JPS58206465A - Hydrostatical steering gear with cylinder slide member in cylinder valve sleeve - Google Patents

Hydrostatical steering gear with cylinder slide member in cylinder valve sleeve

Info

Publication number
JPS58206465A
JPS58206465A JP7421083A JP7421083A JPS58206465A JP S58206465 A JPS58206465 A JP S58206465A JP 7421083 A JP7421083 A JP 7421083A JP 7421083 A JP7421083 A JP 7421083A JP S58206465 A JPS58206465 A JP S58206465A
Authority
JP
Japan
Prior art keywords
drive shaft
cylindrical
slide member
spool valve
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7421083A
Other languages
Japanese (ja)
Inventor
ホリス・ニユ−コ−ム・ホワイト・ジユニア
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WHITE HOLLIS NEWCOMB JUN
Original Assignee
WHITE HOLLIS NEWCOMB JUN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WHITE HOLLIS NEWCOMB JUN filed Critical WHITE HOLLIS NEWCOMB JUN
Publication of JPS58206465A publication Critical patent/JPS58206465A/en
Priority to US06/608,982 priority Critical patent/US4567455A/en
Priority to EP84303303A priority patent/EP0128676B1/en
Pending legal-status Critical Current

Links

Landscapes

  • Power Steering Mechanism (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明はラモン・エル・ボッ及びホリス・エヌ・ホワ
イト、ジュニアに1969年7月1日に許可された米国
特許第3452543号の改良装置に関する。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to an improved device of US Pat. No. 3,452,543, issued July 1, 1969 to Ramon El Bot and Hollis N. White, Jr.

この早期の方の特許は入力駆動軸とスプール弁間の直接
駆動接続部をもっていた。この発明はスプール弁の内側
に密接な円筒スライド部材を有し、該スーツイト部材は
スプール弁に対し回転自在で入力駆動軸はスライド部材
に直接連結されている。
This earlier patent had a direct drive connection between the input drive shaft and the spool valve. The invention has a cylindrical slide member in close contact with the inside of the spool valve, the suit member is rotatable relative to the spool valve, and the input drive shaft is directly connected to the slide member.

この発明のし」的は流体静力学的舵取装置の構造と作動
を簡単ムこすることにある。
The purpose of this invention is to simplify the structure and operation of hydrostatic steering devices.

この発明の目的は流体静力学的舵取装置の運動部品の数
を減らすことにある。
The purpose of the invention is to reduce the number of moving parts in a hydrostatic steering system.

この発明の目的は流体静力学的舵取装置の構造を強化す
ることにある。
The object of the invention is to strengthen the structure of a hydrostatic steering device.

この発明の目的は流体静力学的舵取装置をつくる製作作
業Q)数を減らし作業を筒中にすることにある。
The object of the invention is to reduce the number of manufacturing operations Q) for producing a hydrostatic steering device and to integrate the operations into one cylinder.

この発明の目的は流体静力学的舵取装置における油圧流
体の通路を絶えず変えることにある。
The object of the invention is to constantly change the path of hydraulic fluid in a hydrostatic steering system.

これはこの装置の運動部品を冷却し潤滑する。This cools and lubricates the moving parts of the device.

こ−の発明の1−1的は流体静力学的舵取装置の物理的
大きさを鍼らすことにある。
An object of this invention is to reduce the physical size of the hydrostatic steering device.

この発明の他の目的と利点は添付図面と説明から明白と
な7)うがその本質的な特徴は添付特許請求の範囲C,
,:述べである。
Other objects and advantages of the present invention will become apparent from the accompanying drawings and description.
, :It is a statement.

力学的舵取装置はハウジング60を有し該ハウジングの
一端部に連続して摩耗板61、ジェロータセット62、
マニホルド63と端キャンプ64が締付けられている。
The mechanical steering device has a housing 60, and one end of the housing includes a wear plate 61, a gerotor set 62,
Manifold 63 and end camp 64 are tightened.

これらの部品は第2図に示すようにポルト65により一
緒に保持されるが、該ボルトはこれら部品をすべて貫通
し、それらを第1乃至第4図に示す如くしっかりと組立
てて保持している。
These parts are held together by bolts 65 as shown in Figure 2, which pass through all of these parts and hold them firmly assembled as shown in Figures 1-4. .

流体静力学的舵取装置はハウジング60の中心における
円筒形内径に対し軸線方向に動く総体的に円筒形のスリ
ーブ又はスプール弁32を含む。僅少なすきま、好まし
くは約0.05mmと0.5+an+ (0,002吋
と0.020吋)の間のすきまでこのスプール弁の内側
にスライド部材33がしまり嵌めされ、スリーブ・スプ
ール弁32の内側で回転自在になっている。これら二部
品は一緒に軸線方向に動くように配置されるがそれはス
リーブ弁の一端部における半径方向外方に向う突起32
aとスライド部材の外端部における止め輪34に5より
行われ、止め輪34にはスリーブ弁が当接する。スライ
ド部材内にはハウジング60に振動しうるように取付け
られる駆動軸35があり止め輪36によりハウジング6
0に対し軸線運動をしないように取付けられている。駆
動軸35の軸線方向にねじり棒37があり、一端部でピ
ン38により駆動軸に固定され、他端部で揺動棒40と
のピボント接続部39をもち、揺動棒40はスライド部
材33とのスプライン接続部40aとジェロータセット
62の回転子部材72とのスプライン接続部40bとを
もつ。このねしり棒は駆動軸35に対し円周方向に一定
量だけねじることができ、駆動軸が固定されると揺動棒
と連結した他端部は後述の如く少量だけ振動させられる
ことになる。
The hydrostatic steering device includes a generally cylindrical sleeve or spool valve 32 that moves axially relative to a cylindrical inner diameter at the center of the housing 60. The slide member 33 is tightly fitted inside the spool valve with a slight clearance, preferably between about 0.05 mm and 0.5+an+ (0.002 inch and 0.020 inch), and the sleeve spool valve 32 is tightly fitted. It can be rotated freely on the inside. These two parts are arranged for axial movement together, except for the radially outwardly directed protrusion 32 at one end of the sleeve valve.
a and a retaining ring 34 at the outer end of the slide member 5, and a sleeve valve abuts against the retaining ring 34. Inside the slide member is a drive shaft 35 which is attached to the housing 60 so that it can vibrate.
It is installed so that there is no axial movement with respect to zero. There is a torsion rod 37 in the axial direction of the drive shaft 35, which is fixed to the drive shaft by a pin 38 at one end and has a pivot connection 39 with a swinging rod 40 at the other end, and the swinging rod 40 is connected to the slide member 33. and a spline connection portion 40b to the rotor member 72 of the gerotor set 62. This torsion rod can be twisted by a certain amount in the circumferential direction with respect to the drive shaft 35, and when the drive shaft is fixed, the other end connected to the swing rod will be vibrated by a small amount as described later. .

駆動軸35とスライド部材33間の接続部は第5図に明
示されている。駆動軸上には多数の半径方向内方番こ延
びる突起35aがあるが、かかる四つの突起は90’に
隔置されて示され、スライド部材の四部に係合している
。これらの凹部は突起35aが第5図に示す中立位置か
ら各方向に約15°動き得るような範囲に円周方向にわ
たっており、その振動運動後、突起35aは凹部33a
のいずれかの端部で肩33bの一つを打つことになる。
The connection between the drive shaft 35 and the slide member 33 is clearly shown in FIG. There are a number of radially inwardly extending projections 35a on the drive shaft, four of which are shown spaced apart at 90' and engage four portions of the slide member. These recesses extend circumferentially over a range such that the protrusion 35a can move approximately 15° in each direction from the neutral position shown in FIG.
will strike one of the shoulders 33b at either end.

駆動軸35の振動がスライド部材33とスリーブ弁32
との軸線方向運動を起すようにする手段が設けられる。
Vibration of the drive shaft 35 causes damage to the slide member 33 and the sleeve valve 32.
Means are provided for causing axial movement with.

この構造は第3A図に示す如く駆動軸35とスライド部
材330適当な凹部内に担持される多数の玉41を含む
。これらの玉は駆動軸35が担持する短い蝦旋溝42に
半径方向内方で係合する。玉は外側で止め輪43により
半径方向に動かないように保持され水平方向でスライド
部材の突起32aと当接する。
This structure includes a drive shaft 35 and a slide member 330, as shown in FIG. 3A, and a number of balls 41 carried within appropriate recesses. These balls engage radially inwardly in short helical grooves 42 carried by the drive shaft 35. The ball is held on the outside by a retaining ring 43 so as not to move in the radial direction, and comes into contact with the protrusion 32a of the slide member in the horizontal direction.

従って、44で装着される部材による駆動軸35の振動
は第1図に示す中立位置からいずれかの方向にスリーブ
弁32とスライド部材33の軸線方向運動を少量だけ起
すことになる。操縦可能車輌の右旋回を起すような位置
は第3図に示す。操縦可能車輌の左旋回を起すような位
置は第4図に示す。
Therefore, vibration of drive shaft 35 due to the member mounted at 44 will cause a small amount of axial movement of sleeve valve 32 and slide member 33 in either direction from the neutral position shown in FIG. The position where the steerable vehicle makes a right turn is shown in Figure 3. The position where a left turn of the steerable vehicle occurs is shown in Figure 4.

密封リング15は、46においてハウジング60にねし
込まれ、ハウジングと駆動軸35の間にしまり嵌めされ
る。シール47はリング45とハウジング60間に設け
られ、もう−っのシール48は軸線35とリング45間
に設けられる。
The sealing ring 15 is screwed into the housing 60 at 46 and is a tight fit between the housing and the drive shaft 35. A seal 47 is provided between the ring 45 and the housing 60, and another seal 48 is provided between the axis 35 and the ring 45.

スラスト軸受49はリング50と51間に設けられ第3
図に示す如く右方に向う一切のスラストを吸収する。
The thrust bearing 49 is provided between the rings 50 and 51 and the third
It absorbs any thrust to the right as shown in the figure.

多数の凹部か駆動軸35の軸線に平行でスリーブ弁32
に密接し、それに開口して一列にハウジング60内に設
けられる。これらの凹部は第1、第3及び第4図で左か
ら右に連続してPl、R1、R2、Ml、C1、R2と
C2として表示されている。
A large number of recesses are parallel to the axis of the drive shaft 35 and the sleeve valve 32
The housing 60 is provided in close contact with the housing 60 in a line with openings thereto. These recesses are labeled Pl, R1, R2, Ml, C1, R2 and C2 in succession from left to right in FIGS. 1, 3 and 4.

ハウジング60の頂部に第2図に示す如く四つの開口5
2.53.54と55がある。第3図に示す如く、開口
53はまたRとして表示され53aで示す如く凹部R1
ト開口する。これは第3図において概略点とダッシュの
線で示されている。また、第3図の52aで点線で示さ
れる如く、開口52は凹部P1に開口する。開口55は
55aで点とダッシュの線で概略I示される通り凹部C
2に開口する。同様に、開口54は54aで点線で示さ
れるように四部c1に開口する。凹部M1は半径方向外
方に開口し、摩耗板61の通路57と通路56を介して
連通ずる。第3及び第4図に示す如くスリーブ弁32と
スライド部材33の左端部における中央中空開口は摩耗
板61の中央開口58と連通し、図面ではまたM2と表
示されている。
There are four openings 5 at the top of the housing 60 as shown in FIG.
There are 2.53, 54 and 55. As shown in FIG. 3, the opening 53 is also designated as R and has a recess R1 as shown at 53a.
Open the door. This is indicated schematically by the dot and dash lines in FIG. Further, as indicated by the dotted line 52a in FIG. 3, the opening 52 opens into the recess P1. The opening 55 is 55a and has a recess C as shown schematically by the dotted and dashed line I.
Opens at 2. Similarly, the opening 54 opens into the fourth section c1 as indicated by the dotted line at 54a. The recess M1 opens radially outward and communicates with the passage 57 of the wear plate 61 via the passage 56. As shown in FIGS. 3 and 4, a central hollow opening at the left end of sleeve valve 32 and slide member 33 communicates with central opening 58 of wear plate 61, also designated M2 in the figures.

凹部R1とR2は第3図に概略l示される通路5°9a
によりハウジング60を介して接続される。
Recesses R1 and R2 form passages 5°9a as schematically shown in FIG.
are connected via the housing 60.

この発明のジェロータ歯車セントと常用通路は第5、第
6、第7及び第8図に示す。第3図は軸受とシールを図
面の簡略化のため省略した実施例の中央断面図であ□る
The gerotor gear center and common passageways of this invention are shown in FIGS. 5, 6, 7, and 8. FIG. 3 is a central cross-sectional view of the embodiment in which the bearing and seal are omitted for the sake of simplification of the drawing.

摩耗板61は揺動棒40の必要運動を可能にし同時に流
体用取入通路M2の部分を形成する円形開口61.」を
もつ。
The wear plate 61 has a circular opening 61. which allows the necessary movement of the rocker rod 40 and at the same time forms part of the intake passage M2 for the fluid. ”.

ジェロータ62は第6図に明示されている。Gerotor 62 is clearly shown in FIG.

