JPS58205842A - Simultaneous measurement of component ratio and film thickness for 2-component alloy film - Google Patents

Simultaneous measurement of component ratio and film thickness for 2-component alloy film

Info

Publication number
JPS58205842A
JPS58205842A JP57089301A JP8930182A JPS58205842A JP S58205842 A JPS58205842 A JP S58205842A JP 57089301 A JP57089301 A JP 57089301A JP 8930182 A JP8930182 A JP 8930182A JP S58205842 A JPS58205842 A JP S58205842A
Authority
JP
Japan
Prior art keywords
thickness
fluorescent
component
component ratio
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57089301A
Other languages
Japanese (ja)
Inventor
Toshiyuki Koga
古賀 敏行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP57089301A priority Critical patent/JPS58205842A/en
Publication of JPS58205842A publication Critical patent/JPS58205842A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/076X-ray fluorescence

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To measure the component ratio and the film thickness of a 2-component alloy film by a method wherein the intensity of fluorescent X ray of a standard sample comprising a plurality of pure metals varied in the thickness is measured to determine the constant with respect to the fluorescent X ray, which is put into a fixed equation. CONSTITUTION:When radiation irradiates a 2-component alloy film comprising elements A and B, fluorescent X ray is excited and radiated and the intensity IA infinity (WA), for example, of the element A is expressed by the formula ( I ) Therefore, the measurement of component ratio between the elements A and B is possible only if the intensity of fluorescent X rays of elements A and B is measured concerning more than two known standard samples to determine the constant of the fluorescent X rays for the elements. As the film thickness is expressed by the formula (II), for example, for the element A, it can be determined by measuring the intensity of fluorescent X rays radiated from standard samples for thickness, more than two each of pure metals A and B to calculate constants thereof. In the formula (II), (t) is film thickness, (rho) density and IAb background.

Description

【発明の詳細な説明】 本発明はケイ光Xfi!を検出することによって、二成
分合金膜の成分比と膜厚を同時に測定する方法VC関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is based on the Keiko Xfi! The present invention relates to a method VC for simultaneously measuring the component ratio and film thickness of a binary alloy film by detecting .

従来二成分合金の膜厚を測定する場合、その膜と同じ成
分を持つ標準試料r(J:つて装置を較正し試料厚を測
定するか、あるいは合金の成分比を仮定して純金欄の場
合の厚さ標準試料から得られる較正曲線を補正する方法
が用いられてきた。しかしこれらの方法では、合金比が
違った場合正確な測定ができないという欠点があった。
Conventionally, when measuring the film thickness of a two-component alloy, it is necessary to calibrate the device and measure the sample thickness using a standard sample r (J), which has the same components as the film, or to measure the sample thickness by assuming the alloy's component ratio. Methods have been used to correct calibration curves obtained from standard samples with a thickness of 100%.However, these methods have the disadvantage that accurate measurements cannot be made when the alloy ratio is different.

本発明は合金膜1vの測定に訃いて合金膜の成分比を同
時罠測定することによって合金膜厚の較正曲線を補正し
、上記の欠点を除去する方法である。
The present invention is a method for correcting the calibration curve of the alloy film thickness by measuring the component ratio of the alloy film simultaneously with the measurement of the alloy film 1v, thereby eliminating the above-mentioned drawbacks.

この方法はハンダなどのような二成分合金の測定にとく
え有効である。例えば、合金膜から放射されるケイ光X
線強度が飽和値に達するに十分な厚さを持った元素Aと
元素Bとから成る二成分合金膜、放射#l!ILよって
励起され放射される元素人のケイ光X線強(IJ−’ 
I A OO(W A )は(A)式で表わされる。
This method is especially effective for measuring binary alloys such as solder. For example, fluorescence X emitted from an alloy film
A binary alloy film consisting of element A and element B having a thickness sufficient for the line intensity to reach a saturation value, radiation #l! Strong fluorescent X-rays of elemental humans excited and emitted by IL (IJ-'
I A OO(W A ) is represented by formula (A).

”””A)7r、A(J*)WA+aB(λB)(1−
WA)十より(λA)−= (A)ここでWAは元素A
の成分比、kA(λA)は元素人のケイ光X線に対する
元素Aの吸収係数。
"""A)7r, A(J*)WA+aB(λB)(1-
WA) From 10 (λA) −= (A) Here, WA is element A
The component ratio of kA (λA) is the absorption coefficient of element A for fluorescent X-rays.

μB(λA)は元素Aのケイ元X線に対する元素Bの吸
収係数、 Ib(λA)はバックグランド、  kAは
定数とする。
μB (λA) is the absorption coefficient of element B for silicon element X-rays of element A, Ib (λA) is the background, and kA is a constant.

