JPS58205032A - Capacity control of airconditioning system - Google Patents

Capacity control of airconditioning system

Info

Publication number
JPS58205032A
JPS58205032A JP57089073A JP8907382A JPS58205032A JP S58205032 A JPS58205032 A JP S58205032A JP 57089073 A JP57089073 A JP 57089073A JP 8907382 A JP8907382 A JP 8907382A JP S58205032 A JPS58205032 A JP S58205032A
Authority
JP
Japan
Prior art keywords
capacity
cold
hot water
temperature
water temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57089073A
Other languages
Japanese (ja)
Inventor
Eiji Saito
斎藤 英二
Norio Yamashita
山下 紀夫
Mitsuo Umehara
梅原 三夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57089073A priority Critical patent/JPS58205032A/en
Publication of JPS58205032A publication Critical patent/JPS58205032A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To improve the efficiency and energy saving effect by a method wherein the capacity is controlled stepwise in the order of the capacity calculated in terms of total capacity, specified decrease of capacity and preset calculating formula in an airconditioning system wherein multiple cold and hot water generator and loading unit are respectively connected by a closed loop. CONSTITUTION:A cold and hot water generator is variable capacity controllable type. The generator is operated at total capacity Vo from the outlet temperature T considerably lower than the target controlled temperature T4 to the set up temperature T2 to calculate the temperature fluctuation width DELTAtheta1 per unit time of the outlet water temperature from the set up temperature T1 to T2 during the operation. The generator is operated at the cold and hot water producing capacity DELTAV from the temperature T2 to the target temperature T4, e.g. a capacity decreased by 10%, to obtain the temperature fluctuation width DELTAtheta2 per unit time during the operation. After reaching the target temperature T4, the volume of produced cold and hot water is controlled by the optimum operating capacity Vop obtained by specific calculating formula in terms of each temperature fluctuation width DELTAtheta1, DELTAtheta2 and decreased capacity DELTAV. In such a constitution, the system may be operated at the optimum operating capacity while improving the efficiency and energy saving effect.

Description

【発明の詳細な説明】 この発明はn台(nは2以上の整数)の冷温水発生装置
からの冷温水を室内に据付けたm台(mは2以上の整数
)の負荷器例えばファンコイルユニットに循環して冷暖
房する空調システムの容量制御方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION This invention provides a method for generating cold and hot water from n units (n is an integer of 2 or more) of cold/hot water generators installed indoors into m units (m is an integer of 2 or more) such as fan coils. The present invention relates to a capacity control method for an air conditioning system that circulates air conditioning and heating to a unit.

従来の空調システムにおいては、冷温水発生装置の運転
を最適制御する方法がいろいろと工夫し試られてきたに
もかかわらず、複数台の容量を最適制御する適切な方法
がな(、空調システム全体の効率を充分高められず、か
つ省エネルギー化を図ることができなかった。
In conventional air conditioning systems, although various methods have been devised and tried to optimally control the operation of cold/hot water generators, there is still no suitable method for optimally controlling the capacity of multiple units (or The efficiency of the system could not be sufficiently increased, and energy conservation could not be achieved.

この発明は、上記の点に着目して成されたもので、複数
台の冷温水発生装置を最適運転しシステム全体の効率化
と省エネルギー化を行うことができる空調システムの最
適制御方法を提供することを目的としている。
This invention was made with attention to the above points, and provides an optimal control method for an air conditioning system that can optimally operate a plurality of cold/hot water generators to improve efficiency and save energy of the entire system. The purpose is to

以下、この発明の一実施例を第1図乃至第4図と共に説
明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 4.

第1図は空調システムの構成を示すブロック図で、図中
、1は冷温水を発生する冷温水発生装置で、複数台の装
置が互いに並列に出口側の水配管4及び入口側の水配管
5によって接伏されている。2は上記冷温水発生装置1
で発生した冷温水で冷暖房を行うファンコイルユニット
で、複数台のユニットから構成され、それぞれ上記水配
管4j5によって並列に接続されている。3は循環ポン
プで、上記冷温水発生装置の入口側にそれぞれ1台ずつ
配設され、上記冷温水発生装置1から発生した冷温水を
上記ファンコイルユニツHC強制循環させるよう構成さ
れている。6は制御装置で、上記冷温水発生装置1群の
出口側近傍に備えられた水温センサ7からの出力信号を
入力し、上記複数台の冷温水発主装置1及び循環、1.
ポンプ3各々にON10 F Fの制御信号を送出する
よう構成されている。
Figure 1 is a block diagram showing the configuration of an air conditioning system. In the figure, 1 is a cold/hot water generator that generates cold/hot water, and multiple devices are connected in parallel to each other, including a water pipe 4 on the outlet side and a water pipe on the inlet side. It is bounded by 5. 2 is the above cold/hot water generator 1
This is a fan coil unit that performs air conditioning and heating using cold and hot water generated by the fan coil unit, and is composed of a plurality of units, each of which is connected in parallel by the water pipe 4j5. Reference numeral 3 denotes circulation pumps, one of which is disposed on the inlet side of each of the cold and hot water generators, and is configured to forcefully circulate the cold and hot water generated from the cold and hot water generator 1 through the fan coil unit HC. Reference numeral 6 denotes a control device which inputs an output signal from a water temperature sensor 7 provided near the outlet side of the first group of cold and hot water generators, and controls the plurality of cold and hot water generators 1 and the circulation, 1.
It is configured to send an ON10FF control signal to each of the pumps 3.