それは多数の内部に延びる歯62aをも−っ固定子62
を含み、各歯はその頂点に円筒ピン62bを含む。回転
f’72は外部に延びる多数の歯72aをもつのが示さ
れているが、歯72aは内部に延びる歯62aと嵌合し
て共働する形をもち、これらの外歯は前述の内歯より一
枚だけ数が少ない。同転子は軸線Eをもち、該軸線Eは
固定子の軸線Fに対して偏心しており、点EとFを通る
線(、は本文では偏心線として指示される。回転子は流
体用取入通路の部分をなす総体的に環状のリング73を
備えている。この通路は軸線Eと同心である。環状リン
グ73の内側にはこれも汁た同心の円形間ロア4があり
回転流体圧力装置から流体M1を排出する。六つの開r
185は油圧流体の内向流のためにある。
The stator 62 also has a number of internally extending teeth 62a.
, and each tooth includes a cylindrical pin 62b at its apex. Rotation f'72 is shown having a number of outwardly extending teeth 72a, which teeth 72a are shaped to mate and cooperate with internally extending teeth 62a, and these external teeth are similar to the internal teeth described above. There are only one fewer tooth. The rotor has an axis E, which is eccentric to the stator axis F, and a line passing through points E and F (, is designated in the text as the eccentric line). It has a generally annular ring 73 forming part of the entry passageway, which is concentric with the axis E. Inside the annular ring 73 there is a concentric circular lower ring 4 which is also connected to the rotating fluid pressure. Discharge fluid M1 from the device. Six openings
185 is for inward flow of hydraulic fluid.

今、第6、第7及び第8図についていえば、第8図はシ
ュ11−タ構造62.72に向うマニホルドの面を示す
。中央には排出間ロア5があり、排出開口と連通ずる。
Turning now to Figures 6, 7 and 8, Figure 8 shows the side of the manifold facing the shutter structure 62,72. There is a discharge lower part 5 in the center, which communicates with the discharge opening.

次の円と同心円に七つの回転子連通開口アロがある。こ
れらの関口はこの装置が作動するにつれて選択的にMl
又はM2と連通ずる。外方の同心円には七つの通路閉ロ
ア7があり、該開口は円周方向に小室80と共働し、該
小室80は第6図に示す如く回転子と固定子間の様子を
変える時に形成される。
There are seven rotor communication openings in a circle concentric with the next circle. These checkpoints selectively release Ml as the device operates.
Or communicate with M2. In the outer concentric circle there are seven closed passage lowers 7, the openings of which cooperate with chambers 80 in the circumferential direction, which chambers 80, as shown in FIG. It is formed.

第7図は端キャップ64に向うマニホルド63の面を示
す。これは通路78により開ロア7の一つに夫々接続さ
れる通し通路76を示す。
FIG. 7 shows the side of manifold 63 facing end cap 64. FIG. This shows through passages 76 each connected to one of the open lowers 7 by a passage 78.

これらの部品の共働は81で第6図の点とダッシュの線
にて示されている。これは第6図の頂部で小室80aと
共働する位置に開ロア7の一つを示し、これは開口アロ
の一つと、ここでは概略で示される通路78を通して共
働し、該開口は円のまわりを約2丁位置だけ巡るという
ことができる。金環状リング73において半径方向外方
に向う開ロア3aが連通通路76と共働する法が判明し
よう。六つの形成体73aがあり夫々中央の半径方向最
外方部分73bを含み、該部分73bは実質的に円周方
向に延び、この最外部分の各端部に半径方向で円周方向
内方にp!4斜する部分73dがある。各通路76は本
文では二重台形断面をもつものとして説明さと連通して
いる時に78の接続部により76で点ダッシュ線で示さ
れる接続部の他端部は、流体が関連取入ポケット76か
ら移される前に小室80aに関係する排出ポケットが遮
断される方法を示す。令兄られるように環状リング73
の各部分73,1の形状は二重台形通路76の半径方向
外縁部とかなり良くつり合う。
The cooperation of these parts is indicated at 81 by the dot and dash lines in FIG. This shows one of the opening lowers 7 in a position cooperating with the chamber 80a at the top of FIG. It can be said that it goes around only about 2 positions. It will be seen how the radially outwardly opening lower portion 3a of the annular ring 73 cooperates with the communication passage 76. There are six formations 73a, each including a central radially outermost portion 73b extending substantially circumferentially and having a radially inwardly circumferentially extending portion 73b at each end of the outermost portion. ni p! There is a four-slanted portion 73d. Each passageway 76 is described in the text as having a double trapezoidal cross-section, and the other end of the connection shown in dotted dashed lines at 76 allows fluid to flow from the associated intake pocket 76 by a connection at 78. It shows how the drainage pocket associated with chamber 80a is blocked off before being transferred. Annular ring 73 to make it older
The shape of each portion 73,1 is fairly balanced with the radial outer edge of the double trapezoidal passage 76.

第6−8図のジェロータ装置が作動する方法が今明白と
なる筈である。この装置は第4図の流体静力学的舵取装
置の環境内で説明されている。(スリーブ弁32の軸線
方向位置により左旋回が示されている)。高圧流体がf
iPlから走行しMlと回転子72の円形間ロア4を加
圧する。回転子72の位置によりこの円形間ロア4はジ
ェロータ装置の幾つかの小室80に通ずる回転子連通開
口アロと連通する。回転子72の偏心配置により一定の
他の小室80は環状リング73と連通ずる。高圧流体に
より小室80は膨張され、回転子72は第6図の矢印方
向に回転し始める。この回転は他の小室80の収縮を強
制する。これらの他の小室80は環状リング73と連通
ずるので出力流体は環状リング73、通路57を通って
MlそれからMlからC1に移行する。
It should now be clear how the gerotor apparatus of Figures 6-8 operates. This device is illustrated within the context of a hydrostatic steering system in FIG. (Left-hand rotation is indicated by the axial position of sleeve valve 32). High pressure fluid is f
It runs from iPl and pressurizes Ml and the circular lower part 4 of the rotor 72. The position of the rotor 72 allows this intercircular lower 4 to communicate with rotor communication openings 4 that lead to several chambers 80 of the gerotor apparatus. Due to the eccentric arrangement of the rotor 72, certain other chambers 80 communicate with the annular ring 73. The small chamber 80 is expanded by the high pressure fluid, and the rotor 72 begins to rotate in the direction of the arrow in FIG. This rotation forces the other chambers 80 to contract. These other chambers 80 communicate with the annular ring 73 so that the output fluid passes through the annular ring 73, passage 57 to Ml and then from Ml to C1.

第9図においては、この発明の流体静力学的舵取装置を
操縦可能車輌に接続する方法を示す概略図が示されてい
る。第9図に示す圧力流体装置は第1乃至第4図に関係
して本文で説明され、第9図において参照数字15で指
示される流体静力学的装置15である。動力で駆動され
るポンプは油圧流体27の関連溜めと共に17で示され
ている。複動シリシダ18は車輌の舵取のため、ピスト
ン21とピストン棒19及び20をシリンダの反対端部
にもつものが示され、該反対端部はΦ輌の左右舵取機構
に連結されるようになっている。作動の際、動力により
駆動されるポンプ17はハウジング60内の開口52と
なる開口Pに管22により連通する高圧連結部24をも
つ。ハウジング60内では開口53となる帰り口Rはポ
ンプ溜めに戻る低圧吐出口27に、管23により接続し
返される。ハウジング60内の開1’j C1または5
4は管28によりシリンダ18の端部30に接続される
。ノ\ウジング60内の開目C2または55は管29に
よりシリンダ18の端部31に接続される。舵取率32
は軸33をもち該軸33は流体静力学的舵取装置の駆動
軸35に連結されるので右旋回をするためには、流体静
力学的舵取装置の部品は第3図に示す位置まで動かされ
るか、もしくは左旋回するために、それらは第4図に示
す部品の位置に動かされる。
In FIG. 9, a schematic diagram is shown illustrating how the hydrostatic steering system of the invention is connected to a steerable vehicle. The pressure fluid device shown in FIG. 9 is the hydrostatic device 15 described herein in connection with FIGS. 1-4 and designated by the reference numeral 15 in FIG. A power driven pump is shown at 17 with an associated reservoir of hydraulic fluid 27. The double-acting cylinder 18 is shown having a piston 21 and piston rods 19 and 20 at opposite ends of the cylinder for steering the vehicle, and the opposite ends are connected to the left and right steering mechanism of the Φ vehicle. It has become. In operation, the power-driven pump 17 has a high pressure connection 24 communicating by a tube 22 to an opening P, which becomes an opening 52 in the housing 60. The return R, which in the housing 60 becomes the opening 53, is connected back by the pipe 23 to the low pressure outlet 27 which returns to the pump reservoir. Opening 1'j C1 or 5 in housing 60
4 is connected to the end 30 of the cylinder 18 by a tube 28. The opening C2 or 55 in the housing 60 is connected to the end 31 of the cylinder 18 by a tube 29. Steering ratio 32
has a shaft 33 which is connected to the drive shaft 35 of the hydrostatic steering system so that in order to make a right turn, the parts of the hydrostatic steering system are in the position shown in FIG. In order to be moved up or turn left, they are moved into the position of the parts shown in FIG.

この発明の説明は62.72に設定された特定ジェロー
タを含むが理解する必要があることは、任意の適当なジ
ェロータ・セントがこの発明に使用でき、それで、第6
図に関係して説明した通り偏心線の一方側で大きさを増
す一連の室と偏心線の反対側で大きさを減らす他の一連
の室とをつくるものが使用できることである。
Although the description of this invention includes a specific gerotor set to 62.72, it should be understood that any suitable gerotor cent can be used with this invention, so
As explained in connection with the figures, a series of chambers increasing in size on one side of the eccentric and another series of decreasing in size on the opposite side of the eccentric can be used.

第1図に示す中立位置における部品の配置で認められる
ように、凹部PlとP2は凹部RIと連通し、流体静力
学的位置の作用は何等起らない。
As can be seen in the arrangement of the parts in the neutral position shown in FIG. 1, the recesses Pl and P2 communicate with the recess RI and no hydrostatic position effects occur.

右旋回をなすための部品の位置においては第3図に見る
如く、駆動軸35は振動してそれにより玉41はスリー
ブ弁32とスライド部材33とを第3図に示す位置に動
かず。この位置で、凹部P2は凹部Mlと連通し、凹部
M1は第7及び第8図に示す如く環状リング73と一定
のマニホルド通路76.78と77を介してジェロータ
装置の一定の小室80に連通ずると共に、第7及び第8
図に見る如く、円形間ロア4は他のマニホルド通路77
.78と76を介して他の小室80とMlから連通し、
該小室80とM2はピストン18を介して凹部C1と連
通しそれはまた凹部1ン2と連通し、従ってポンプ溜め
に戻る。それから車輌が右方に旋回する時にジェロータ
セノ;は中立位置に戻り、駆動軸35は第1図の中1”
11位置に戻る。
In the position of the parts for making a clockwise turn, as shown in FIG. 3, the drive shaft 35 vibrates, so that the ball 41 does not move the sleeve valve 32 and slide member 33 to the position shown in FIG. In this position, recess P2 communicates with recess M1, which in turn communicates with a chamber 80 of the gerotor apparatus via annular ring 73 and a manifold passageway 76, 78 and 77, as shown in FIGS. As well as the 7th and 8th
As shown in the figure, the intercircular lower 4 is connected to another manifold passage 77.
.. communicates with another chamber 80 and Ml via 78 and 76;
The chambers 80 and M2 communicate via the piston 18 with the recess C1, which in turn communicates with the recess 1-2 and thus returns to the pump reservoir. Then, when the vehicle turns to the right, the Gerotasen's wheel returns to the neutral position, and the drive shaft 35 is 1" in FIG. 1.
Return to position 11.

左方旋回の場合、舵取率は第3図に関係して起った方向
とは反対の方向に駆動軸35の振動を起こす方向ムこ廻
され、玉41が部材32と33を第4図で見て右方に駆
動するようにする。部品のこの位置、り、凹部PlはM
2に開口し、M2は円形間「]74と一定のマニホルド
″通路76.78と77を介して一定の小室80 (第
7及び第8図)に連通し、同時に他の小室80の一つが
他のマニホルド通路77.78と76と環状リングMl
とを介して凹部C1に連通し、ピストン18を介り、C
凹部C2にまた第4図に見る如く凹部R26,Z連通し
、凹部R2は油圧流体をポンプ溜めに戻す。こ、の時、
車輌が指示された旋回を行うのに′ノれジ1エロータセ
ノトは中立位置に向って戻り油圧流体静力学的舵取装置
の部品は第1図の位置に戻る。
In the case of a left turn, the steering factor is turned in a direction that causes vibrations of the drive shaft 35 in the opposite direction to that which occurred in connection with FIG. Make sure to drive it to the right as seen in the diagram. At this position of the part, the recess Pl is M
2, M2 communicates with a chamber 80 (FIGS. 7 and 8) via a circular interspace " ] 74 and a manifold" passages 76, 78 and 77, while at the same time one of the other chambers 80 Other manifold passages 77, 78 and 76 and annular ring Ml
and communicates with the recess C1 via the piston 18, C
Recess C2 also communicates with recess R26, Z as shown in FIG. 4, which recess R2 returns hydraulic fluid to the pump reservoir. At this time,
When the vehicle makes a commanded turn, the steering wheel returns toward the neutral position and the components of the hydrostatic steering system return to the positions shown in FIG.

