JPS58204357A - Method and apparatus of fluorescence x-ray analysis - Google Patents

Method and apparatus of fluorescence x-ray analysis

Info

Publication number
JPS58204357A
JPS58204357A JP57087657A JP8765782A JPS58204357A JP S58204357 A JPS58204357 A JP S58204357A JP 57087657 A JP57087657 A JP 57087657A JP 8765782 A JP8765782 A JP 8765782A JP S58204357 A JPS58204357 A JP S58204357A
Authority
JP
Japan
Prior art keywords
sample
rays
temperature
pressure
controlled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57087657A
Other languages
Japanese (ja)
Inventor
Toshiaki Takagishi
高岸 俊明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP57087657A priority Critical patent/JPS58204357A/en
Publication of JPS58204357A publication Critical patent/JPS58204357A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/076X-ray fluorescence

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To obtain an accurate measurement value eliminating the need for correction under any atomospherin condition by controlling the atomospheric pressure and temperature to remain constant in a passing space of primary X-rays and fluorescence X-rays radiated from a sample. CONSTITUTION:Air in an X-rays room 5 is circulated forcibly passing through a circulation passage 28 by operating a pump 31 and also, a part of the air is discharged outside from a ventilating pipe 41 through a throttle valve 42 passing through a sample room 8. The air circulating the passage 28 is dehumidified by a dehumidifier 30 at first and the humidity is controlled to a constant valve. Hereafter, the pressure is controlled by a pressure control valve 32 and moreover the temperature is controlled by a temperature control device 33. On one hand, X-rays are irradiated to a sample 11 from an X-ray generator 22 and the intensity of fluorescent X-rays radiated from said sample 11 is measured by a counter 23. Hereby, the accurate measuring value is obtained even under any atmospheric condition without correcting the factor giving the influence to a dose of the X-rays.

Description

【発明の詳細な説明】 本発明は、試料にX線(−次X線)を照射することによ
り試料から放射される螢光X線(二次X−)中の所定波
長の強度を湘1足し、その強度から試料中の所定元素の
含壱麺を祷る螢光X線分相方法およびその装置の改良に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention aims to reduce the intensity of a predetermined wavelength of fluorescent X-rays (secondary X-) emitted from a sample by irradiating the sample with X-rays (-order X-rays). In addition, the present invention relates to an improvement of a fluorescent X-ray phase separation method and apparatus for determining the presence of a predetermined element in a sample based on its intensity.

一般に、If料中の所定元素、例えは石油精製品中の健
黄分の含有量を測定する方法として、螢光X線分析法が
知られている。この方法は、XWI(−次Xim)を試
料に照射し、その試料から放射さ7するll光X@(二
次X線)のうち所定波長の螢光X線強度を6111定し
、その強度から試料中の所定元素の含有mを求めるもの
である。具体的には、所足tBi長の螢光X線強度から
所定元素の含有蓋を求めるに当って、予め所定元素のも
有菫か解っている籾数の標準試料を辿(定し、これらの
沖1定餉と1a準試料の含有量とから所定の関保式(検
量線という)を作欲し、この検量線を用いて実際の試料
についての含有蓋を求めるものである。
In general, a fluorescent X-ray analysis method is known as a method for measuring the content of a predetermined element in an If material, for example, a healthy yellow component in a refined petroleum product. This method irradiates a sample with XWI (-order Xim), determines the fluorescence X-ray intensity of a predetermined wavelength among the ll light X@ (secondary X-rays) emitted from the sample, and The content m of a predetermined element in the sample is determined from Specifically, in determining the content of a given element from the fluorescent X-ray intensity of the required length tBi, we trace standard samples of the number of paddy grains in which it is known in advance whether the given element is violet or not. A predetermined Sekiho formula (referred to as a calibration curve) is created from the Oki 1 constant value and the content of the 1a quasi-sample, and this calibration curve is used to determine the content of the actual sample.

しかし、このような螢光X線分析法に用いられる装置け
、試別に照射されるX線および試料から放射される螢光
X線が大気に通じた空気層を通る榊造のため、測定イー
が大気条件に影響されやすい。
However, with the equipment used for such fluorescent X-ray analysis, the X-rays irradiated separately and the fluorescent X-rays emitted from the sample pass through an air layer that communicates with the atmosphere, making measurement difficult. is susceptible to atmospheric conditions.

これは、Xkおよび螢光x伽が空気層を通過する際、そ
の空気層における9気分子との条突により減表されるが
、大気条件が変成(すると、空気密度が変化し、その結
果法[itか変化することが最大の要因であると考えら
れている。
When Xk and fluorescence Changes in the law are thought to be the biggest factor.

通常、空気@度は温度と圧力(気圧)によって変化する
ことが明らかである。そのため、従来では、これらの要
因のうち、圧力よりも温度が螢光X線分析に与える影響
が大きいものと考え、温度補正のみを行っていたのが現
状である。しかしながら、このような温度補正は、極め
てやっかいな計舞を必要とするはかりでなく、wsI?
iL的にも榛雑化してしまう欠漬がある。
Generally, it is clear that air temperature varies with temperature and pressure (atmospheric pressure). Therefore, conventionally, among these factors, temperature has been considered to have a greater influence on fluorescent X-ray analysis than pressure, and at present only temperature correction has been performed. However, such temperature correction does not require very complicated planning, and wsI?
There is also a lack of clutter in iL.

本発明の目的は、いかなる大気条件のもとでも補正か不
要な螢光X線分析力法およびその装置を提供することに
ある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a fluorescent X-ray analytical power method and apparatus that does not require correction under any atmospheric conditions.