次に、この発明の一実施例である容量制御方法について
、空調システムの暖房運転時を例に第2図に従って説明
する。
Next, a capacity control method which is an embodiment of the present invention will be described with reference to FIG. 2, taking as an example the heating operation of the air conditioning system.

第2図は、冷温水発生装置1の初期起動時の特性を示す
もので、同図Iは水温の時間的変化を、同図■は上記水
温の変化に対応した冷温水発生装置1の容量の変化特性
を示すものである。
Figure 2 shows the characteristics of the cold and hot water generator 1 at the time of initial startup. Figure I shows the temporal change in water temperature, and ■ shows the capacity of the cold and hot water generator 1 corresponding to the change in water temperature. This shows the change characteristics of

まず、初期起動時、冷温水発生装置1から循環流出する
循環水の出口水温Tは水温センサ7によって検出され、
第2図Iに示す如く、目標制御水温T4より相当低い温
度になっておp、制御装置6は上記冷温水発生装置1を
全容量V。
First, at the time of initial startup, the outlet water temperature T of the circulating water flowing out from the cold/hot water generator 1 is detected by the water temperature sensor 7.
As shown in FIG. 2I, when the temperature has become considerably lower than the target control water temperature T4, the controller 6 controls the cold/hot water generator 1 to the full capacity V.

で運転するように制御する。control to drive.

いま、上記目標制御水温T4よυ低い温度の上記出口水
温Tに対して第1及び第2の設定水温T1及びT、を設
定する。但し、第1の設定水温TI<第2の設定水温T
!である。出口水温Tが徐々に上昇するに伴ない、水温
センサ7で測定して得られた上記第1の設定水温T+か
ら第2の設定水温T、に達するまでの時間を測定する。
Now, first and second set water temperatures T1 and T are set for the outlet water temperature T which is υ lower than the target control water temperature T4. However, first set water temperature TI<second set water temperature T
! It is. As the outlet water temperature T gradually rises, the time from the first set water temperature T+ obtained by measurement with the water temperature sensor 7 to the second set water temperature T is measured.

そのときの出口水温Tの単位時間当シの変化幅Δθ1を
求める。この出口水温Tが第2の設定水温T。
The range of change Δθ1 of the outlet water temperature T per unit time at that time is determined. This outlet water temperature T is the second set water temperature T.

になった時点で、上記冷温水発生装置1の容量Vを容量
Vの減少容量設定値ΔV(第2図ではΔv−10%の例
を示す)だけ減少させた容量(V −ΔV)で運転し、
上記第2の設定水温T、から目標制御水温T、になるま
での時間を測定して水温の単位時間当りの変化幅Δθ、
を求める。そして出口水温Tを上記目標制御水温T4に
維持するための最適な運転容量を下記の式(1)から算
出する。
At this point, the cold/hot water generator 1 is operated at a capacity (V - ΔV) in which the capacity V of the cold/hot water generator 1 is reduced by the reduced capacity set value ΔV of the capacity V (an example of Δv - 10% is shown in Fig. 2). death,
Measure the time from the second set water temperature T to the target control water temperature T, and calculate the range of change Δθ in water temperature per unit time.
seek. Then, the optimum operating capacity for maintaining the outlet water temperature T at the target control water temperature T4 is calculated from the following equation (1).

ここで、Vop:最適運転容量 vO:全容量 ΔV :容量Vの減少容量設定値 Δθ! :第1の設定水温T、から第2の設定水温T、
までの単位時間当りの水温 の変化幅 Δθ曾 :第2の設定水温T、から目標制御水温T4ま
での単位時間当りの水温の 変化幅 に、C:定数 を表わす。
Here, Vop: Optimal operating capacity vO: Total capacity ΔV: Decrease capacity setting value Δθ of capacity V! : first set water temperature T, to second set water temperature T,
C represents a constant in the range of change in water temperature per unit time from the second set water temperature T to the target control water temperature T4.

なお、第2図Iにおいて、水温の変化幅Δθ、。In addition, in FIG. 2 I, the range of change in water temperature is Δθ.

Δθ、はそれぞれ、出口水温Tが設定点T、、’p、に
なった時点1..1.における曲線の勾配で示される。
Δθ are the points 1 and 1 when the outlet water temperature T reaches the set point T, ,'p, respectively. .. 1. is indicated by the slope of the curve at .

また、第2図■において、時点1.で容量VはΔVだけ
減少し、容量(VO−ΔV)、すなわち全容iVoを1
00%とすればΔv=10%として90%の容量で運転
される。さらに、上述の運転制御方式に基づいて、時点
t4において容量Vは最適運転容量Vop、 tなわち
6C1%で運転するように制御されることが示されてい
る。
Also, in Figure 2 ■, time 1. Then, the capacitance V decreases by ΔV, and the capacitance (VO - ΔV), that is, the total volume iVo, becomes 1
If it is set to 00%, Δv=10% and it is operated at 90% capacity. Further, based on the above-described operation control method, it is shown that at time t4, the capacity V is controlled to operate at the optimum operating capacity Vop, t, that is, 6C1%.

次に、通常運転時の動作を第3図と共に説明する。Next, the operation during normal operation will be explained with reference to FIG.

上述の式(1)で求めた最適運転容量VOpでは、外気
温などの外部気象条件と室内の人員などの内部負荷の変
動によって冷温水発生装置1の出口温度Tを所定の温度
範囲の間に維持することが出来な(なる。そこで、この
発明の一実施例においては、次のような修正動作を行う
ように構成している。すなわち、第3図において、T。
In the optimal operating capacity VOp determined by the above formula (1), the outlet temperature T of the cold/hot water generator 1 is set within a predetermined temperature range depending on the external weather conditions such as the outside temperature and the internal load such as the number of people inside the room. Therefore, in one embodiment of the present invention, the following correction operation is performed. Namely, in FIG. 3, T.