スプール弁32の階段溝Sはスプール弁32の周辺にお
いて360°未溝に延びる。この構造は第11図に示す
The stepped groove S of the spool valve 32 extends 360° around the spool valve 32. This structure is shown in FIG.

第27図は揺動棒弁が起動する第1図の流体静力学的舵
取装置の中央断面図である。この代替装置において、玉
4■は駆動軸118の真直溝117と係合するが、揺動
棒120のピン119はスライド部材122の溝121
に係合する。a121はピン119の中立位置のまわり
で斜めに傾斜している。m 121はこの斜めの部分の
両側では真直である。玉4】と真直4117との接続に
よりスライド部材122は駆動軸11Bと共に回転する
FIG. 27 is a center cross-sectional view of the hydrostatic steering system of FIG. 1 with rocker rod valve actuation. In this alternative device, the ball 4 engages with the straight groove 117 of the drive shaft 118, while the pin 119 of the rocker rod 120 engages with the groove 121 of the slide member 122.
engage with. a121 is obliquely inclined around the neutral position of pin 119. m 121 is straight on both sides of this diagonal section. Due to the connection between the ball 4] and the straight member 4117, the slide member 122 rotates together with the drive shaft 11B.

ピン119と/I!J121との接続はこの回転運動を
溝121の斜め部分に閉し込められたスライド部材12
2の軸線方向運動に変換する。その後ピン119と溝1
21との接続により揺動棒120がスライド部材122
と共に回転する。a121の斜め部分の傾斜と長さは所
望の舵取作用を起こすように選ばれる。
Pin 119 and /I! The connection with J121 is such that this rotational movement is controlled by the slide member 12 which is confined in the diagonal part of the groove 121.
2 into axial motion. Then pin 119 and groove 1
21, the swinging rod 120 moves to the slide member 122.
rotates with. The slope and length of the diagonal portion of a121 are selected to produce the desired steering action.

揺動棒弁起動装置は第1図の装置と作動J−は同じであ
る。
The rocking rod valve actuator is the same in operation as the device of FIG.

第12及び第13図は代替流体静力学的舵取装置に組込
まれるこの用途の発明を開示する。
Figures 12 and 13 disclose the invention for this application as incorporated into an alternative hydrostatic steering system.

この代替実施例はねしりシリンダ86と圧縮ばね87と
を使用し、第1図乃至第11図の流体静力学的舵取装置
のねしり棒37の代りとする。
This alternative embodiment uses a torsion cylinder 86 and a compression spring 87 to replace the torsion bar 37 of the hydrostatic steering system of FIGS. 1-11.

この代替実施例の場合、ねしりシリンダ86は駆動軸3
5.の揺動棒401の端部内に支承される。ねじりシリ
ンダ86と駆動軸35iは両刀共、溝穴をもっている。
In this alternative embodiment, the torsion cylinder 86 is connected to the drive shaft 3
5. is supported within the end of a swing rod 401. Both the torsion cylinder 86 and the drive shaft 35i have slots.

二つの圧縮ばね87はねしりノリニダ86と駆動軸35
1の溝穴内にある。圧縮はね87のまわりに二手板88
はこの代替ねしジノ接続部を自由に作動さゼる。°ねし
リンリンダと(6の端部は、駆動軸351を越して延び
る。わしリンリンダ86のこの端部は揺動棒40 i 
v)中央開口89内に延びる。ピン90はねしリーリン
グ86の端部を揺動棒401に連結して駆動するように
なっている。
The two compression springs 87 are connected to the spring roller 86 and the drive shaft 35.
It is in the slot of 1. A second hand plate 88 is placed around the compression spring 87.
This alternative connection can be operated freely. The end of the cylinder 86 extends beyond the drive shaft 351. This end of the cylinder 86
v) extending into the central opening 89; The pin 90 connects the end of the spring reel ring 86 to the swing rod 401 to drive it.

圧縮ばね8″、′は駆動軸35iと揺動棒40i間(ね
しりシリンダ86を介した)のねじり接′続部として作
用する。これらの部材は圧縮ばね87に対し相互に一定
量だけねしることができる。
The compression springs 8'',' act as a torsion connection between the drive shaft 35i and the rocker rod 40i (via the torsion cylinder 86). I can know.

この僅かな代替法により、第12図と第13図の代替実
施例は第1乃至第11図のねじり棒37の流体静力学的
舵取装置のような機能をもち、流体静力学的舵取装置の
他の部品は同じである。
With this slight alternative, the alternative embodiment of FIGS. 12 and 13 functions like the hydrostatic steering device of torsion bar 37 of FIGS. Other parts of the device are the same.

第14、第15及び第16図は代替流体静力学的舵取装
置を開示している。この代替装置は駆動軸と揺動棒間の
機械的駆動装置として強力ピン駆動リンク91を使用す
る。この代替装置はまた最初の装置のスライド部材33
とスプール弁32を組立て一体の弁付きスライド部材9
2にする。
Figures 14, 15 and 16 disclose an alternative hydrostatic steering system. This alternative device uses a strong pin drive link 91 as the mechanical drive between the drive shaft and the rocker rod. This alternative device also includes the slide member 33 of the first device.
and the spool valve 32 are assembled into an integral slide member 9 with a valve.
Make it 2.

この代替装置の場合、駆動軸35yは圧縮ばね87yを
直接包囲し直径を縮小した内端部93をもつ。総体的に
円筒形の駆動部材94は駆動軸35yの内端部93上に
支承されている。圧縮ばね87yは二つの溝穴95に嵌
合し、該溝穴は駆動部材1)4の内径に切込まれている
。これらのばねはこの装置におけるねじり接続部として
作用する。
In this alternative arrangement, the drive shaft 35y has a reduced diameter inner end 93 that directly surrounds the compression spring 87y. A generally cylindrical drive member 94 is supported on the inner end 93 of drive shaft 35y. The compression spring 87y fits into two slots 95, which are cut into the inner diameter of the drive member 1)4. These springs act as torsion connections in this device.

駆動部材94の一端部は駆動軸35yを越えて延びる。One end of the drive member 94 extends beyond the drive shaft 35y.

二つの溝穴96は駆動部材94のこの端部に形成されて
いる。強力ピンまたは歯(9,5mm (3/ 8)直
径)駆動リンク91は揺動棒97を貫通し、これらの溝
穴96はそれらの間の駆動接続部を形成する。
Two slots 96 are formed in this end of drive member 94. Power pins or teeth (9,5 mm (3/8) diameter) drive links 91 pass through the rocker rods 97, these slots 96 forming the drive connection between them.

駆動部材94の他端部には二つのタング98が駆動軸3
5yの二つの溝穴99内に延びそれらの間の駆動接続部
を形成する。(第14A図参照)。溝穴91]は駆動軸
35yと駆動部材94間に中動型接続部があるように大
きくつくられている。中動型接続部が許容する回転運動
(いずれの方向にも15°)の終りに駆動部材94は駆
動軸35yと揺動棒97間の中実の機械的駆動装置とな
る。溝穴はこの装置の組立修理を容易にする。
At the other end of the drive member 94, two tongues 98 are connected to the drive shaft 3.
5y into the two slots 99 forming a drive connection therebetween. (See Figure 14A). The slot 91] is made large so that there is a medium-acting connection between the drive shaft 35y and the drive member 94. At the end of the rotational movement (15° in either direction) allowed by the medium-acting joint, the drive member 94 becomes a solid mechanical drive between the drive shaft 35y and the rocker rod 97. Slots facilitate assembly and repair of this device.

当業者に明白な変形の場合、駆動軸35yと駆動部材9
4の相対位置は駆動軸35y内に支承される駆動部材9
4で逆にされる。
In case of variations obvious to those skilled in the art, the drive shaft 35y and the drive member 9
4 is the relative position of the drive member 9 supported within the drive shaft 35y.
4 is reversed.

弁付きスライド部材92は駆動部材94と駆動軸35y
の一部分を包囲する。弁付きスライド部材92の一端部
に形成された溝穴100は強力ビン駆動リンク91の外
端部を受入れる。弁付きスライド部材92の他端部で、
弁付きスライド部材92の凹部101に担持される多数
の玉41は駆動軸35yの短い峻旋溝42に係合する。
The valved slide member 92 is connected to the drive member 94 and the drive shaft 35y.
enclose a part of A slot 100 formed in one end of the valved slide member 92 receives the outer end of the power bin drive link 91. At the other end of the valved slide member 92,
A large number of balls 41 supported in the recess 101 of the valved slide member 92 engage with the short spiral groove 42 of the drive shaft 35y.

これらのものは−緒で駆動軸35yの振動を弁付きスラ
イド部材92の軸線方向運動に変形する。
These convert the vibrations of the drive shaft 35y into axial movement of the valved slide member 92.

弁付きスライド部材91の外周面上の階段溝Sはこの装
置の弁となる。これらの清心よ流体開口に総体的に対向
するこの装置の中立位置に置かれる。弁付きスライド部
材の一切の回転運動は階段aSをその最初の位置に対し
て動かし、この装置の最小抵抗点と流体流の方向を変え
る。
The stepped groove S on the outer circumferential surface of the valved slide member 91 serves as the valve of this device. These openings are placed in a neutral position of the device generally opposite the fluid openings. Any rotational movement of the valved slide member moves the step aS relative to its initial position, changing the point of least resistance of the device and the direction of fluid flow.

これは、第1乃至第13図の回転スプール弁と同様な方
法でこの装置の潤滑と冷却を助ける。
This helps lubricate and cool the device in a manner similar to the rotating spool valve of FIGS. 1-13.

他の場合、油圧装置は第1及び第2実施例と同し方法で
作動する。
Otherwise, the hydraulic system operates in the same manner as in the first and second embodiments.

第26図は弁起動を逆転し、強力ビン揺動棒をもたない
、第14図の流体静力学的舵取装置の中央断面図である
。この装置の場合、駆動軸125の真直溝124内の玉
123により弁付きスライド部材126は駆動軸と共に
回転する。弁付きスライド部材126の他端部では、弁
付きスライド部材126と駆動部材128の一方の斜め
a(図示なし)内に捕捉される玉127により、スライ
ド弁部材126は中立位置のいずれの側にも軸線方向に
動く (駆動部材128のタング129と駆動軸125
の溝穴130間の中動駆動接続部が許容する閉塞部内で
)。
FIG. 26 is a center cross-sectional view of the hydrostatic steering system of FIG. 14 with reversed valve actuation and without the power bin rocker rod. In this device, the ball 123 in the straight groove 124 of the drive shaft 125 causes the valved slide member 126 to rotate together with the drive shaft. At the other end of the valved slide member 126, a ball 127 captured in an oblique a (not shown) on one of the valved slide member 126 and the drive member 128 allows the slide valve member 126 to be moved to either side of the neutral position. (Tang 129 of drive member 128 and drive shaft 125
(within the occlusion permitted by the medium drive connection between the slots 130).

ごの逆弁起動装置は真直弁起動装置と同様な機能を行う
The reverse valve starter performs the same function as the straight valve starter.

この特別の天施例の揺動棒131は駆動部材128との
歯接続部をもつ。
The rocker rod 131 in this particular top embodiment has a toothed connection with the drive member 128.

第17、第18と第19図は第2の代替流体静力学的舵
取装置を開示する。この代替装置は逆駆動軸とねしり部
材の接続部を利用する。
Figures 17, 18 and 19 disclose a second alternative hydrostatic steering system. This alternative device utilizes a connection between a reverse drive shaft and a helical member.

第17図の装置は駆動軸107と弁付きスライド部材1
0Bの間の内圧端層接続部と、直径を縮小した弁付きス
ライド部材108.114の三部品とを含む。
The device shown in FIG. 17 includes a drive shaft 107 and a slide member 1 with a valve.
It includes an internal pressure end layer connection between 0B and three parts of a reduced diameter valved slide member 108,114.

この内圧4dl!旋接続部において弁付きスライド部材
10Bの内径上に晴旋溝109が形成される(駆動軸3
5の外径上の代りに一一第14図の42参照)駆動軸1
07に取付けられる。玉110間にばね力111かあり
玉を端層a109と接触するように押している。玉11
0間のピン112により、ばね111の故障の場合、−
個以上の玉110が確実に暢旋/J!109と接触し続
ける。
This internal pressure is 4dl! A spiral groove 109 is formed on the inner diameter of the valved slide member 10B at the pivotal connection part (drive shaft 3
11 instead of on the outer diameter of 5 (see 42 in Fig. 14) drive shaft 1
Installed on 07. There is a spring force 111 between the balls 110, pushing the balls into contact with the end layer a109. ball 11
In case of a failure of the spring 111, the pin 112 between 0 and -
More than 110 balls are sure to flow smoothly/J! Stay in contact with 109.

弁付きスライド部材の三部品108.114間を直接接
続する部分113がある。この接続部113は弁付きス
ライド部材108.114の三部品を相互に対し軸線方
向位置に保持する。弁作動を行う部品114は回転でき
るようになる(好ましくは、部品114は回転するよう
δこ設計され、かようにして最小抵抗の通路を変えるこ
とにより、この装置は冷却及び潤滑されることになる)
There is a part 113 that makes a direct connection between the three parts 108, 114 of the valved slide. This connection 113 holds the three parts of the valved slide member 108, 114 in axial position relative to each other. The component 114 that performs the valve actuation is allowed to rotate (preferably, the component 114 is designed to rotate, thus changing the path of least resistance so that the device is cooled and lubricated). Become)
.

