson Electric Co Coriolis mass flow sensor
JP2009300462A (en) * 2000-08-18 2009-12-24 Emerson Electric Co Coriolis mass flow sensor
EP1182433B1 (en) * 2000-08-18 2019-01-23 Emerson Electric Co. Coriolis mass flow sensor
JP2008064494A (en) * 2006-09-05 2008-03-21 Tsurumi Seiki:Kk Water leak determination device and method, and pressure wave sensor
WO2024096040A1 (en) * 2022-11-04 2024-05-10 株式会社AlphiTechnology Coriolis mass flowmeter

Similar Documents

Publication Publication Date Title
US4934195A (en) Coriolis mass flowmeter
US6401548B1 (en) Coriolis mass flow/density sensor
JP2654341B2 (en) Mass flow meter based on Coriolis principle
KR100453257B1 (en) Method and apparatus for a coriolis flowmeter having its flow calibration factor independent of material density
JP3476781B2 (en) Coriolis mass flow / density sensor with only one curved measuring tube
JPS58206926A (en) Mass flowmeter
JP2850556B2 (en) Coriolis mass flowmeter
JP2012510072A (en) Method and apparatus for vibrating a flow tube of a vibratory flow meter
JP4015852B2 (en) Method and apparatus for Coriolis flowmeter with balance bar to increase accuracy
JPS58178217A (en) Mass flowmeter
JPS61283827A (en) Mass flowmeter
JPS58153121A (en) Mass flowmeter
JPS58117416A (en) Flowmeter
JPS58123429A (en) Mass flowmeter
JPH03199922A (en) Coriolis mass flowmeter
RU2037782C1 (en) Method and device for measuring mass flow rate of fluid
JP2014006230A (en) Coriolis flowmeter
JPS58120122A (en) Mass flowmeter
JP2000046617A (en) Coriolis mass flowmeter
JP6161644B2 (en) Method and apparatus for vibrating a flow tube of a vibratory flow meter
JPH08122120A (en) Coriolis mass flowmeter
JP2012026775A (en) Coriolis-type mass flowmeter
JPH05164588A (en) Coriolis massflow meter
JPS6148722A (en) Mass flow meter
JPH05157605A (en) Coriolis mass flowmeter