は下限設定水温、T1は上限設定水温であシ、出口水温
Tが線分Aのように上限設定水温T、を超えている時間
1+が所定の時間ts(例えば3分)よシも短かい(す
なわちt+ (ts )ときには容量Vは変えず、一方
、線分Bのように同時間t、が上記所定の時間tsより
長い(tv > ts )ときには、冷温水発生装置t
 1の容量Vを所定の容量減少量Δθtだけ減じるよう
Kする。また、線分Cのようにt= < tsのときは
容量Vは変えず、線分りのように1. > 1.のとき
には、逆に所定の容量増加量ΔV、だけ増加させて常に
出口水温Tを上記上限及び下限水温T、 、 T、の範
囲内に維持するように構成される。
is the lower limit set water temperature, T1 is the upper limit set water temperature, and the time 1+ during which the outlet water temperature T exceeds the upper limit set water temperature T as shown in line segment A is shorter than the predetermined time ts (for example, 3 minutes). (That is, when t+ (ts), the capacity V remains unchanged; on the other hand, when the same time t is longer than the predetermined time ts as in line segment B (tv > ts), the cold/hot water generator t
K so that the capacitance V of 1 is reduced by a predetermined capacitance reduction amount Δθt. Also, when t=<ts, as in the line segment C, the capacitance V is not changed, and as in the line segment, 1. > 1. When , on the contrary, the outlet water temperature T is always maintained within the range of the upper and lower limit water temperatures T, , T, by increasing the capacity by a predetermined capacity increase amount ΔV.

また、第4図に示すように、さらに出口水温Tが上昇し
、第2の上限設定水温T6を超えた場合には、線分Eの
ように超えている時間t、が上記設定時間tsよりも短
かい(−jなわちt、<ts)ときは何の動作変化も起
こさず、線分Fのように上記第2の上限設定水温T6を
超えている時間t6が設定時間tsよりも長いとき、す
なわちts) tsのときは、冷温水発生装置1の容量
Vを零にする。つまり、停止させるよう構成されている
。″また、水温が異常に高くなp、線分Gのように第3
の上限設定水温T、を超えたときには、上記冷温水発生
装置1は直ちに停止される。
In addition, as shown in FIG. 4, when the outlet water temperature T further increases and exceeds the second upper limit set water temperature T6, the time t exceeds the above set time ts as shown by the line segment E. When is also short (-j, that is, t, <ts), no change in operation occurs, and as shown in line segment F, the time t6 during which the water temperature exceeds the second upper limit set water temperature T6 is longer than the set time ts. (i.e., ts) At the time of ts, the capacity V of the cold/hot water generator 1 is made zero. In other words, it is configured to stop. ``Also, if the water temperature is abnormally high, p, the third line segment G,
When the upper limit set water temperature T is exceeded, the cold/hot water generator 1 is immediately stopped.

一方、上述のような条件で一旦停止した冷温水発生装置
1は、上記目標制御水温T4よシ低くなると、停止した
ときの容量から所定の容量減少量Δv4だけ減じた容量
にて再起動される。すなわち、第4図■に示す如(、線
分Hは線分Gで示される停止容量vGで停止してこの停
止容量vGよシ上記所定容量減少量ΔV、だけ少ない容
量(V、−ΔV、)を再起動容量vHとする一定容量ら
れた再起動容量V、・を表わす。
On the other hand, when the cold/hot water generator 1 that has been temporarily stopped under the above-mentioned conditions becomes lower than the target control water temperature T4, it is restarted with a capacity that is reduced by a predetermined capacity reduction amount Δv4 from the capacity when it was stopped. . That is, as shown in FIG. ) is the restart capacity vH, and represents the restart capacity V, .

なお、上記実施例において空調システムの制御方法は暖
房運転時について説明したが、冷房運転時でも同様の制
御が行えることは自明である。
In the above embodiments, the method for controlling the air conditioning system has been described for the heating operation, but it is obvious that the same control can be performed during the cooling operation.