二つのねし6′フ散ばね116を囲む二つの板115は
駆動軸線107と駆動部材117間の中動型相互連結部
を形成する。これらの板は一定の制限度合の回転後、(
第14図のタングと溝穴99の接続部のようQ二)駆動
軸と駆動部材117間の駆動中実接続部となる。
The two plates 115 surrounding the two springs 116 form a medium-acting interconnection between the drive axis 107 and the drive member 117. After rotation of these plates to a certain limited degree, (
Q2) A drive solid connection between the drive shaft and the drive member 117, such as the connection between the tongue and the slot 99 in FIG.

この装置は以Mi+の実施例(第14〜第16図)と同
様に作動′寥−る。
This device operates in the same manner as the Mi+ embodiment (FIGS. 14-16).

第20〜第25図はこの用途の発明を組込む第3の流体
静力学的舵取装置を開示する。この流体静力学的舵取装
置は揺動棒とその他のこの装置の部品間の駆動接続部と
して“H”駆動部材を利用する。
Figures 20-25 disclose a third hydrostatic steering system incorporating the invention for this application. The hydrostatic steering system utilizes an "H" drive member as the drive connection between the rocker rod and other parts of the system.

この装置のが起動部品は、揺動棒132と、前記“)ビ
駆動部材133””と、起動部材134とスライド弁ス
リー”135と、ねじり部材136と相互連結部材13
7と駆動軸138とを含む。
The actuating parts of this device include a rocking rod 132, the driving member 133, an actuating member 134, a slide valve sleeve 135, a torsion member 136, and an interconnecting member 13.
7 and a drive shaft 138.

揺動棒132は“H”駆動部材133の一端部との直接
歯付き接続部を、もちそれと共に回転する。
Swing rod 132 has a direct toothed connection with one end of "H" drive member 133 and rotates therewith.

“H”駆動部材133の他端部は駆動軸13Bとの中動
型(lost−motion type)駆動接続部を
形成する。第22図参照。
The other end of "H" drive member 133 forms a lost-motion type drive connection with drive shaft 13B. See Figure 22.

スライド弁スリーブ135は僅少なすきま、好ましくは
約0.05mmと0.5 mm (,002と、020
吋)の間のすきまで、(流体の通過を可能にするため)
“H”駆動部材133と駆動軸138の部分とを包囲す
る。
The slide valve sleeve 135 has a slight clearance, preferably about 0.05 mm and 0.5 mm (,002, 020
(to allow passage of fluid)
It surrounds the "H" drive member 133 and a portion of the drive shaft 138.

起動(actuation )部材134が”H″駆動
部材133とスライドスリーブ弁135間に延び、スラ
イドスリーブ弁135の一切の回転運動を同し部品13
5の軸線方向運動に変換する(後述の限界内で)。
An actuation member 134 extends between the "H" drive member 133 and the sliding sleeve valve 135 and directs all rotational movement of the sliding sleeve valve 135 to the same component 13.
5 (within the limits described below).

起動部材134は二個の玉139とばね140と安全棒
】41と、ブシュ142とを含む。第21図参照。起動
部材134の玉139は、スライドスリーブ弁135内
で斜めの溝143と係合する。ばね140はこれらの*
 14J内に玉139を押す。安全棒141は玉139
がa143から外れないようにする。ブシュ142は玉
l、)9の一切の束縛を防止する。
The activation member 134 includes two balls 139, a spring 140, a safety bar 41, and a bush 142. See Figure 21. Ball 139 of activation member 134 engages diagonal groove 143 within sliding sleeve valve 135 . The spring 140 is
Push ball 139 within 14J. Safety rod 141 is ball 139
Make sure that it does not come off from a143. Bushing 142 prevents any binding of balls 1,) 9.

相互接続部材137は駆動軸138とスライドスリーブ
弁135間に延びる。この接続部材により、駆動軸13
8の一切の回転運動はスライドスリーブ弁135を回転
する。
Interconnection member 137 extends between drive shaft 138 and sliding sleeve valve 135. This connection member allows the drive shaft 13
8 rotates the sliding sleeve valve 135.

相互接続部◆4137は”(IIの玉+44と、ばね1
45と、安全棒146と二個のブシュ147を含む。第
22図参照。玉144はスライド”スリーブ弁135の
真直a148と係合する。ばね145は玉144を1記
1114Bニilす。安全棒146 ハ玉144 カ4
148から外れるのを防止する。ブシュ147は玉14
4の一切の拘束を防止する。
The interconnection part ◆4137 is "(II ball +44 and spring 1
45, a safety rod 146 and two bushings 147. See Figure 22. The ball 144 engages with the straight a148 of the slide sleeve valve 135.The spring 145 pushes the ball 144 into position 1114B.Safety rod 146B ball 144F4
148 to prevent it from coming off. Bush 147 is ball 14
4. Prevent any kind of restraint.

ねじり部材lコ≦6は駆動軸138と″H″駆動部材1
33間に延びる。このねじり部材136はこの装置のね
しり接続部として作用する。
Torsion member l≦6 is the drive shaft 138 and “H” drive member 1
It extends for 33 days. This torsion member 136 serves as the torsion connection of the device.

ねしり部材j;36は一枚の平板150間に閉じ込めら
れた−(囚の軸線方向に延びる圧縮板ばね149を含む
。(ば]、J】49は第23図では圧縮されて示されて
いる)。板ばね149はねしり部材の最初のねじりを減
らすために切欠かれている(第20A図参照)。
The helix member J; 36 is confined between a single flat plate 150 and includes a compressed leaf spring 149 extending in the axial direction of the constrictor. The leaf spring 149 is notched to reduce the initial twist of the spring member (see Figure 20A).

中動型相互接続部151は駆動軸138と“H”駆動部
材133間に延びる。この中動型相互接続部は駆動軸1
38(と相互に連結されたスリーブ弁135)と“H”
駆動部材133間で装置が許容する回転運動の度合を制
限する。
A medium-acting interconnect 151 extends between drive shaft 138 and "H" drive member 133. This medium-acting interconnect is connected to drive shaft 1.
38 (and interconnected sleeve valve 135) and “H”
Limits the degree of rotational movement that the device allows between drive members 133.

第23図は一杯に旋回する位置の第20図の第3流体静
力学的舵取装置を示す。
FIG. 23 shows the third hydrostatic steering device of FIG. 20 in a fully swiveled position.

第24図は変形した第3の流体静力学的舵取装置を示す
。この図において圧縮板ばね151はこの装置の横に延
びる。第25図参照。この変形により流体静力学的舵取
装置は更に小型の構造にすることができる。
FIG. 24 shows a modified third hydrostatic steering device. In this view a compression leaf spring 151 extends laterally of the device. See Figure 25. This modification allows the hydrostatic steering device to be constructed even more compactly.

第28と第29図はこの発明の起動弁を夫々ランクとピ
ニオン及びウオーム動力舵取装置に統合するものを示す
Figures 28 and 29 show the integration of the starter valve of the present invention into a rank and pinion and worm power steering system, respectively.

これらの装置の弁起動部品は手動舵取機構152と、“
C”駆動部材153.起動部材154とスライト弁スリ
ーブ155と、ねじり部材156と、相互接続部材15
7と駆動軸158とを含む。
The valve activation components of these devices include a manual steering mechanism 152 and a
C” drive member 153, activation member 154, slite valve sleeve 155, torsion member 156, and interconnection member 15.
7 and a drive shaft 158.

手動舵取機構152は“C″駆動部材153をもつ直接
手動駆動接続部を有しそれと共に回転する。ラックとピ
ニオン舵取装置(第28図)の場合、ピニオン159は
“C”部材153の延長部となる。玉動力舵取装置(第
29図)の場合、ウオーム160は“C”部材153の
延長部となる。
Manual steering mechanism 152 has a direct manual drive connection with "C" drive member 153 for rotation therewith. In the case of a rack and pinion steering system (FIG. 28), pinion 159 is an extension of "C" member 153. In the case of a ball-powered steering system (FIG. 29), worm 160 is an extension of "C" member 153.

“C”駆動部材153は駆動軸158をもつ中動型駆動
接続部を形成する(第22図の“H“駆動部材接続部参
照)。
"C" drive member 153 forms a medium-acting drive connection with a drive shaft 158 (see "H" drive member connection in FIG. 22).

スライド弁スリーブ155は“C”駆動部材153と駆
動軸158の一部を包囲する。スライド弁スリーブ15
5と舵取装置の本体161間の嵌合はしまり嵌めて弁座
を通る流体の走行を制限する。
Slide valve sleeve 155 surrounds "C" drive member 153 and a portion of drive shaft 158. Slide valve sleeve 15
The fit between the steering gear body 161 and the steering gear body 161 is a tight fit and restricts the passage of fluid through the valve seat.

この接続部の空間を移行しな・ければならない。The space at this connection must be relocated.

起動部材154は“C”駆動部材153とスライド弁ス
リーブ155間に延びスライドスリーブ弁155の任意
の回転運動を同部品155の軸線方向の運動に変換する
じC”駆動部材153と駆動軸15Bの中動相互接続部
により許容される回転運動の場合)。
The activation member 154 extends between the "C" drive member 153 and the slide valve sleeve 155 and converts any rotational movement of the slide sleeve valve 155 into axial movement of the same part 155. (for rotary movements permitted by medium-moving interconnections).

相互接続部材157は駆動軸158とスライドスリーブ
弁155間に延びる。この接続部により、駆動軸の回転
運動はまたスライドスリーブ弁155を回転する。
Interconnection member 157 extends between drive shaft 158 and sliding sleeve valve 155. Due to this connection, rotational movement of the drive shaft also rotates the sliding sleeve valve 155.

起動部材154と相互接続部材157とは前述の第20
図の起動部材134と相互接続部材143に類似する構
造を夫々もっている。
The activation member 154 and the interconnection member 157 are similar to the
Each has a structure similar to activation member 134 and interconnection member 143 shown.

第20図のねじり部材136と同しねじり部材156が
駆動軸158と“C”駆動部材153間に延びる。
A torsion member 156, similar to torsion member 136 of FIG. 20, extends between drive shaft 158 and "C" drive member 153.

これらの舵取機構は本発明の他の実施例に類似する機能
をもつ。例えば: 中立位置に心出しされた場合(第28図参照)油圧流体
は開口PIに入り、開口R1から直接流出する。シリン
ダ開口C1と02とは相互に接続されている。
These steering mechanisms have similar functions to other embodiments of the invention. For example: When centered in the neutral position (see FIG. 28), hydraulic fluid enters opening PI and exits directly through opening R1. Cylinder openings C1 and 02 are interconnected.

1巣作負が旋回の時に、駆動軸15Bを回転するとスリ
ーブ弁155もまた回転する。“C”駆動部材153が
静11状態に残る場合、起動部材154−斜め起動溝(
図示なし)によりスライドスリーブ弁155は軸線方向
に動く (第29図参照)。
When the first nest is turned, rotating the drive shaft 15B also rotates the sleeve valve 155. When the "C" drive member 153 remains in the static state, the activation member 154 - the diagonal activation groove (
(not shown) causes the slide sleeve valve 155 to move in the axial direction (see FIG. 29).

この旋回位置において、流体は開口P1に入り、開[」
C1から流出する。帰りの流体は開口C2に入り弁15
5と駆動軸158と“C”駆動部材153の間でスライ
ドスリーブ弁155の内側を移行し、それから開り月ン
lより出る。
In this pivot position, the fluid enters the opening P1 and opens [
It flows out from C1. The returning fluid enters the opening C2 and the valve 15
5 and the inside of the sliding sleeve valve 155 between the drive shaft 158 and the "C" drive member 153, and then exits from the opening lug.

“C”駆動部材153と手動舵取機構152間の直接接
続部は流体静力学的舵取機構の故障の場合、緊急直接非
動力舵取に備えられるものである。
The direct connection between the "C" drive member 153 and the manual steering mechanism 152 provides for emergency direct non-powered steering in the event of failure of the hydrostatic steering mechanism.

直接接続う1.りとピニオン及びウオーム動力で舵取装
置は消費者の装置用として好適である。
Direct connection 1. A pinion and worm powered steering system is suitable for use in consumer equipment.