−a−(s’+   kA(λA)= b−=falt
IBてT弓−ゝ  μB(λA) とおくと (N式はつぎの式のように変形できる同様に
元素Bのケイ元X線強度よりの(WA)は(E)式で表
わされる。
-a-(s'+kA(λA)=b-=falt
Letting IB and T bow - μB (λA), (N formula can be transformed as shown below. Similarly, (WA) from the silicon element X-ray intensity of element B is expressed by formula (E).

ここでkA(λB)は元素Bのケイ光Xiに対する元素
Aの吸収係数、μB(λB)は元素Bのケイ元X線に対
する元素Bの吸収係数、より(λB)はバックグランド
、kBは定数である。
Here, kA (λB) is the absorption coefficient of element A for the fluorescence Xi of element B, μB (λB) is the absorption coefficient of element B for silicon X-rays, y (λB) is the background, and kB is a constant. It is.

とおくとf棟式tJつぎの工うr(変形できる。Then, the f-building type tJ the next construction r (can be transformed.

したがってその合金膜厚から放射されるケイ元X線強度
が飽和値に達するに十分な厚さをもった元素人と元素)
3とから成る成分比は既知の標準試料の元素Aお6[び
元ip・のケイ”/f: X 1lri!強度を測定し
くA)式お工び(n)式r(代入することに1って、連
立方程式1りa、、  b、’  Ib(λA )、 
a’、 b’、 1: b(λB)を計算で算出するこ
とができる。このとき標準試料は5種以上必要とする。
Therefore, the thickness of the alloy film is sufficient for the intensity of silicon element X-rays emitted from the thickness to reach the saturation value.
The component ratio consisting of 3 and 3 is the element A of the known standard sample. 1 is the simultaneous equation 1 a, b, 'Ib(λA),
a', b', 1: b(λB) can be calculated by calculation. At this time, five or more types of standard samples are required.

なお標準試料が4種類以上のとき#′i:最小二乗法が
適用できる。
Note that when there are four or more types of standard samples, #'i: the least squares method can be applied.

ところで二成分合金Ill W、おいて膜厚tと元素人
のケイ元X線強麿丁^の関係は市電をρ、バックグラン
ドをIAI)  とすると(1)式で表わせる。
By the way, in the binary alloy IllW, the relationship between the film thickness t and the elemental silicon element X-ray intensity can be expressed by equation (1), where ρ is the streetcar and IAI is the background.

工A:l:(1:*、w(WA)−r^b)(1−eX
p−(WA/jA(λム)十(1−WA)μB(λム)
)ρt〕十エムb・・川・山 (1)同様に、膜厚tと
元素Bのケイ光X線強度IBの関係はバックグランドを
よりbとすると、(J)式で表わせる。
Engineering A:l:(1:*,w(WA)-r^b)(1-eX
p-(WA/jA(λmu) 1-WA)μB(λmu)
) ρt] 10<em>b...River/Mountain (1) Similarly, the relationship between the film thickness t and the fluorescent X-ray intensity IB of element B can be expressed by equation (J), assuming that the background is b.

工s=(工nの(WA)−よりb)(1−exp−(V
AeμA(λB)+(1−WJμB(λ−))ρt)+
r、nb・・・・・曲(、T)(G1式よりkA(λB
)−石、μB(λB) であるから、これら1(I) 
+ (J)式に代入すると、それぞれ次のようになる。
s = (b from (WA) of eng n) (1-exp-(V
AeμA(λB)+(1-WJμB(λ-))ρt)+
r, nb... Song (, T) (kA (λB
)-stone, μB(λB), so these 1(I)
+ (J) When substituted into the equation, the results are as follows.

1A=(工A(X)(WA)−エ*b)(i −6tw
A九(1−WA))kA(λム)ρt〕+■ムb ・・
・・・・・・・・・・ @)I n = (、Boo(
Wリーより b )(1−e ’ B汁(1−wム))
μB(λN3)ρt〕+工Hb   ・・・・・・・・
・・・・ (L)(K) 、 (L)式において、a、
b、より(λム)t ”? ”15− Ib(λB)1丁ムb、よりす、μム(λム)、μB(
λB)が分かれば、(K) 、 (L)式の連立方程式
よりtおよびWAを求めることができる。ここでa、b
、Ib(λ^)l ”l ”?Ib(λB)の値は、前
述の方法によって求めることができる。kA(λム)お
よびμB(λB)は、純金属人および純金属Bのそれぞ
れ6コ以上の厚さの標準試料から放射されるケイ光X線
強度を測定し、計算することによって求めることができ
る。
1A=(A(X)(WA)-E*b)(i-6tw
A9(1-WA))kA(λmu)ρt]+■mub...
・・・・・・・・・ @)I n = (, Boo(
From W Lee b) (1-e' B soup (1-w mu))
μB (λN3) ρt] + engineering Hb ・・・・・・・・・
...(L)(K), In formula (L), a,
b.
If λB) is known, t and WA can be determined from the simultaneous equations (K) and (L). Here a, b
, Ib(λ^)l “l”? The value of Ib(λB) can be determined by the method described above. kA (λμ) and μB (λB) can be obtained by measuring and calculating the fluorescent X-ray intensity emitted from standard samples of pure metal B and pure metal B, each of which has a thickness of 6 or more. can.