(qン 以上のようにこの発明によれば、空調システムの負荷に
応じた容量に基づいて冷温水発生装置を運転制御するこ
とによって、非常に効率の高い空調システム制御を行う
ことができ、その結果、#空調システムの性能を向上さ
せ、かつ省エネルギーの大なる効果が得られる。
(As described above, according to the present invention, by controlling the operation of the cold/hot water generator based on the capacity according to the load of the air conditioning system, it is possible to control the air conditioning system with very high efficiency. As a result, the performance of the air conditioning system can be improved and significant energy savings can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す空調システムのブロ
ック構成図、第2図、第3図、第4図はそれぞれ初期起
動時、通常運転時及び停止時・再起動時の動作特性図で
ある。 l・・・冷温水発生装置、2・・・ファンコイルユニッ
ト、3・・・循環ポンプ、4.訃・・水配管、6・・・
制御装置、7・・・出口水温センサ、T1〜T、・・・
出口水温設定温度。 なお、図中同一符号は同−又は相当部分を示す。 代理人  葛 野 信 −(はが1名)(Iσ) 矛 21 f3図 (I) T7□ (T) ■ ℃2T、4−”ll− (1) (Elm) □L 第4図 1日 一τ □を 手続補正書(6定) 1、事件の表示   特願昭 57−89078号2、
発明の名称  Vi調システムの容量制御方法3、補正
をする者 事件との関係 特許出願人 代表者片由仁へ部 4、代理人 5、補正の内容 (1)明細書全文 (2)図面 6、補正の内容 (1)111111細書全文を別紙の通り補正する。 (2) []g3図(1m)  、第4Cffi (X
) ヲ別紙の通り補正する。 7、添付普類 (1)全文補正明細醤              1
通(2)補正図面                1
通(2) 明   細    書 1、発明の名称 空調システムの容量制御方法 2、特許請求の範囲 (1)  冷温水発生装置と、循環ポンプおよびファン
コイルユニットを閉ループ接続して構成された空調シス
テムに於いて、前記冷温水発生装置を容量制御可変形に
するとともに、この冷温水発生装置の入口もしくは出口
水温を検出する水温センサと、前記水温センサの出力を
入力として演算処理することにより前記冷温水発生装置
の冷温水発生量を制御する制御装置とを設け、前記制御
装置は前記温度センサの検出温度が設定水温T、に達す
るまでは全容量voで運転させるとともに単位時間当り
の水温変化Δθ1を測定し、設定水温T、からT4まで
の期間に於いては冷温水発生装置の冷温水発生量を容量
ΔVだけ減じさせるとともに単位時間当りの水温変化Δ
θ2を測定し、以後の運転に際し℃はに、Cを定数とし
て最適運転容量VopをVop=Vo−KXΔVxΔθ
、/(Δθ1−Δθり十〇として求めて冷温水発生装置
の冷温水発生量を制御することを特徴とする空調システ
ムの容量制御方法。 (2)前記制御装置は、冷温水発生装置の最適運転容量
Vopによる運転時に負荷の増減によって温度センサの
検出温度が規定時間以上にわたって設定温度を外れた場
合には、前記冷温水発生装置の発生容量を設定容量だけ
修正方向に変化させて運転することを特徴とする特許請
求の範囲第1項記載の空調システムの容量制御方法。 (3)前記制御装置は水温センナの検出温度が第1の上
限あるいは下限を超えてその状態を設定時間以上にわた
って持続した時および第2の上限あるいは下限を超えた
時には直ちに冷温水発生装置を停止させることを特徴と
する特許請求の範囲第1項記載の空調システムの容量制
御方法。 (4)前記制御装置は、冷温水発生装置の通常運転時に
於ける再起動に際しては、停止直前の運転容量から予じ
め決められた容量を減じた容量で運転することを特徴と
する特許請求の範囲第1項記載の空調システムの容量制
御方法。 3、発明の詳細な説明 この発明は0台(nは2以上の整数)の冷温水発生装置
からの冷温水を室内に据付けたm台(mは2以上の整数
)の負荷器例えばファンコイルユニットに循環して冷暖
房する空調システムの容量制御方法に関するものである
。 従来の空調システムにおいては、冷温水発生装置の運転
を最適制御する方法がいろいろと工夫し試られ℃きたに
もかかわらで、複数台の容量を最適制御する適切な方法
がな(、空調システム全体の効率を充分高められず、か
つ省エネルギー化を図ることができなかった。 この発明は、上記の点に着目して成されたもので、複数
台の冷温水発生装置を最適運転しシステム全体の効率化
と省エネルギー化を行うことができる空調システムゆ最
適制御方法を提供すること1 を目的としている。 以下、この発明の一実施例を第1図乃至第4図と共に説
明する。 第1図は空調システムの構成を示すブロック図で1図中
、■は冷温水を発生する冷温水発生装置で、複数台の装
置が互いに並列に出口側の水配管4及び入口側の水配管
5によって接続されている。 2は上記冷温水発生装置1で発生した冷温水で冷暖房を
行うファンコイルユニットで、複数台のユニットから構
成され、それぞれ上記水配g4.5によって並列に接続
されている。3は循環ポンプで、上記冷温水発生装置の
入口側にそれぞれ1台ずつ配設され、上記冷温水発生量
filから発生した冷温水を上記ファンコイルユニット
に強制循環させるよう構成されている。6は制御装置で
、上記冷温水発生装置1群の出口側近傍に備えられた水
温センサ7からの出力信号を入力し、上記複数台の冷温
水発生装置tl及び循環ポンプ3各々に0N10FFの
制御信号を送出するように構成されている。 次に、この発明の一実施例である容量制御方法について
、空調システムの暖房運転時を例に第2図に従って説明
する。 第2図は、冷温水発生装置1の初期起動時の特性を示す
もので、同図工は水温の時間的変化を。 同図■は上記水温の変化に対応した冷温水発生装置−■
の容量の変化特性を示すものである。 まず、初期起動時、冷温水発生装置lから循環流出する
循環水の出口水温Tは水温センサ7によって検出され、
第2図Iに示す如く、目標制御水温T4より相当低い温
度になっており、制御装置6は上記冷温水発生装置lを
全容量V。で運転するように制御する。 いま、上記目標制御水温T4より低い温度の上記出口水
温Tに対して第1及び第2の設定水温T+及びT2を設
定する。但し、第1の設定水温TI<第2の設定水温T
2である。出口水温Tが徐々に上昇するに伴ない、水温
センサ7で測定し工得られた上記第1の設定水in T
 rから第2の設定水温T2に達するまでの時間を測定
する。そのときの出口水温Tの単位時間当りの変化幅Δ
θ1を求める。 この出口水温Tが第2の設定水温T、になった時点で、
上記冷温水発生装置1の容量Vを容量Vの減少容量設定
値ΔV(第2図ではΔv−10%の例を示す)だけ減少
させた容量(V−ΔV)で運転し、上記第2の設定水温
T、から目標制御水温T4になるまでの時間を測定して
水温の単位時間肖りの変化幅Δθ2を求める。そして出
口水温Tを上記目標制御水温T4に維持するための最適
な運転容量を下記の式(1)から算出する。 ここで、Vop:最適運転容量 vo:全容量 ΔV :容量Vの減少容量設定値 Δθ1 =第1の設定水温T1から第2の設定水温T2
までの単位時間当 りの水温の変化幅 Δθ、 :第2の設定水温T2かも目標制御水温T、ま
での単位時間当り の水温の変化幅 に、C:定数 を表わす。 なお、第2図■において、水温の変化幅ΔθhΔθ、は
それぞれ、出口水温Tが設定点Ti + Ttになった
時点t1.t!における曲線の勾配で示される。 また、第2図■において1時点t、で容量VはΔ■だげ
減少し、容量(VO−ΔV)、すなわち全容量■。を1
00チとすればΔ■=10%として90%の容量で運転
される。さらに、上述の運転制御方式に基づい℃、時点
t4において容量Vは最適運転容量Vop、すなわち6
0%で運転するように制御されることが示されている。 次に、通常運転時の動作を第3図と共に説明する。 上述の式(1)で求めた最適運転容量Vopでは、外気
温などの外部気象条件と室内の人員などの内部負荷の変
動によって冷温水発生装置lの出口温度Tを所定の温度
範囲、9間に維持することが出来なくなる。そこで、こ
の発明の一実施例においては、次のような修正動作を行
うように構成している。 すなわち、第3図において、T3は下限設定水温、Tδ
は上限設定水温であり、出口水温Tが線分Aのように上
限設定水温T6を超えている時間t1が所定の時間ts
 (例えば3分)よりも短かい(すなわちtl(ts)
ときには容量Vは変えず。 一方、線分Bのように同時間t、が上記所定の時間t8
より長い(t2)ta)ときには、冷温水発生装置1の
容量Vを所定の容量減少量Δηだけ減じるようにする。 また、線分Cのようにtx<t8のときは容iVは変え
ず、線分りのようにt4)tsのときには、逆に所定の
容量増加量Δ■だけ増加させ℃常に出口水温Tを上記上
限及び下限水温Tm、Tnの範囲内に維持するように構
成される。 また、第4図に示すように、さらに出口水温Tが上昇し
、第2の上限設定水温T6を超えた場合には、線分Eの
ように超えている時間tllが上記設定時間t8よりも
短かい(すなわちtff(ts)ときは何の動作変化も
起こさず、線分Fのように上記第2の上限設定水温T6
 を超えている時間t6が設定時間tsよりも長いとき
、すなわちt、)tsのときは、冷温水発生装置1の容
量Vを零にする。 つまり、停止させるよう構成されている。また、水温が
異常に高くなり、線分Gのように第3の上限設定水温T
7を超えたときには、上記冷温水発生装置lは直ちに停
止される。 一方、上述のような条件で一旦停止した冷温水発生装置
1は、上記目標制御水温T4より低くなると、停止した
ときの容量から所定の容量減少量ΔV2だげ減じた容量
に℃再起動される。すなわち。 第4図■に示す如く、線分Hは線分Gで示される停止容
量VGで停止してこの停止容量VGより上記所定容量減
少量ΔV、だけ少ない容量(VG−Δv、)を再起動容
量VHとする一定容量を表わす。同様に線分H′は再起
動容量VH’−停止容量VG−所定容量減少量ΔV、と
なるように定められた再起動容量vH′を表わす。 なお、上記実施例において空調システムの制御方法は暖
房運転時について説明したが、冷房運転時でも同様の制
御が行えることは自明である。 以上のようにこの発明によれば、空調システムの負荷に
応じた容置に基づいて冷温水発生装置を運転制御するこ
とによって、非常に効率の高い空調システム制御を行う
ことができ、その結果、該空調システムの性能を向上さ
せ、かつ省エネルギーの大なる効果が得られる。 4、図面の簡単な説明 第1図はこの発明の一実施例を示す空調システムのブロ
ック構成図、第2図、第3図、第4図はそれぞれ初期起
動時1通常運転時及び停止時・再起動時の動作特性図で
ある。 1・・・・・・冷温水発生装置、2・・・・・・ファン
コイルユニット、3・・・・・・循環ポンプ、4.5・
・・・・・水配管、6・・・・・・制御装置、7・・・
・・・出口水温センサ、T+〜T7・・・・・・出口水
温設定温度。 なお1図中同一符号は同−又は相当部分を示す。 、111゜ :1・1 代理人 大 岩 増□雄 (外2名) 才 3 @ (■) □を 号 4 図 C■)
Fig. 1 is a block configuration diagram of an air conditioning system showing an embodiment of the present invention, and Figs. 2, 3, and 4 are operational characteristics diagrams at initial startup, normal operation, and stop/restart, respectively. It is. l...Cold/hot water generator, 2...Fan coil unit, 3...Circulation pump, 4. Death...Water piping, 6...
Control device, 7... Outlet water temperature sensor, T1-T,...
Outlet water temperature setting temperature. Note that the same reference numerals in the figures indicate the same or equivalent parts. Agent Makoto Kuzuno - (1 person) (Iσ) Spear 21 f3 figure (I) T7□ (T) ■ ℃2T, 4-”ll- (1) (Elm) □L Figure 4 1st day τ □ as procedural amendment (6th determination) 1. Indication of the case Patent Application No. 57-89078 2.
Title of the invention Capacity control method for Vi tone system 3, Relationship with the case of the person making the amendment Patent applicant Representative Kata Yuhito Department 4, Attorney 5 Contents of the amendment (1) Full text of the specification (2) Drawings 6, Contents of amendment (1) The entire text of the 111111 specifications will be amended as shown in the attached sheet. (2) []g3 figure (1m), 4th Cffi (X