本発明の好適実施例を図示説明したが、これは例示に過
ぎず制限的なものとは解釈されるものでないことを理解
されたい。
While the preferred embodiments of the invention have been illustrated and described, it is to be understood that this is illustrative only and is not to be construed as restrictive.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第2図の線1−1に沿ってとった流体静力学的
舵取装置の中央断面図。 第2図は第1図に示す装置の頂部平面図。 第3図は操縦可能車輌を右旋回させるように配置される
部品を示す、第1図と同様な図。 第3A図は第3図の線3A−3Aに沿う断面図。 第4図は第1図と同様な図であるが操縦可能車輌の左旋
回のための位置にある部品を示す図。 第5、第6、第7及び第8図は第3図の同様な番号の線
に沿ってとった断面図。 第9図はこの発明による構造の流体静力学的舵取装置を
含む操縦可能車輌用動力舵取方式の概略図。 第一10図は第5図と同様な断面図であるが、切欠き3
2bがCIのように円周方向に延びない代替形式を示す
図。 第11図はこの発明の開示形式の(第5図のような)断
面図で、スプール弁32がその外側面に一連の階段溝S
を切削され、これらの階段aSがスプール弁32の周辺
で36o°未膚に延びるようになっている断面図。 第12図は代替流体静力学的舵取装置の、第1図に似た
中央断面図。この代替実施例はねしり棒の代りに11縮
ばねねしり部材をもつ。 第13図は第12図の線13〜13に沿って取った第1
2図の代替流体静力学的舵取装置の断面図。 第14図はf(、替流体静力学的舵取装置の、第1図と
同様な中央断面図。qの代替実施例は強力ピン揺動棒駆
動リンクとスプール弁兼スラ゛イト部材とをも・・。 第15図は第14図の線15〜15に沿ってとった第1
4し1の代替流体静力学的舵取装置の断面図。 第16図は第14図の線16〜16に沿ってとった第1
4図の代替流体静力学的舵取装置の断面図。 第17図は第2の代替流体静力学的舵取装置の第1図の
ような断面図。 第18図は第17図の線18〜18に沿ってとった第1
7図の装置の断面図。 第19図は第17図の線19〜19に沿ってとった第1
7図の装置の断面図。 第20図は第3の流体静力学的舵取装置の、第1図と同
様な中央断面図。 第20A図は板ばねの上面図。 第21図は第20図の線21〜21に沿ってとった第2
0図の装置の断面図。 第22図は第20図の線22〜22に沿ってとった第2
0図の装置の断面図。 第23図は圧縮ばねをもつ第20図の装置の中央断面図
。 第24図は代替横ばねをもつ第20図と同様な中央断面
図。 第25図は第24図の線25〜25に沿ってとった第2
4図の装置の断面図。 第26図は逆弁起動装置をもち、強力ピン揺動棒をもた
ない第1:4図の流体静力学的舵取装置の中央断面図。 第27図は揺動棒弁起動装置をもつ第1図の流体静力学
的舵取装置の中央断面図。 第28図はフックとピニオン動力舵取装置における第1
図の弁付き起動機構の中央断面図。 第29図は再循環上動力舵取装置における第1図の弁付
き起動機構の中央断面図である。 60・・・ハウジンク     61・・・摩耗板62
・・・ジェロータセット  63・・・マニホルド64
・・・端キャップ     65・・・ボルト32・・
・スプール弁     33・・・スライド部材34・
・・止め輪       35・・・駆動軸37・・・
ねしり棒      38・・・ピン39・・・ピポ・
ソト接続部   40・・・揺動棒40a、b・・・ス
プフイン接続部  72・・・回転子部材33a・・・
凹部   35a・・・突起  33b・・・肩部41
・・・玉     42・・・蝮旋溝  43・・・止
め輪45・・・密封リンク     47.48・・・
シール49・・・スラスト軸受    50.51・・
・リングPI、R1,P2.Ml、C1,R2,C2・
・・凹部        52.53.54.55・・
・開口56、57・・・通路      58・・・中
央間ロア3・・・環状リング     74・・・円形
開口85・・・開口        80・・・小室1
7・・・動力により駆動されるポンプ18・・・複動シ
リンダ    21・・・ピストン19、20・・・ピ
ストン棒   118・・・駆動軸121・・・512
2スライド部材 119・・・ピン       86・・・ねじりシリ
ンダ40i・・・揺動棒      35i・・・駆動
軸87・・・圧縮ばね      88・・・平板94
・・・駆動部材      95・・・溝穴91・・・
強力ピン駆動リンク  97.131・・・揺動棒10
B、 114・・・弁付きスライド部材107・・・駆
動軸      132・・・揺動棒133・・・“H
”駆動部材  134・・・起動部材135・・・スラ
イド弁スリーブ 136・・・ねじり部材    137・・・相互接続
部材138・・・駆動軸 代理人 弁護士 木下 洋平 外2名 Fig、 14 Fig、 /6       Fig、 15〜./7 Fig、 18       Fig、 19Fig、
 20A Fig、2.     FI(J、??Fig、 24 〜、26 Fig、 27 Fig、2B
1 is a mid-section view of the hydrostatic steering system taken along line 1--1 of FIG. 2; FIG. 2 is a top plan view of the apparatus shown in FIG. 1; FIG. FIG. 3 is a view similar to FIG. 1 showing parts arranged to turn the steerable vehicle to the right; FIG. 3A is a cross-sectional view taken along line 3A-3A of FIG. FIG. 4 is a view similar to FIG. 1 but showing the parts in position for a left turn of the steerable vehicle; 5, 6, 7, and 8 are cross-sectional views taken along like-numbered lines in FIG. 3; FIG. 9 is a schematic diagram of a power steering system for a steerable vehicle including a hydrostatic steering device constructed in accordance with the present invention. Figure 110 is a cross-sectional view similar to Figure 5, but with the cutout 3
Figure 2b shows an alternative form in which 2b does not extend circumferentially like CI. FIG. 11 is a cross-sectional view (as in FIG. 5) of the disclosed form of the invention, in which the spool valve 32 has a series of stepped grooves S on its outer surface.
is cut so that these steps aS extend 36° around the spool valve 32. FIG. 12 is a center cross-sectional view similar to FIG. 1 of an alternative hydrostatic steering system. This alternative embodiment has an 11 compression spring spring member instead of a torsion bar. Figure 13 shows the first line taken along line 13-13 in Figure 12.
FIG. 3 is a cross-sectional view of the alternative hydrostatic steering device of FIG. 2; FIG. 14 is a center cross-sectional view similar to FIG. 1 of an alternative hydrostatic steering device (f). Also... Figure 15 shows the first line taken along line 15-15 in Figure 14.
4-1 is a cross-sectional view of the alternative hydrostatic steering device. Figure 16 shows the first line taken along line 16-16 in Figure 14.
FIG. 4 is a cross-sectional view of the alternative hydrostatic steering device of FIG. 4; FIG. 17 is a cross-sectional view as in FIG. 1 of a second alternative hydrostatic steering device. Figure 18 shows the first line taken along line 18-18 in Figure 17.
FIG. 7 is a cross-sectional view of the device of FIG. 7; Figure 19 shows the first line taken along line 19-19 in Figure 17.
FIG. 7 is a cross-sectional view of the device of FIG. 7; FIG. 20 is a center cross-sectional view similar to FIG. 1 of a third hydrostatic steering device; FIG. 20A is a top view of the leaf spring. Figure 21 shows the second line taken along line 21-21 in Figure 20.
FIG. 0 is a cross-sectional view of the device shown in FIG. Figure 22 shows the second line taken along line 22-22 of Figure 20.
FIG. 0 is a cross-sectional view of the device shown in FIG. FIG. 23 is a center cross-sectional view of the device of FIG. 20 with a compression spring; FIG. 24 is a mid-section view similar to FIG. 20 with an alternative transverse spring. Figure 25 shows the second line taken along line 25-25 in Figure 24.
FIG. 4 is a cross-sectional view of the device of FIG. 4; FIG. 26 is a central sectional view of the hydrostatic steering device of FIG. 1:4 with a reversing valve activation device and without the force pin rocker rod; FIG. 27 is a center cross-sectional view of the hydrostatic steering system of FIG. 1 with a rocker rod valve actuation device; Figure 28 shows the first hook and pinion power steering system.
FIG. 3 is a central sectional view of the valved activation mechanism shown in FIG. FIG. 29 is a center cross-sectional view of the valved activation mechanism of FIG. 1 in a recirculating power steering system; 60... Housing 61... Wear plate 62
... Gerotor set 63 ... Manifold 64
...End cap 65...Bolt 32...
・Spool valve 33...Slide member 34・
... Retaining ring 35 ... Drive shaft 37 ...
Twisting rod 38...Pin 39...Pipo
Soto connection part 40... Rocking rod 40a, b... Spuffin connection part 72... Rotor member 33a...
Recess 35a...Protrusion 33b...Shoulder 41
...ball 42...spiral groove 43...retaining ring 45...sealing link 47.48...
Seal 49... Thrust bearing 50.51...
-Ring PI, R1, P2. Ml, C1, R2, C2・
・・Concave part 52.53.54.55・・
- Openings 56, 57... Passage 58... Center lower 3... Annular ring 74... Circular opening 85... Opening 80... Small chamber 1
7...Pump driven by power 18...Double acting cylinder 21...Pistons 19, 20...Piston rod 118...Drive shaft 121...512
2 Slide member 119... Pin 86... Torsion cylinder 40i... Rocking rod 35i... Drive shaft 87... Compression spring 88... Flat plate 94
... Drive member 95 ... Slot hole 91 ...
Strong pin drive link 97.131... Swing rod 10
B, 114...Sliding member with valve 107...Drive shaft 132...Swinging rod 133..."H
"Drive member 134...Starting member 135...Slide valve sleeve 136...Torsion member 137...Interconnecting member 138...Drive shaft agent Attorney Yohei Kinoshita and 2 others Fig, 14 Fig, /6 Fig, 15~./7 Fig, 18 Fig, 19Fig,
20A Fig, 2. FI(J, ???Fig, 24 ~, 26 Fig, 27 Fig, 2B

Claims (1)