以下、その理由を説明する。純金属から放射されるケイ
光X線強度工と厚さXの関係は、バックグランドを10
.密度をρ′ とすると、(M)式で表わされる。
The reason for this will be explained below. The relationship between the fluorescent X-ray intensity emitted from pure metal and the thickness
.. Letting the density be ρ', it is expressed by equation (M).

■= (lco−工◎)(1−e−μpX)+1o −
−−(M)厚さの違った3個以上の淳さ既知試料のケイ
光X線強度を測定すること尤よって、連立方程式よシμ
を算出することができる。このようにして、純金属人お
よび純金1t413の標準試料から、3人(λム)およ
びμB(λB)を求めることができる。
■= (lco-engine ◎) (1-e-μpX)+1o -
--(M) In addition to measuring the fluorescent X-ray intensity of three or more samples of known thickness with different thicknesses, the simultaneous equations and
can be calculated. In this way, from the standard samples of pure metal and pure gold 1t413, it is possible to obtain 3 people (λum) and μB (λB).

またこのとき、十分厚い厚さをもった元素A上に、厚さ
の違った元素Bの皮膜を施したものを標 6− 準試料として元素Aおよび元素Bのケイ光X線強度を測
定することによって、μム(λA)および71 B (
λB)を算出することもできる。
Also, at this time, measure the fluorescent X-ray intensities of element A and element B by using a sufficiently thick layer of element A with a film of element B of different thickness as a standard sample. By this, μm (λA) and 71 B (
λB) can also be calculated.

つぎに、この方法を実現するための装置の構成の一実施
例を示す。この装置は、励起線源としてのX線管球とX
線検出器としての比例計数管と試料台と波高弁別器とス
ケーラ−タイマーと演算装置と表示装置より構成される
。励起線源として、ラジオアイソトープおよびX線検出
器として半導体検出器を用いることもできる。また波高
弁別器としてマルチンヤンネルアナライザーを用いれば
、第1金属と第2金属のケイ光X線を同時に測定するこ
とができ、測定を迅速に行なうことができるが、シング
ルチャンネルアナライザーを用いることによってもシー
ケンシャルに第1金属と第2金属のケイ光X線を測定す
ることができ、目的を達成できる。
Next, an example of the configuration of an apparatus for realizing this method will be shown. This device uses an X-ray tube as an excitation source and
It consists of a proportional counter tube as a line detector, a sample stage, a pulse height discriminator, a scaler-timer, an arithmetic unit, and a display device. As excitation radiation source it is also possible to use radioisotopes and semiconductor detectors as X-ray detectors. Furthermore, if a multi-channel analyzer is used as a pulse height discriminator, it is possible to simultaneously measure the fluorescent X-rays of the first metal and the second metal, and the measurement can be carried out quickly. Also, the fluorescent X-rays of the first metal and the second metal can be measured sequentially, and the purpose can be achieved.

本発明によれば、上述のごとくケイ光X線強度を測定す
ることVこよって二成分合金膜の成分比と厚さを同時に
求めることができる。
According to the present invention, by measuring the fluorescent X-ray intensity as described above, the component ratio and thickness of the binary alloy film can be determined simultaneously.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、二成分合金膜の成分比と厚さを同時に測定する
ための一実施例を示す。 図中、(1)はX線管   (2)は励起X線(3)は
試料台   (4)は比例計数管(6)に波高弁別器 
(7)はスケーラ−タイマー(8)は演算装置  (9
)は表示装置を示す。 以   上 出願人 株式会社 第二梢工舎 代理人 弁理士 最上  務
The drawing shows one embodiment for simultaneously measuring the component ratio and thickness of a binary alloy film. In the figure, (1) is the X-ray tube (2) is the excited X-ray (3) is the sample stage (4) is the proportional counter (6) and the pulse height discriminator
(7) is the scaler and timer (8) is the arithmetic unit (9
) indicates a display device. Applicant Daini Kozue Kosha Co., Ltd. Agent Patent Attorney Tsutomu Mogami

Claims (1)