) Correct as shown in the attached sheet. 7. Attached Puru (1) Full text correction details sauce 1
(2) Amended drawings 1
(2) Description 1, Name of the invention, Capacity control method for an air conditioning system 2, Claims (1) An air conditioning system configured by connecting a cold/hot water generator, a circulation pump, and a fan coil unit in a closed loop. The cold and hot water generator is made into a variable capacity control type, and a water temperature sensor is provided to detect the inlet or outlet water temperature of the cold and hot water generator, and the output of the water temperature sensor is input and processed to calculate the temperature of the cold and hot water. A control device for controlling the amount of cold and hot water generated by the generator is provided, and the control device operates at full capacity vo until the temperature detected by the temperature sensor reaches the set water temperature T, and controls the water temperature change Δθ1 per unit time. During the period from the set water temperature T to T4, the amount of cold and hot water generated by the cold and hot water generator is reduced by the capacity ΔV, and the water temperature change per unit time Δ
θ2 is measured, and during subsequent operation, the optimum operating capacity Vop is calculated using C as a constant.Vop=Vo−KXΔVxΔθ
A capacity control method for an air conditioning system, characterized in that the capacity control method for an air conditioning system is characterized in that the amount of cold and hot water generated by a cold and hot water generator is controlled by determining it as , /(Δθ1 - Δθ 10). When the temperature detected by the temperature sensor deviates from the set temperature for more than a specified time due to an increase or decrease in load during operation with the operating capacity Vop, the generation capacity of the cold/hot water generator is changed by the set capacity in the correcting direction and the operation is performed. A capacity control method for an air conditioning system according to claim 1, characterized in that: (3) the control device maintains this state for a set time or longer when the detected temperature of the water temperature sensor exceeds a first upper limit or a first lower limit; The capacity control method for an air conditioning system according to claim 1, characterized in that the cold/hot water generator is immediately stopped when the second upper limit or the second lower limit is exceeded.(4) The control device comprises: The air conditioner according to claim 1, characterized in that when restarting the cold/hot water generator during normal operation, the air conditioner is operated at a capacity that is a predetermined capacity subtracted from the operating capacity immediately before the stop. System capacity control method. 3. Detailed Description of the Invention This invention provides m units (m is an integer of 2 or more) installed indoors to supply cold/hot water from 0 (n is an integer of 2 or more) cold/hot water generators. This paper relates to a capacity control method for an air conditioning system that cools and heats water by circulating it through a load device such as a fan coil unit.In conventional air conditioning systems, various methods have been devised and tried to optimally control the operation of cold/hot water generators. However, there is no suitable method for optimally controlling the capacity of multiple air conditioning systems (it has not been possible to sufficiently increase the efficiency of the entire air conditioning system, and it has not been possible to achieve energy savings. This invention solves the above points. The objective is to provide an optimal control method for an air conditioning system that can optimize the operation of multiple cold/hot water generators and improve the efficiency and energy saving of the entire system. An embodiment of the present invention will be described below with reference to Figures 1 to 4. Figure 1 is a block diagram showing the configuration of an air conditioning system. A plurality of devices are connected in parallel to each other by a water pipe 4 on the outlet side and a water pipe 5 on the inlet side. Reference numeral 2 denotes a fan coil unit that performs air conditioning and heating using cold and hot water generated in the cold and hot water generating device 1, and a plurality of It consists of 3 units, each connected in parallel by the above-mentioned water distribution g4.5. 3 is a circulation pump, one unit each is arranged on the inlet side of the above-mentioned cold and hot water generator, and the above-mentioned cold and hot water generation amount The fan coil unit is configured to forcefully circulate cold and hot water generated from the fan coil unit. Reference numeral 6 denotes a control device which inputs an output signal from a water temperature sensor 7 provided near the outlet side of the first group of cold and hot water generators, and controls 0N10FF to each of the plurality of cold and hot water generators tl and the circulation pump 3. The device is configured to transmit a signal. Next, a capacity control method which is an embodiment of the present invention will be described with reference to FIG. 2, taking as an example the heating operation of the air conditioning system. Figure 2 shows the characteristics of the cold/hot water generator 1 when it is initially started up, and shows the temporal changes in water temperature. In the same figure, ■ is a cold/hot water generator that responds to the above changes in water temperature.
This shows the capacitance change characteristics of . First, at the time of initial startup, the outlet water temperature T of the circulating water flowing out from the cold/hot water generator l is detected by the water temperature sensor 7,
As shown in FIG. 2I, the temperature is considerably lower than the target control water temperature T4, and the control device 6 controls the cold/hot water generator 1 to the full capacity V. control to drive. Now, first and second set water temperatures T+ and T2 are set for the outlet water temperature T which is lower than the target control water temperature T4. However, first set water temperature TI<second set water temperature T