【特許請求の範囲】 1 圧力流体により作動する舵取部材の作動を制御する
流体静力学的舵取装置であって、加圧流体用人L1と前
記加圧流体用出口と前記舵取部材に連結されそれを反対
方向に選択的に駆動するための、二つの口とを有するハ
ウジングと、前記ハウジング内に設定され内歯固定子歯
車と前記固定子歯車に対し偏心し前記固定子歯車より一
枚歯が少ない共働外歯回転子歯車とを含むジェロータ歯
車とを含み、前記回転子歯車と前記固定子歯車間の相対
的回転及び旋回運動が偏心線の片側で前記歯車間に一連
の膨張流体室と前記偏心線の他側で前記歯車間に一連の
収縮流体室とを設けるようにし、更に前記ハウジングの
主要部分を貫通する駆動軸と、前記ジェロータ歯車セン
トの前記回転子または前記固定子の一方を駆動する前記
駆動軸用手段と、前記駆動軸を包囲する前記ハウジング
内の円筒スライド部材と、前記スライド部材とは別でそ
れを密接に包囲する総体的に円筒形のスプール弁で、前
記スライド部材に対して回転するスプール弁と、前記駆
動軸の軸線に平行で前記スプール弁を密接に包囲する前
記ハウジング内の多数の凹部とを含み、幾つかの前記凹
部が夫々前記二つの口と前記入口と出口及び前記膨張及
び収縮流体室と連通ずるようにし、更に螺旋溝と、作動
相互連結片とを含み、前記駆動軸または前記スライド部
材の一方の上に前記螺旋溝、または前記作動相互連結片
の一方があり、前記駆動軸または前記スライド部材の他
方の上に前記螺旋溝、または前記作動相互連結片の他方
があり、前記螺旋溝と前記作動相互連結片が連結されて
作動し前記作動連結部が前記駆動軸の回転運動を前記駆
動軸の軸線方向の前記スライド部材の運動に転換するよ
うにし、更に前記スライド部材の軸線方向連動に応答し
て中立位置の反対側に夫々前記スプール弁を動かすため
の前記スライド部材とiiJ記スジスプール弁間2作動
連結部を含み、ハウジング内の前記通路手段と前記スプ
ール弁の外面上の弁手段が中立位置の反対側の前記各位
置で前記凹部を連結し、前記舵取部材を選択方向に駆動
し、前記スプール弁の外面上の前記弁手段が前記スプー
ル弁の周辺のまわりに360°未満で延びている前記流
体静力学的舵取装置。 2 圧力流体により作動する舵取部材の作動を制御する
流体静力学的舵取装置であって、加圧流体用人L1と、
前記加圧流体用出口と、前記舵取部材に連結されそれを
反対方向に選択的に駆動する一つの口とをもつハウジン
グと、前記ハウジング内に設定され、内歯固定子歯車と
前記固定子歯車一対し偏心し、前記固定子南東より歯が
一枚少″沈い共働外歯回転子歯車とを含わ、・エロータ
歯車とを含み、前記回転子歯車と前記固定子歯車間の相
対的の回転と旋回運動が偏心線の片側の前記歯車間に一
連の膨張流体室と、前記偏心線の他側の前記歯車間に一
連の収縮流体室を設けるようにし、更に前記ハウジング
の主要部分を貫通する駆動軸と、前記ジェロータ歯車セ
ントの前記回転子または前記固定子の一方を駆動する前
記駆動軸用手段と、前記駆動軸を囲む前記ハウジング内
の円筒スライド部材と、前記スライド部材とは別でそれ
を密接に囲む総体的に円筒形のスプール弁とを含み、前
記スプール弁が前記スライド部材に対して自由に回転で
きるようにし、更に前記駆動軸の軸線に平行で前記スプ
ール弁を密接に包囲する前記ハウジング内の多数の凹部
を含み、幾つかの前記凹部が夫々前記の二つの口と前記
の入口及び出口と前記の膨張及び収縮流体室と連通ずる
ようにし、更にI!l!旋溝と作動相互連結片とを含み
前記螺旋溝または前゛記作動相互連結片の一方が前記駆
動軸かまたは前記スライド部材の一方の上にあり、前記
螺旋溝または前記作動相互連結片の他方が前記駆動軸ま
たは前記スライド部材の他方上にあり、前記4!lfP
MAと前記作動相互連結片とが連結されて作動し前記作
動連結部が前記駆動軸の回転運動を前記駆動軸の軸線h
゛向の前記スライド部材の運動に転換するようにし更に
前記弁を夫々前記スライド部材の軸線方向運動に応答し
て中立位置の反対側に移動する前記スライド部材と前記
スプール弁間の第2作動連結部と、中立位置の反対側の
前記各位置で前記凹部を連結、し、前記舵取部材を選択
方向に駆動するハウジング内の通路手段と前記スプール
弁外面上の弁手段とを含み、前記スプール弁の外面上の
前記弁手段が前記スプール弁の周囲において360°未
満番こ延び軸線方向の外見上の調節のためと前記スライ
ド部材のまわりの前記スプール弁の回転との組合せでス
プール弁のまわりの液小抵抗の常変通路により変えられ
る流体路により位置の潤滑と冷却を行うようにする前記
流体静力学的舵取装置。 3 回転自在の駆動軸と軸線方向に作動するスプール弁
とをもつ流体静力学的舵取装置において、スライド部材
と、前記スライド部材を直接駆動軸に連結し、駆動軸の
回転運動を前記スライド部材の軸線方向運動に転換する
手段と、スプール弁を前記スライド部材に連結し前記ス
ライド部材の軸線方向運動をスプール弁の軸線方向運動
に伝達し、その結果、駆動軸の回転運動が前記スライド
部材を通して4 前記スライド部材が駆動軸とスプール
弁間にあることを特徴とする特許請求の範囲第3項の起
動手段。 5 スプール弁がその外周に一連の階段溝を有し、かつ
スプール弁の周辺で360°以下に延びる階段溝を特徴
とする特許請求の範囲第3項の起動手段。 6 回転自在の駆動軸と、回転自在の舵取手段と軸線方
向に作動するスプール弁とをもつ、流体静力学的舵取装
置において、スライド部材と前記スライド部材を駆動軸
または舵取手段の一方に直接連結し、それと−緒に共通
に回転する手段と、前記スライド部材を駆動軸または舵
取手段の他方に直接連結し、駆動軸の回転運動を前記ス
ライド部材の軸線方向運動に変換する手段と、スプール
弁を前記スライド部材に連結し、−前記スライド部材の
軸線方向運動をスプール弁の軸線方向運動に変換する手
段とを含み、その結果駆動軸の回転運動が前記スライド
部材を介してスプール弁の軸線方向運動に直接変えられ
るようにする起動手段。 7 回転自在の駆動軸と軸線方向に作動する円筒スプー
ル弁とを有する流体静力学的舵取装置における改良起動
手段であって、円筒スライド部材を含み前記円筒スライ
ド部材が駆動軸の少くとも部分を包囲すφようにし、更
に駆動軸と前記円筒スライド部材の一方上の螺旋手段と
、駆動軸と前記円筒スライド部材の他方上の共働部材手
段とを含み、前記螺旋手段と前記共f#J部材手段とが
共働し駆動軸の回転運動を前記円筒スライド部材の軸線
方向運動に直線変換し、円筒スプール弁が円筒スライド
部材の少くとも部分を包囲するようにし、更に円筒スプ
ール弁を前記円筒スライド部材に連結する手段を含み、
前記連結手段が前記円筒スライド部材の軸線方向運動を
円筒スプール弁の軸線方向運動に伝達するようにし、そ
の結果、駆動軸の回転運動が前記スライド部材を介して
円筒スプール弁の軸線方向運動に直線変換されるように
する起動手段。 8 円筒スプール弁がその外円周に一連の階段溝をもち
、かつ円筒スプール弁の周辺で36o。 未満に延びる階段溝を特徴とする特許請求の範囲第7項
の起動手段。 9 円筒スプール弁が前記円筒スライド部材のまわりに
自由に回転すやようになっている特許請求の範囲第7項
の起動手段。 10  回転自在の駆動軸と回転自在の舵取手段と軸線
方向に作動する円筒スプール弁とをもつ流体静力学的舵
取装置において、円筒スライド部材と前記円筒スライド
部材を駆動軸に直接連結しそれと共通に回転する手段と
を含み前記円筒スライド部材が舵取手段の少くとも部分
を包囲するようにし、更に舵取手段と前記円筒スライド
部材の一方上の螺旋手段と、舵取手段とMif記円筒ス
ライド部材の他方上の共働部材手段とを含み、前記鍵旋
手段と前記共働部材手段が共働して前記円筒スライド部
材の回転運動を前記円筒スライド部材の軸線方向運動に
直接変換するようにし、更に円筒スプール弁を前記円筒
スライド部材に連結し、前記円筒スライド部材の軸線方
向運動を前記円筒スプール弁の軸線運動に伝達する手段
を含み、その結果駆動軸の回転運動力5前記円筒スライ
ド部材を介し7て円筒スプール弁の軸線方向運動に変換
されるようにする起動手段。 11  円筒スプール弁がその外周辺上に一連の階段溝
を有し、円筒スプール溝の周辺において360°未満で
延びる階段溝を特徴とする特許請求の範囲第10項の改
良起動手段。 12  円筒スプール弁が前記円筒スライド部材のまわ
りで自由に回転するようになっている特許請求の範囲第
10項の起動手段。 13  回転自在の駆動軸と、軸線方向に作動する円筒
スプール弁と従動機素をもつジェロータ歯車セントとを
もつ流体静力学的舵取装置において、円筒スライド部材
を含み、前記円筒スライド部材が駆動軸の少くとも部分
を包囲するようにし、更に該駆動軸の回転運動を前記円
筒スライド部材に対する駆動軸の一定の制限回転度内で
前記円筒スライド部材の軸線方向運動に直線変換する手
段を含み、円筒ス ・プール弁が前記円筒スライド部材
の少くとも一部を包囲するようにし、更に前記円筒スラ
イド部材を円筒スプール弁に連結し、前記円筒スライド
部材の軸線方向運動を円筒スプール弁の軸線方向運動に
伝達する手段と、ねしり接続部とを含み、前記ねしり接
続部が前記円筒スジ41部材に対する駆動軸の一定制限
回転度内で駆動軸をジェロータ歯車セントの従動機素を
回転自在に接続するようにし、更に前記円筒スライド部
材に対する駆動軸の上記−電制限度の回転の後に駆動軸
を前記円筒スライド部材と回転自在に直接連結する手段
と前記円筒スライド部材とをジェロータ歯車セントの従
動機素間の駆動接続部とを含み、それにより、前記円筒
スライド部材に対する駆動軸の一定制限回転度内で駆動
軸の回転連動が前記円筒スライド部材を介して円筒スプ
ール弁の軸線方向連動に変換され、駆動軸が前記ねしり
接続部を介してジェロータ歯車セントの従動機素に回転
自在に連結され前記円筒スライド部材に対する駆動軸の
一定制限度の回転後、駆動軸が前記円筒スライド部材を
通してジェロ−タ歯車セントの従動機素に回転自在に接
続されるよう)゛にする起動手段。 14  回転自在の駆動軸と従動機素をもつ回転自在の
舵取手段と軸線方向に作動する円筒スプール弁とをもつ
流体静力学的舵取装置において、円筒スライド部材と、
前記円筒スライド部材を駆動軸に直接連結しそれと共に
共通に回転する手段と、前記円筒スライド部材を舵取手
段との従動機素に連結し、前記円筒スライド部材の回転
運動を一定制限回転度内で前記円筒スライド部材の軸線
方向運動に変換し前記円筒スライド部材を舵取手段の従
動機素に連結し、その間の一定制限回転度の限界内でそ
れと共通に回転する手段と、ねじり接続部とを含み、前
記ねしり接続部が一定の制眼回転度内で駆動軸を舵取手
段の従動機素と回転自在に連結するようにし、更に前記
円筒スライド部材を円筒スプール弁に連結し前記円筒ス
ライド部材の軸線方向運動を円筒スプール弁の軸線方向
運動に伝達する手段を含み、それにより、舵取手段の従
動機素に対する駆動軸円筒スライド部材の゛−一定制限
回転度内駆動軸の回転が前記円筒スライド部材を介して
円筒スプール弁の軸線方向運動に変換され、駆動軸が前
記ねしり接続部を介して舵取手段の従動機素ムこ回転自
在に連結され、従動機素に対する駆動軸円筒スライド部
材の一定制限度合の回転後駆動軸が前記円筒スライド部
材を介して舵取手段の従動機素に回転自在に連結される
よっにする起動手段。 15  回転自在の駆動軸と軸線方向に作動する円筒ス
プール弁と従動機素付きのジェロータセットとをも−)
流体静力学的舵取装置において、円筒スジ41部材を含
み、前記円筒スライド部材が駆動軸の少くとも部分を包
囲するようにし、更に駆動軸と前記円筒スライド部材の
一力上の!l!旋手段と、駆動軸と前記円筒スライド部
材の他方上の共働部材手段とを含み、前記Il!l!旋
手段と前記共働部材手段とが共働して駆動軸の回転運動
を前記円筒スライド部材に対する駆動軸の一定制限回転
度内で前記円筒スライド部材の軸線方向に変換するよう
にし、円筒スプール弁が円筒スライド部材の少くとも部
分を包囲するようにし、更に円筒スプール弁を前記円筒
スライド部材に連結する手段を含み、前記連結手段が前
記円筒スライド部材の軸線方向運動を円筒スプール弁の
軸線方向運動に伝達するようにし、更にねしり接続部を
含み、前記ねじり接続部が前記円筒スライド部材に対す
る駆動軸の一定制限回転度内でジェロータセントの従動
機素に駆動軸を回転自在に連結するようにし、更に駆動
軸と前記円筒スライド部材間の中動型相互接続部を含み
、前記中動型相互接続部が前記円筒スライド部材に対す
る駆動軸の一定制限回転度を区画し、前記中動型相互接
続部が許容する運動限界で前記円筒スライド部材と駆動
軸を回転自在に連結するようにし、更に前記円筒スライ
ド部材とジェロータセントの従動機素間の駆動接続部を
含み、それにより前記円筒スライド部材に対する駆動軸
の一定制限回転度内で駆動軸の回転運動が前記円筒スラ
イド部材を介して円筒スプール弁の軸線方向運動に変換
され、駆動軸が前記ねしり接続部を介してジェロータセ
ントの従動機素に回転自在に連結され、円筒スライド部
材に対する駆動軸の一定制限度合の回転後、駆動軸が前
記円筒スライド部材を介してジェロータセントの従動機
素に回転自在に連結されるようにする起動手段。 ■6  円筒スプール弁がその外周に一連の階段溝をも
つようになっており、円筒スプール弁が前記円筒スライ
ド部材に対し自由に回転し、階段溝が円筒スプール弁の
周囲で360°未滴に延びることを特徴とする特許請求
の範囲第13、第14又は第15項の流体静力学的舵取
装置。 I7  前記ねじり接続部がねしり棒であって前記ねじ
り棒が駆動軸をジェロータセットの従動機素に連結する
ようになっていることを特徴とする特許請求の範囲の第
13、第14又は第15項の流体静力学的舵取装置。 18  前記ねじり接続部が圧縮ばねとねしりシリンダ
であり、前記圧縮ばねが駆動軸を前記ねしりシリンダに
連結し、前記ねしりシリンダがジェロータセットの従動
機素に連結されて駆動するようになっていることを特徴
とする特許請求の範囲第13、第14又は第15項の流
体静力学的舵取装置。 19  回転自在の駆動軸と軸線方向に作動するスプー
ル弁と揺動自在の棒とをもつ流体静力学的舵取装置にお
いて、スプール弁のL端部においてスプール弁を駆動軸
に連結し駆動軸の回転運動をスプール弁の軸線方向運動
に変換する手段と、強力な歯とを含み、前記強力歯がス
プール弁の他端部を揺動自在の棒に連結するようにし、
更に駆動部材と、前記駆動部材の一端部で前記駆動部材
を前記強力歯に連結して駆動する一つの手段と、前記駆
動部材を中動型接続部にて駆動軸に連結して駆動する一
つの手段と、前記駆動部材を駆動軸に連纂 結してねしるねじり手段とを含み、駆動軸が前記ねしり
手段を介して前記中動型接続部が許容する連動の限界ま
で揺動自在の棒を駆動してねしり揺動自在の棒をその後
前記駆動部材を通して直接駆動するようにする駆動手段
。 20  流体静力学的装置が弁付き通路に対する流体入
力を有と、スプール弁がその外周に一連の階段溝をもつ
ようにし、階段溝がスプール弁の周辺において360゛
未滴に延び、油圧装置が中立位置にある時弁付き通路に
対する流体入力の位置とは実質的に対向して置かれ、ス
プール弁の作動回転がこの装置を介して流体の最小抵抗
通路を変えることを特徴とする特許請求の範囲第19項
の流体静力学的舵取装置。 21  回転自在の駆動軸と、舵取装置の従動機素に連
結される揺動棒と軸線方向に作動する円筒弁付きスライ
ド部材とをもつ流体静力学的舵取装置において、駆動軸
の少くとも部分を包囲する円筒弁付きスライド部材の一
端部と駆動軸又は円筒弁付きスライド部材の一方上の岬
旋手段と、駆動軸又は円筒弁付きスライド部材の他方上
の共働部材手段とを含み、前記蝦旋手段と前記共働部材
手段が共働して駆動軸の回転運動を円筒弁付きスライド
部材の軸線方向運動に直接変換するようにし、更に強力
ピンを含み、前記強力ピンが揺動棒の駆動軸端部を貫通
するようにし、円筒弁付きスライド部材の他端部が前記
強力ピンに連結されるようにし、更に駆動部材を含み前
記駆動部材の一端部が前記強力ピンに連結されて駆動さ
れるようにし、更に前記駆動部材に対する駆動軸の一定
制限度の回転後、中動型駆動接続部において前記駆動部
材を駆動軸に連結手段とねじり接続部とを含み、前記ね
じり接続部が前記駆動部材に対する駆動軸の一定制限回
転度を介して回転自在に駆動軸を揺動棒に連結するよう
にし、それにより前記駆動部材に対する駆動軸の一定制
限回転度内で駆動軸の回転運動が前記螺旋手段と共働部
材手段とを介して円筒弁付きスライド部材の軸線方向運
動に変換され、揺動棒への前記ねじり接続部を通し”ご
舵取装置の従動機素に回転自在に連結され、前記駆動部
材に対する駆動軸の一定制限度合の回転後、駆動軸が前
記駆動部材への中動型駆動接続部と揺動棒への駆動部材
ピン接続部を介して舵取装置の従動機素に回転自在に連
結されるようにする駆動手段。 22  前記ねしり接続部が一組のばねであり前記ばね
が駆動軸と前記駆動部材間にあることを特徴とする特許
請求の範囲第21項の流体静力学的舵取装置。 23  円筒弁付きスライド部材が前記駆動部材を包囲
するよ−うになっている特許請求の範囲第21項の流体
静力学的舵取装置。 24  流体静力学的装置が弁付き通路に対する流体入
力を有し、スプール弁がその外周上に一連の階段溝をも
つようになっており、且つ該階段溝がスプール弁の周辺
において、360゜未満に延び油圧装置が中立位置にあ
る時に弁付き通路に対する流体入力の位置に実質的に1
 ・、 対向して置かれ、スプール弁の作動回転がこの装置を介
して流体の最小抵抗の通路を変えることを特徴とする特
許請求の範囲第21項の流体静力学的舵取装置。 25  回転自在の駆動軸と舵取装置の従動機素に連結
され駆動軸端部をもっ揺動棒と、軸線方向に作動する円
筒弁付きスライド部材とをもつ、流体静力学的舵取装置
において、駆動軸の少くとも部分を包囲する円筒弁付き
スライド部材の一端部と、駆動軸と円筒弁付きスライド
部材の一方上の!II’旋手段と、駆動手段と円筒弁付
きスライド部材の他方上の共働部材手段とを含み、前記
端部手段と共働部材手段が共働し駆動軸の回転運動を円
筒弁付きスライド部材に対する駆動軸の一定制限回転度
内で円筒弁付きスライド部材の軸線方向運動に直接変換
するようにし、更に強力ピンを含み前記強力ピンが揺動
棒の駆動軸端部を貫通し、円筒弁付きスライド部材の他
端部が前記強力ピンに連結されるよう、にし、更に駆動
部材を含み、前記駆動部材の一端部及び駆動軸を包囲す
るよう4.1し、更にねしりばねを含み、前記ねしりば
ゎが円筒弁付きスライド部材に対する駆動軸の一定制限
回転度内で駆動軸に前記駆動部材の前記一端部を回転自
在に連結するようにし、史に中動型相互接続部において
入力軸にMif記駆動駆動部材記一端部を直接連続して
駆動するタング手段を含み、前記中動型相互接続部が円
筒弁付きスライド部材に対する駆動軸の一定制限回転運
動度合の限界を区画するよ一゛Jにし、それにより円筒
弁付きスライド部材に対する駆動軸の前記一定制限回転
度内で駆動軸の回転運動が円筒弁付きスライド部材の軸
線り向連動に変換され駆動軸が前記ねじりはねと従動部
材と揺動棒を介して舵取装置の従動機素に回転自在に連
結され、円筒弁付きスライド部材に対する駆動軸の一定
制限度合の回転後駆動軸が前記駆動部材を通して舵取装
置の従動機素に回転自在に連結されるようにする駆動装
置。 26  円筒弁付きスライド部材が前記駆動部材を包囲
するようになっている特許請求の範囲第25項の流体静
力学的舵取装置。 27  流体静力学的装置が弁付き通路に対する流体入
力を有し、スプール弁がその外周に一連の階段溝を有す
るようになっており、該階段溝が、スプール弁の周辺に
おいζ、360゜未満に延び油圧装置が中立位置にある
場合に弁付き通路に対する流体入力の位置に実質的に対
向して配置され、スプール弁の作動回転がこの装置を通
る流体の最小抵抗の通路を変えることを特徴とする特許
請求の範囲第25項の流体静力学的舵取装置。
[Scope of Claims] 1. A hydrostatic steering device for controlling the operation of a steering member actuated by a pressurized fluid, comprising a pressurized fluid driver L1, the pressurized fluid outlet, and the steering member connected to each other. a housing having two ports for selectively driving the stator gear in opposite directions; an internal stator gear set within the housing; and a stator gear eccentric to the stator gear; a cooperating externally toothed rotor gear with fewer teeth; and a gerotor gear including a cooperating externally toothed rotor gear, wherein the relative rotational and pivoting motion between the rotor gear and the stator gear is such that the relative rotational and pivoting motion between the rotor gear and the stator gear causes a series of inflation fluid between the gears on one side of the eccentricity. a series of contraction fluid chambers between the gears on the other side of the eccentric; a cylindrical slide member in the housing surrounding the drive shaft; a generally cylindrical spool valve separate from and closely surrounding the slide member; a spool valve that rotates relative to the slide member; and a number of recesses in the housing parallel to the axis of the drive shaft and closely surrounding the spool valve, some of the recesses being respectively connected to the two ports. in communication with the inlet and outlet and the inflation and deflation fluid chambers and further including a helical groove and an actuating interconnection piece on one of the drive shaft or the slide member. one of the coupling pieces is on the other of the drive shaft or the slide member, and the other of the helical groove or the actuation interconnection piece is connected, and the helical groove and the actuation interconnection piece are connected and actuated. An actuating connection converts rotational movement of the drive shaft into movement of the slide member in the axial direction of the drive shaft, and further moves the respective spools opposite the neutral position in response to axial movement of the slide member. two actuating connections between said slide member and said spool valve for moving said valve, said passage means in said housing and said valve means on said outer surface of said spool valve being in each said position opposite a neutral position; the hydrostatic steering device connecting the recesses and driving the steering member in a selected direction, the valve means on the outer surface of the spool valve extending less than 360° around the periphery of the spool valve; . 2. A hydrostatic steering device for controlling the operation of a steering member operated by pressurized fluid, comprising a pressurized fluid servant L1;
a housing having an outlet for said pressurized fluid and a port connected to said steering member for selectively driving it in opposite directions; an internal stator gear disposed within said housing; A pair of gears is eccentric, and includes a cooperating externally toothed rotor gear with one tooth recessed from the southeast of the stator, and an erotor gear, and a relative position between the rotor gear and the stator gear. The rotation and pivoting motion of the target provides a series of expansion fluid chambers between the gears on one side of the eccentric and a series of contraction fluid chambers between the gears on the other side of the eccentric; a drive shaft passing through the gerotor gear shaft, means for the drive shaft for driving one of the rotor or the stator of the gerotor gear shaft, a cylindrical slide member in the housing surrounding the drive shaft, and the slide member a generally cylindrical spool valve closely surrounding the same, and further including a generally cylindrical spool valve parallel to the axis of the drive shaft and closely surrounding the spool valve, allowing the spool valve to rotate freely relative to the sliding member; including a number of recesses in said housing surrounding said housing, some said recesses being in communication with said two ports, said inlet and outlet, respectively, and said inflation and deflation fluid chambers; a helical groove and an actuation interconnection piece, one of the helical groove or the actuation interconnection piece being on the drive shaft or one of the slide member, the other of the helical groove or the actuation interconnection piece is on the other of the drive shaft or the slide member, and the 4!lfP
The MA and the working interconnection piece are connected and actuated, and the working connection unit directs the rotational movement of the drive shaft to the axis h of the drive shaft.
a second actuating connection between the slide member and the spool valve for converting movement of the slide member in the axial direction and further moving the valves opposite the neutral position in response to axial movement of the respective slide members; passage means in the housing for connecting the recesses at each of the positions opposite the neutral position and driving the steering member in a selected direction; and valve means on the outer surface of the spool valve; The valve means on the outer surface of the valve extends less than 360° around the spool valve for axial cosmetic adjustment and in combination with rotation of the spool valve about the slide member. Said hydrostatic steering device for providing lubrication and cooling of the position by a fluid path varied by a constantly variable path of low fluid resistance. 3. A hydrostatic steering device having a rotatable drive shaft and an axially actuated spool valve, including a slide member, the slide member being directly connected to the drive shaft, and the rotational movement of the drive shaft being directed to the slide member. means for converting axial movement of the drive shaft into axial movement of the spool valve, and means for coupling a spool valve to the slide member to transmit axial movement of the slide member to axial movement of the spool valve, such that rotational movement of the drive shaft is transferred through the slide member. 4. The starting means according to claim 3, wherein the slide member is located between the drive shaft and the spool valve. 5. The activation means according to claim 3, wherein the spool valve has a series of step grooves on its outer periphery, and the step groove extends 360 degrees or less around the spool valve. 6 In a hydrostatic steering device having a rotatable drive shaft, a rotatable steering means, and an axially operating spool valve, a slide member and the slide member are connected to one of the drive shaft and the steering means. means for directly connecting the slide member to the other of the drive shaft or the steering means and for converting rotational movement of the drive shaft into axial movement of the slide member; and means for coupling a spool valve to the slide member, - means for converting axial movement of the slide member into axial movement of the spool valve, such that rotational movement of the drive shaft is transmitted through the slide member to the spool valve. Actuation means allowing direct translation into axial movement of the valve. 7. Improved actuation means for a hydrostatic steering system having a rotatable drive shaft and an axially actuated cylindrical spool valve, the cylindrical slide member comprising a cylindrical slide member, said cylindrical slide member displacing at least a portion of the drive shaft. and further including helical means on one of the drive shaft and said cylindrical slide member, and cooperating member means on the other of the drive shaft and said cylindrical slide member, said helical means and said cooperating member means f#J. member means cooperate to linearly convert rotational movement of the drive shaft into axial movement of said cylindrical slide member, such that the cylindrical spool valve surrounds at least a portion of said cylindrical slide member; including means for connecting to the sliding member;