【特許請求の範囲】[Claims] ケイ光X@を検出すること罠よって第1金属および第2
@属からなる二成分合金の成分比お・;び膜厚を測定す
る方法において第1元素および第2金鳩のケイtX線強
度をX線検出器で検出し、厚さの各々異なる3個以上の
純粋の第1金属の厚さを有する標準試料と、厚さの各々
異なる6個以上の純粋の第2金属の厚さを有する標準試
料と、ケイ光XfRが飽和する九十分な埠さをもった3
個以上の成分比を有する標準試料のケイ光X線強度を測
定した結果求めた定数を用いて、□試料中の前記各金慎
から放射されるケイ光Xi強度を測定することに工り二
成分合金の成分比と厚さを演算測定することを特徴とす
る二成分合金膜の成分比と膜厚の同時測定法。
The first metal and the second metal are detected by the trap to detect the fluorescence
In the method of measuring the component ratio and film thickness of a binary alloy consisting of the genus, the X-ray intensity of the first element and the second metal alloy is detected with an X-ray detector, and three alloys with different thicknesses are detected. A standard sample having a thickness of a pure first metal of 6 or more different thicknesses, a standard sample having a thickness of 6 or more pure second metals, each having a different thickness, and a 90-minute barrier where the fluorescence XfR is saturated. Sato 3
Using the constant obtained as a result of measuring the fluorescent X-ray intensity of a standard sample having a component ratio of A method for simultaneously measuring the component ratio and film thickness of a two-component alloy film, characterized by calculating and measuring the component ratio and thickness of the component alloy.
JP57089301A 1982-05-26 1982-05-26 Simultaneous measurement of component ratio and film thickness for 2-component alloy film Pending JPS58205842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57089301A JPS58205842A (en) 1982-05-26 1982-05-26 Simultaneous measurement of component ratio and film thickness for 2-component alloy film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57089301A JPS58205842A (en) 1982-05-26 1982-05-26 Simultaneous measurement of component ratio and film thickness for 2-component alloy film

Publications (1)

Publication Number Publication Date
JPS58205842A true JPS58205842A (en) 1983-11-30

Family

ID=13966842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57089301A Pending JPS58205842A (en) 1982-05-26 1982-05-26 Simultaneous measurement of component ratio and film thickness for 2-component alloy film

Country Status (1)

Country Link
JP (1) JPS58205842A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60202339A (en) * 1984-03-27 1985-10-12 Sumitomo Metal Ind Ltd X-ray fluorescence analysis method
US4959848A (en) * 1987-12-16 1990-09-25 Axic Inc. Apparatus for the measurement of the thickness and concentration of elements in thin films by means of X-ray analysis

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5429843A (en) * 1977-08-10 1979-03-06 Nippon Steel Corp Controlling method for composition and thickness of plated multicomponent alloy films

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5429843A (en) * 1977-08-10 1979-03-06 Nippon Steel Corp Controlling method for composition and thickness of plated multicomponent alloy films

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60202339A (en) * 1984-03-27 1985-10-12 Sumitomo Metal Ind Ltd X-ray fluorescence analysis method
US4959848A (en) * 1987-12-16 1990-09-25 Axic Inc. Apparatus for the measurement of the thickness and concentration of elements in thin films by means of X-ray analysis

Similar Documents

Publication Publication Date Title
JP2003050115A (en) X-ray film thickness meter
JPH0638949A (en) Filter method of x-ray system and apparatus for executing the same
JP2016161577A (en) Quantitative x-ray analysis and matrix thickness correction method
Krumrey et al. Complete characterization of a Si (Li) detector in the photon energy range 0.9–5 keV
Bhan et al. Measurement of KX‐ray fluorescence cross‐sections
US3529151A (en) Method of and apparatus for determining the mean size of given particles in a fluid
JP3160135B2 (en) X-ray analyzer
JPS58205842A (en) Simultaneous measurement of component ratio and film thickness for 2-component alloy film
JP2024009260A (en) Radiation-based thickness gauge
Allawadhi et al. K-shell photoelectric cross sections for intermediate Z elements at 37 and 74 keV
Rani et al. Photon‐excited KX‐ray fluorescence cross‐section measurements for some low‐Z‐elements
JP2732460B2 (en) X-ray fluorescence analysis method
JP3059403B2 (en) X-ray analysis method and apparatus
JP3132678B2 (en) Thin film sample thickness measurement and elemental quantitative analysis method
JP4279983B2 (en) X-ray fluorescence analyzer
JPS6184511A (en) Simultaneous measurement of component ratio and film thickness of two-component alloy film
JPS6362694B2 (en)
JPS5930049A (en) Quick analysis of density of antiaging agent in polyethylene
SU468084A1 (en) X-ray coating thickness measurement method
Johnson et al. Simple method of obtaining Si (Li) detector efficiency
JP2002071590A (en) Fluorescent x-ray analyzer
RU2818330C1 (en) MULTIPHASE FLOWMETER
Bowen et al. Quantitative analysis of arsenic‐implanted layers in silicon by synchrotron‐radiation‐excited x‐ray fluorescence
Tıraşoğlu et al. Measurement of K shell fluorescence cross-section of Ca and K compounds
JPS5831522B2 (en) Himakunoatsumisokuteisouchi