It is 2. As the outlet water temperature T gradually increases, the first set water in T obtained by measuring with the water temperature sensor 7 increases.
The time from r to reaching the second set water temperature T2 is measured. Change width Δ of outlet water temperature T at that time per unit time
Find θ1. When this outlet water temperature T reaches the second set water temperature T,
The capacity V of the cold/hot water generator 1 is operated at a capacity (V - ΔV) that is reduced by the reduced capacity set value ΔV of the capacity V (an example of Δv - 10% is shown in Fig. 2). The time from the set water temperature T to the target control water temperature T4 is measured to determine the range of change Δθ2 in water temperature per unit time. Then, the optimum operating capacity for maintaining the outlet water temperature T at the target control water temperature T4 is calculated from the following equation (1). Here, Vop: Optimal operating capacity vo: Total capacity ΔV: Decrease capacity set value Δθ1 of capacity V = First set water temperature T1 to second set water temperature T2
C: constant represents the range of change in water temperature per unit time from the second set water temperature T2 to the target control water temperature T. In addition, in FIG. 2 (■), the range of change in water temperature ΔθhΔθ is the time t1 when the outlet water temperature T reaches the set point Ti + Tt, respectively. T! is indicated by the slope of the curve at . In addition, in Figure 2 ■, at one point in time t, the capacity V decreases by Δ■, and the capacity (VO - ΔV), that is, the total capacity ■. 1
If it is 00chi, then Δ■=10% and it will be operated at 90% capacity. Furthermore, based on the above-mentioned operation control method, at temperature t4, the capacity V is the optimum operating capacity Vop, that is, 6
It is shown that it is controlled to operate at 0%. Next, the operation during normal operation will be explained with reference to FIG. In the optimum operating capacity Vop determined by the above equation (1), the outlet temperature T of the cold/hot water generator l is adjusted within a predetermined temperature range for 9 hours depending on external weather conditions such as outside temperature and internal load changes such as indoor personnel. It becomes impossible to maintain it. Therefore, one embodiment of the present invention is configured to perform the following correction operation. That is, in FIG. 3, T3 is the lower limit set water temperature, Tδ
is the upper limit set water temperature, and the time t1 during which the outlet water temperature T exceeds the upper limit set water temperature T6 as shown by line segment A is the predetermined time ts.
(e.g. 3 minutes) (i.e. tl(ts)
Sometimes the capacity V remains unchanged. On the other hand, as in line segment B, the same time t is the predetermined time t8.
When the time is longer (t2)ta), the capacity V of the cold/hot water generator 1 is reduced by a predetermined capacity reduction amount Δη. Also, when tx < t8 as in the line segment C, the capacity iV is not changed, and when t4)ts as in the line segment, on the contrary, it is increased by a predetermined capacity increase amount Δ■ and the outlet water temperature T is always kept above the It is configured to maintain the water temperature within a range of upper and lower limits Tm and Tn. Moreover, as shown in FIG. 4, when the outlet water temperature T further increases and exceeds the second upper limit set water temperature T6, the time tll exceeds the set time t8 as shown by the line segment E. When it is short (that is, tff (ts), no change in operation occurs and the second upper limit set water temperature T6 is reached as shown by line segment F.
When the time t6 exceeding the set time ts is longer than the set time ts, that is, when t, )ts, the capacity V of the cold/hot water generator 1 is made zero. In other words, it is configured to stop. In addition, if the water temperature becomes abnormally high, the third upper limit water temperature T is set as indicated by line segment G.
When the temperature exceeds 7, the cold/hot water generator 1 is immediately stopped. On the other hand, when the cold/hot water generator 1 that has been temporarily stopped under the above-mentioned conditions becomes lower than the target control water temperature T4, it is restarted at a capacity reduced by a predetermined capacity reduction amount ΔV2 from the capacity when it was stopped. . Namely. As shown in Figure 4 ■, the line segment H stops at the stop capacity VG indicated by the line segment G, and the restart capacity (VG - Δv,) is smaller than the stop capacity VG by the above-mentioned predetermined capacity reduction amount ΔV. VH represents a constant capacity. Similarly, the line segment H' represents the restart capacity vH', which is determined as follows: restart capacity VH' - stop capacity VG - predetermined capacity reduction amount ΔV. In the above embodiments, the method for controlling the air conditioning system has been described for the heating operation, but it is obvious that the same control can be performed during the cooling operation. As described above, according to the present invention, by controlling the operation of the cold/hot water generator based on the capacity according to the load of the air conditioning system, it is possible to perform extremely efficient air conditioning system control, and as a result, The performance of the air conditioning system can be improved and a great effect of energy saving can be obtained. 4. Brief description of the drawings Fig. 1 is a block diagram of an air conditioning system showing an embodiment of the present invention, and Figs. FIG. 4 is a diagram showing operating characteristics at the time of restart. 1...Cold/hot water generator, 2...Fan coil unit, 3...Circulation pump, 4.5.
...Water piping, 6...Control device, 7...
...Outlet water temperature sensor, T+ to T7... Outlet water temperature setting temperature. Note that the same reference numerals in each figure indicate the same or corresponding parts. , 111゜: 1・1 Agent Masuo Oiwa (2 others) Sai 3 @ (■) □ 4 Figure C■)