The coupling means transmits axial movement of the cylindrical slide member to axial movement of the cylindrical spool valve, such that rotational movement of the drive shaft is linearly transmitted through the slide member to the axial movement of the cylindrical spool valve. A means of triggering the conversion. 8 A cylindrical spool valve has a series of stepped grooves on its outer circumference, and 36° around the periphery of the cylindrical spool valve. 8. Activating means according to claim 7, characterized by a stepped groove extending below the ridge. 9. The activation means of claim 7, wherein a cylindrical spool valve is adapted to rotate freely about said cylindrical slide member. 10 In a hydrostatic steering device having a rotatable drive shaft, a rotatable steering means, and an axially actuated cylindrical spool valve, a cylindrical slide member and the cylindrical slide member are directly connected to the drive shaft, and means for common rotation, the cylindrical slide member surrounding at least a portion of the steering means; further comprising a helical means on one of the steering means and the cylindrical slide member; cooperating member means on the other side of the slide member, such that said key pivot means and said cooperating member means cooperate to convert rotational movement of said cylindrical slide member directly into axial movement of said cylindrical slide member. and further includes means for coupling a cylindrical spool valve to the cylindrical slide member and transmitting axial movement of the cylindrical slide member to axial movement of the cylindrical spool valve, such that the rotational motion of the drive shaft 5 is reduced by the cylindrical slide member. actuating means for translating into an axial movement of the cylindrical spool valve via the member 7; 11. The improved activation means of claim 10, wherein the cylindrical spool valve has a series of stepped grooves on its outer periphery, the stepped grooves extending less than 360° around the periphery of the cylindrical spool groove. 12. The activation means of claim 10, wherein a cylindrical spool valve is adapted to rotate freely about said cylindrical slide member. 13. A hydrostatic steering device having a rotatable drive shaft, an axially actuated cylindrical spool valve, and a gerotor gear cent having a driven element, the cylindrical slide member comprising a cylindrical slide member, the cylindrical slide member being connected to the drive shaft. further comprising means for linearly converting rotational movement of the drive shaft into axial movement of the cylindrical slide member within a certain limited rotational degree of the drive shaft relative to the cylindrical slide member; a spool valve surrounds at least a portion of the cylindrical slide member, and the cylindrical slide member is coupled to the cylindrical spool valve, and the axial movement of the cylindrical slide member is coupled to the axial movement of the cylindrical spool valve. and a helical connection portion, the helix connection portion rotatably connecting the drive shaft to the driven element of the gerotor gear center within a certain limited rotation degree of the drive shaft relative to the cylindrical thread 41 member. and further, after the rotation of the drive shaft with respect to the cylindrical slide member by the above-mentioned electric limit degree, means for directly rotatably connecting the drive shaft with the cylindrical slide member and the cylindrical slide member are connected to the driven element of the gerotor gear center. a drive connection between the cylindrical spool valve and the cylindrical spool valve, whereby rotational interlocking of the drive shaft is converted into axial interlocking of the cylindrical spool valve via the cylindrical sliding member within a certain limited rotational degree of the driving shaft relative to the cylindrical sliding member; A drive shaft is rotatably connected to a driven element of the gerotor gear center via the helical connection, and after a limited degree of rotation of the drive shaft relative to the cylindrical slide member, the drive shaft is connected to the gerotor through the cylindrical slide member. Activation means for rotatably connecting to the driven element of the gear center. 14. A hydrostatic steering device having a rotatable steering means with a rotatable drive shaft and a driven element and an axially actuated cylindrical spool valve, comprising: a cylindrical slide member;
A means for directly connecting the cylindrical sliding member to a drive shaft and rotating therewith in common; and a means for connecting the cylindrical sliding member to a driven element of a steering means, the rotational movement of the cylindrical sliding member being within a certain rotation degree limit. means for converting the axial movement of said cylindrical sliding member into an axial movement of said cylindrical sliding member in said cylindrical sliding member and for connecting said cylindrical sliding member to a driven element of said steering means for rotation therewith within the limits of a certain limited degree of rotation therebetween; the torsion connection portion rotatably connects the drive shaft to the driven element of the steering means within a certain rotation angle, and further connects the cylindrical slide member to the cylindrical spool valve, means for transmitting axial movement of the sliding member to axial movement of the cylindrical spool valve, such that rotation of the drive shaft within a certain limited rotational degree of the drive shaft cylindrical sliding member relative to the driven element of the steering means is included. This is converted into an axial movement of the cylindrical spool valve via the cylindrical slide member, and the drive shaft is rotatably connected to the driven element of the steering means via the helical connection. Activation means for causing the drive shaft to be rotatably connected to the driven element of the steering means via the cylindrical slide member after a certain limited degree of rotation of the cylindrical slide member. 15 A rotatable drive shaft, an axially operating cylindrical spool valve, and a gerotor set with a driven element.
The hydrostatic steering device includes a cylindrical thread 41 member, the cylindrical slide member surrounding at least a portion of the drive shaft, and further above the force of the drive shaft and the cylindrical slide member. l! swivel means and cooperating member means on the drive shaft and the other of said cylindrical slide member, said Il! l! a cylindrical spool valve, wherein the rotating means and the cooperating member means cooperate to convert the rotational movement of the drive shaft in the axial direction of the cylindrical slide member within a certain limited rotational degree of the drive shaft relative to the cylindrical slide member; surrounds at least a portion of the cylindrical slide member and further includes means for coupling a cylindrical spool valve to the cylindrical slide member, the coupling means controlling axial movement of the cylindrical slide member and axial movement of the cylindrical spool valve. and further includes a torsion connection, the torsion connection rotatably coupling the drive shaft to the driven element of the gerotor cent within certain limited rotational degrees of the drive shaft relative to the cylindrical slide member. further comprising a medium-acting interconnect between the drive shaft and the cylindrical slide member, the medium-acting interconnect defining a limited degree of rotation of the drive shaft relative to the cylindrical slide member; a drive connection between the cylindrical slide member and the driven element of the gerotasent, thereby rotatably coupling the cylindrical slide member and the drive shaft within the limits of movement allowed by the cylindrical slide member; Within a certain limited degree of rotation of the drive shaft with respect to the member, the rotational movement of the drive shaft is converted into an axial movement of the cylindrical spool valve via the cylindrical slide member, and the drive shaft is connected to the gerotor center via the helical connection. rotatably connected to the driven element, such that after rotation of the drive shaft to a certain limited degree with respect to the cylindrical slide member, the drive shaft is rotatably connected to the driven element of the Gerotasent via the cylindrical slide member; means of activation. ■6 The cylindrical spool valve has a series of step grooves on its outer periphery, and the cylindrical spool valve rotates freely relative to the cylindrical slide member, and the step grooves are arranged around the cylindrical spool valve 360 degrees without dripping. 16. Hydrostatic steering device according to claim 13, 14 or 15, characterized in that it is elongated. I7 The thirteenth, fourteenth or fourteenth claim, wherein the torsion connection is a torsion rod, the torsion rod connecting a drive shaft to a driven element of a gerotor set. Hydrostatic steering device of paragraph 15. 18 The torsion connection is a compression spring and a torsion cylinder, the compression spring connecting a drive shaft to the torsion cylinder, and the torsion cylinder being connected to and driven by a driven element of the gerotor set. The hydrostatic steering device according to claim 13, 14 or 15, characterized in that: 19 In a hydrostatic steering device having a rotatable drive shaft, a spool valve that operates in the axial direction, and a swingable rod, the spool valve is connected to the drive shaft at the L end of the spool valve, and the spool valve is connected to the drive shaft at the L end of the spool valve. means for converting rotational movement into axial movement of the spool valve; and a strong tooth, the strong tooth connecting the other end of the spool valve to a swingable rod;
The invention further comprises a driving member, a means for connecting the driving member to the powerful tooth at one end of the driving member and driving the driving member, and a means for driving the driving member by connecting the driving member to the drive shaft at a medium-acting type connection portion. and a twisting means for connecting the drive member to the drive shaft and twisting the drive shaft, the drive shaft being swung to the limit of interlocking allowed by the medium-acting type connection part through the twisting means. Drive means for driving a rotatable rod such that a torsionally swingable rod is then driven directly through said drive member. 20 When the hydrostatic device has fluid input to the valved passageway, the spool valve has a series of stepped grooves on its outer periphery, the stepped grooves extending 360° around the periphery of the spool valve, and the hydraulic system The position of the fluid input to the valved passageway is located substantially opposite when in the neutral position, and actuation rotation of the spool valve changes the path of least resistance of the fluid through the device. Hydrostatic steering system of scope item 19. 21. In a hydrostatic steering system having a rotatable drive shaft, a rocking rod connected to a driven element of the steering system, and an axially actuated cylindrical valved slide member, at least one of the drive shafts one end of the cylindrical valved slide member surrounding the portion, a promontory means on one of the drive shaft or the cylindrical valved slide member, and cooperating member means on the other side of the drive shaft or the cylindrical valved slide member; The spiral means and the cooperating member means cooperate to directly convert rotational movement of the drive shaft into axial movement of the cylindrical valved slide member, and further include a force pin, the force pin being connected to the rocker rod. The other end of the sliding member with a cylindrical valve is connected to the strong pin, and further includes a driving member, and one end of the driving member is connected to the strong pin. and further comprising means for coupling the drive member to the drive shaft in a medium-acting drive connection and a torsion connection after a limited degree of rotation of the drive shaft relative to the drive member; The drive shaft is rotatably coupled to the rocking rod through a certain rotation limit of the drive shaft with respect to the drive member, so that the rotational movement of the drive shaft is within a certain rotation limit of the drive shaft with respect to the drive member. This is converted into an axial movement of the cylindrical valved slide member through said helical means and cooperating member means, and is rotatably coupled to the driven element of the steering gear through said torsion connection to the rocker rod. and after a certain limited degree of rotation of the drive shaft relative to said drive member, the drive shaft connects to the driven gear of the steering gear via a medium-acting drive connection to said drive member and a drive member pin connection to the rocker rod. 22. A drive means that allows the torsion connection to be freely rotatably connected. 22. Claim 21, wherein the torsion connection portion is a set of springs, and the spring is located between the drive shaft and the drive member. 23. The hydrostatic steering device of claim 21, wherein a cylindrical valved slide member surrounds the drive member. 24. Hydrostatic steering device of claim 21. The apparatus has a fluid input to the valved passageway, the spool valve having a series of stepped grooves on its outer periphery, and the stepped groove extending less than 360° about the periphery of the spool valve, the hydraulic system substantially 1 in the position of fluid input to the valved passageway when in the neutral position
22. A hydrostatic steering device according to claim 21, characterized in that the actuating rotation of the spool valves alters the path of least resistance of the fluid through the device. 25. In a hydrostatic steering device having a rotatable drive shaft, a rocking rod having a drive shaft end connected to a driven element of the steering device, and a sliding member with an axially actuated cylindrical valve. , one end of the cylindrical valved slide surrounding at least a portion of the drive shaft, and on one of the drive shaft and the cylindrical valved slide! II' rotary means, and cooperating member means on the other of the drive means and the cylindrical valved slide member, said end means and cooperating member means cooperating to direct rotational movement of the drive shaft to the cylindrical valved slide member. The rotation angle of the drive shaft is directly converted into the axial direction movement of the sliding member with the cylindrical valve within a certain rotation limit of the drive shaft, and further includes a strong pin, the strong pin passing through the end of the drive shaft of the oscillating rod, with the cylindrical valve attached. The other end of the slide member is connected to the strong pin, and further includes a drive member to surround the one end of the drive member and the drive shaft, and further includes a torsion spring. The one end of the drive member is rotatably connected to the drive shaft within a certain rotation limit of the drive shaft relative to the slide member with the cylindrical valve, and the input shaft and a tongue means for driving one end of the drive member in direct succession, such that the medium-acting interconnect defines a limited degree of rotational movement of the drive shaft relative to the cylindrical valved slide member. J, thereby converting the rotational movement of the drive shaft to the axial direction of the slide member with a cylindrical valve within the certain rotational limit of the drive shaft with respect to the slide member with a cylindrical valve, so that the drive shaft is driven by the torsion spring. The drive shaft is rotatably connected to the driven element of the steering device through the member and the swing rod, and after rotation of the drive shaft to a certain limited degree relative to the slide member with the cylindrical valve, the drive shaft passes through the drive member and connects to the driven element of the steering device. A drive device that allows the drive unit to be freely rotatably connected. 26. The hydrostatic steering device of claim 25, wherein a cylindrical valved slide member surrounds the drive member. 27. The hydrostatic device has a fluid input to the valved passageway, the spool valve having a series of stepped grooves on its outer periphery, the stepped grooves having an angle of less than ζ, 360° around the periphery of the spool valve. and extending substantially opposite the position of fluid input to the valved passageway when the hydraulic device is in a neutral position, characterized in that actuation rotation of the spool valve alters the path of least resistance of the fluid through the device. A hydrostatic steering device according to claim 25.
JP7421083A 1982-05-26 1983-04-28 Hydrostatical steering gear with cylinder slide member in cylinder valve sleeve Pending JPS58206465A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US06/608,982 US4567455A (en) 1983-04-28 1984-05-10 Circuit interrupter
EP84303303A EP0128676B1 (en) 1983-04-28 1984-05-16 Circuit interrupter