Claims (4)

【特許請求の範囲】[Claims] (1)冷温水発生装置と、循環ポンプおよびファンコイ
ルユニットを閉ループ接続して構成された空調システム
に於いて、前記冷温水発生装置を容量制御可変形にする
とともに、この冷温水発生装置の入口もしくは出口水温
を検出する水温センサと、前記水温センサの出力を入力
として演算処理することによシ前記冷温水発生装置の冷
温水発生量を制御する制御装置とを設け、前記制御装置
は前記温度センサの検出温度が設定水温T、に達するま
では全容量v0で運転させるとともに単位時間当シの水
温変化Δθを測定し、設定水温T+からT、までの期間
に於いては冷温水発生装置の冷温水発生量を容量ΔVだ
け減じさせるとともに単位時間当シの水温変化Δθ、を
測定し、以後の運転に際してはに、Cを定数として最適
運転容量VopをVop = Vo −KXΔv×Δθ
、/(Δθ1−Δθ、)+Cとして求めて冷温水発生装
置の冷温水発生量を制御することを特徴とする空調シス
テムの容量制御方法。
(1) In an air conditioning system configured by connecting a cold/hot water generator, a circulation pump, and a fan coil unit in a closed loop, the cold/hot water generator is of a variable capacity control type, and the inlet of the cold/hot water generator is Alternatively, a water temperature sensor that detects the outlet water temperature and a control device that controls the amount of cold and hot water generated by the cold and hot water generating device by inputting and processing the output of the water temperature sensor are provided, and the control device controls the temperature of the water. Until the detected temperature of the sensor reaches the set water temperature T, the cold/hot water generator is operated at full capacity v0 and the water temperature change Δθ per unit time is measured. The amount of cold and hot water generated is reduced by the capacity ΔV, and the water temperature change Δθ per unit time is measured, and for subsequent operation, the optimum operating capacity Vop is calculated using C as a constant: Vop = Vo −KXΔv×Δθ
, /(Δθ1−Δθ,)+C to control the amount of cold and hot water generated by a cold and hot water generator.
(2)  前記制御装置は、冷温水発生装置の最適運転
容量Vopによる運転時に負荷の増減によって温度セン
サの検出温度が規定時間以上にわたって設定温度を外れ
た場合には、前記冷温水発生装置の発生容量を設定容量
だけ修正方向に変化させて運転することを特徴とする特
許請求の範囲第1項記載の空調システムの容量制御方法
(2) When the temperature detected by the temperature sensor deviates from the set temperature for more than a specified time due to an increase or decrease in load during operation of the cold/hot water generator at the optimum operating capacity Vop, the control device is configured to control the temperature of the cold/hot water generator. 2. A capacity control method for an air conditioning system according to claim 1, wherein the air conditioning system is operated by changing the capacity by a set capacity in a correcting direction.
(3)  前記制御装置は水温センサの検出温度が第1
の上限あるいは下限を超えてその状態を設定時間以上に
わたって持続した時および第2の上限あるいは下限を超
えた時には直ちに冷温水発生装置を停止させることを特
徴とする特許請求の範囲第1項記載の空調システムの容
量制御方法。
(3) The control device is configured such that the temperature detected by the water temperature sensor is the first
Claim 1, characterized in that when the second upper limit or lower limit is exceeded and the condition continues for a set time or longer, and when the second upper limit or lower limit is exceeded, the cold/hot water generator is immediately stopped. How to control the capacity of an air conditioning system.
(4)前記制御装置は、冷温水発生装置の通常運転時に
於ける再起動に際しては、停止直前の運転容量から予じ
め決められた容量を減じた容量で運転することを特徴と
する特許請求の範囲第1項記載の空調システムの容量制
御方法。
(4) A patent claim characterized in that, when restarting the cold/hot water generator during normal operation, the control device operates at a capacity that is obtained by subtracting a predetermined capacity from the operating capacity immediately before stopping. The method for controlling the capacity of an air conditioning system according to item 1.
JP57089073A 1982-05-24 1982-05-24 Capacity control of airconditioning system Pending JPS58205032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57089073A JPS58205032A (en) 1982-05-24 1982-05-24 Capacity control of airconditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57089073A JPS58205032A (en) 1982-05-24 1982-05-24 Capacity control of airconditioning system

Publications (1)

Publication Number Publication Date
JPS58205032A true JPS58205032A (en) 1983-11-29

Family

ID=13960671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57089073A Pending JPS58205032A (en) 1982-05-24 1982-05-24 Capacity control of airconditioning system

Country Status (1)

Country Link
JP (1) JPS58205032A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113108393A (en) * 2021-05-31 2021-07-13 南通华信中央空调有限公司 Energy adjusting method for air-conditioning water system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113108393A (en) * 2021-05-31 2021-07-13 南通华信中央空调有限公司 Energy adjusting method for air-conditioning water system
CN113108393B (en) * 2021-05-31 2022-04-12 南通华信中央空调有限公司 Energy adjusting method for air-conditioning water system

Similar Documents

Publication Publication Date Title
JP5515166B2 (en) Heat source system
JP6644559B2 (en) Heat source control system, control method and control device
JP2013170753A (en) Refrigerator system
JP2007147094A (en) Method of operating air conditioning equipment
JP2001241735A (en) Air conditioning system and its controlling method
JPS58205032A (en) Capacity control of airconditioning system
JPH0666463A (en) Controller for number of heat source apparatus
JPS5921933A (en) Air conditioner
GB2059646A (en) Microcomputer control for supplemental heating in a heat pump
JP3087998B2 (en) Control system for absorption type cold / hot water generator
JP3411098B2 (en) Air conditioning equipment
JPH0443239A (en) Operating method for heat storage type water heat source air conditioning system
JPH0557506B2 (en)
JPS5919257B2 (en) How to control the flow rate of a water cooler/heater pump
JP3549306B2 (en) Optimal start control device for air conditioner
JP2000154931A (en) Unit for computing set value of supply air temperature for air conditioner
JP4291116B2 (en) Operation number control device and method
JPH1096544A (en) Controller for cold water temperature and cold water amount in heat storage water tank
JPS5878043A (en) Control system of air conditioning machine
JPH0424634B2 (en)
JPH07174436A (en) River water utilizing heat recovery system
JPH023100B2 (en)
JP3146027B2 (en) Ice heat storage type heat source device and heat storage amount control method thereof
JPH0127347B2 (en)
JPH0136018Y2 (en)