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US38194682A 1982-05-26 1982-05-26
US381946 1982-05-26
US439058 1999-11-12

Publications (1)

Publication Number Publication Date
JPS58206465A true JPS58206465A (en) 1983-12-01

Family

ID=23506966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7421083A Pending JPS58206465A (en) 1982-05-26 1983-04-28 Hydrostatical steering gear with cylinder slide member in cylinder valve sleeve

Country Status (1)

Country Link
JP (1) JPS58206465A (en)

Similar Documents

Publication Publication Date Title
CN105209764B (en) Rotary-piston type actuator with central actuation component
US3731546A (en) Power operable pivot joint
CN100361853C (en) Power steering device
EP2999867B1 (en) A connecting rod, a big end bearing and an arrangement for changing the effective length of a connecting rod for an internal combustion piston engine
US1263180A (en) Variable-speed gear.
GB2245685A (en) Universal joint assembly for a progressive cavity drive train
US1346672A (en) Internal-combustion engine
EP0491078A1 (en) Fluid power transmission
US4951469A (en) Hydrostatic continuously variable transmission
JPS58206465A (en) Hydrostatical steering gear with cylinder slide member in cylinder valve sleeve
JP6951590B2 (en) Hydraulic system
US4494915A (en) Hydrostatic steering unit with cylindrical slide member within clindrical valve sleeve
US4552519A (en) Hydrostatic steering unit with cylindrical slide member within cylindrical valve sleeve
US5234321A (en) Variable displacement hydrostatic pump and neutral return mechanism therefor
US4494916A (en) Hydrostatic steering unit with cylindrical slide member within cylindrical valve sleeve
US2197959A (en) Rotary prime mover, pump, compressor, and the like
KR100316751B1 (en) Steering control unit
JPH0742678A (en) Gyrotor type hydraulic system with fluid control path penetrated through rotor
US4787828A (en) Power transmission
US1189042A (en) Power transmission and control.
EP1242757B1 (en) Hydraulic axial-piston machine
US5326238A (en) Rotating piston machine having cam controlled alternating pistons
US4466783A (en) Three vane, two lobe fluid motor
KR950008767Y1 (en) Integral type power steering apparatus
JPH0337465A (en) Radial type hydraulic unit