そのため、本発明に係る方法では、試INK照射される
一次XIlおよび試料から放射される螢光Xm(二次X
#)の通過空間における気圧および温度を一定に制御し
、つま!llX&lの1量に影◆を4える因子が一定の
条件下において分析できるようにし、上記目的を達成し
ようとするものである。
Therefore, in the method according to the present invention, the primary XIl irradiated with the sample INK and the fluorescent light Xm (secondary X
#) The air pressure and temperature in the passage space are controlled to be constant, and Tsumu! The objective is to achieve the above objective by making it possible to analyze factors that affect the amount of llX&l under certain conditions.

また、本発明に係る装置では、試別、この試別に対して
Xkを照射するX@発生手段および試料から放射される
螢光X線の強度を1111定する測定手段を、試料収納
槽内へ収納し、この試料収納槽の内部の気圧およびtM
度を一定にIIt制御する手段を設け、これによシX線
の線麺に影響を与える試料収納槽の気圧および温度の因
子を一定にし、上記目的を達成しようとするものである
In addition, in the apparatus according to the present invention, the sample, the X@ generating means for irradiating Xk on the sample, and the measuring means for determining the intensity of fluorescent X-rays emitted from the sample are placed in the sample storage tank. the internal pressure and tM of this sample storage tank.
In order to achieve the above object, a means is provided to control the temperature to a constant level, thereby keeping the atmospheric pressure and temperature factors of the sample storage tank, which affect the X-ray beams, constant.

以下、本発明の実施例を図面について説明する。Embodiments of the present invention will be described below with reference to the drawings.

図は螢光X@分析装置の一実施例を示している。The figure shows an example of a fluorescent X@ analyzer.

−図において、試料収納mlは、上面を開口した円筒状
の槽本体2と、この槽本体2の開口に被嵌された蓋体3
とから構成され、前記槽本体2の内周面に環状の**台
4か一体に成形されている。
- In the figure, the sample storage ml consists of a cylindrical tank body 2 with an open top and a lid 3 fitted into the opening of this tank body 2.
An annular stand 4 is integrally formed on the inner peripheral surface of the tank body 2.

載置台4の上部中心には環状の凹s5が形成され、この
凹部5に、前記槽本体2の内部を上下に仕切る試料容器
6がシールリング7を介して着脱自在に支持され、その
上方にE料率8が、下方KXIi室9がそわそれ構成さ
れている。
An annular recess s5 is formed in the center of the upper part of the mounting table 4, and a sample container 6 that partitions the interior of the tank body 2 into upper and lower parts is removably supported in this recess 5 via a seal ring 7. The E rate 8 is composed of the lower KXIi chamber 9.

前記試料容器6は、内部に試料11を収納する容体12
と、この容体12の上面に被嵌された蓋体13とから檜
成さ名ている。前記容体12Fi、上底面が開口さねた
伽平内筒状に形成され、その底面開口部に例えばポリエ
ステル樹脂輯により約5μm程度の厚みに成形されたX
@透過シート(セルシート)14が張設されている。ま
た、前記蓋体13は、中央部が前記容体12の内径に嵌
合する径で下方へ膨出した形状に形成され、その中心に
逃げ穴15が形成されている。
The sample container 6 has a container 12 that stores the sample 11 therein.
and the lid 13 fitted on the top surface of the container 12, giving it the name Hinoki. The container 12Fi is formed in the shape of a flat inner cylinder with an open upper bottom surface, and an X molded with a thickness of about 5 μm from, for example, polyester resin at the bottom opening.
@A transparent sheet (cell sheet) 14 is stretched. Further, the lid body 13 is formed in such a shape that its central portion bulges downward with a diameter that fits into the inner diameter of the container body 12, and an escape hole 15 is formed in the center thereof.

また、前記XIl室9の内部には、前記試料ri器6の
セルシート14のやや下方位置にそれと平行でかつ周縁
が前記1ft台4に保持されたx!l透過シート(マイ
ラシー))21が、前記叡曹台4の一方側の斜面に前記
マイラシート21およびセルシート14を介して前記ト
狙11にX線を照射するX線発生手段としてのX線発生
器22が、前記載置台4の他方側の斜面に前記試料11
から放射きれる螢光x1wの強度を測定する測定手段と
してのカウンタ23が、そのカウンタ23とX吻発生t
’a22との間に圧力センサ24および温度センサ25
がそれぞれ設けられている。また、載置台4には、一方
側に前記マイラシート21によって仕切られたXll1
室9の上部室9Aと下部室9Bとにそれぞれ連通ずる流
路26が、他方側に前記X、I!1室9の上部室9Aと
下部室9Bとにそれぞれ連通する流路27がそれぞれ形
成され、この両派路26.27の間に微積12528が
接続されている。
Also, inside the XIl chamber 9, there is a x! A transparent sheet 21 serves as an X-ray generating means for irradiating X-rays to the target 11 on the slope of one side of the tabletop 4 via the Mylar sheet 21 and the cell sheet 14. A generator 22 is arranged to place the sample 11 on the slope of the other side of the mounting table 4.
The counter 23 as a measuring means for measuring the intensity of the fluorescent light x1w emitted from the
A pressure sensor 24 and a temperature sensor 25 between 'a22
are provided for each. The mounting table 4 also has an Xll1 partitioned on one side by the mylar sheet 21.
A flow path 26 communicating with the upper chamber 9A and the lower chamber 9B of the chamber 9 is provided on the other side with the above-mentioned X, I! Flow paths 27 are formed that communicate with the upper chamber 9A and lower chamber 9B of the first chamber 9, respectively, and a differential volume 12528 is connected between the two branch paths 26,27.

oh壌絡路28は、流路2611から流路27@へ向っ
て、開閉弁29、除湿装ff130、ポンプ31、圧力
制御弁32、温度111+御装置33が順に設けられ、
そのポンプ31によってX−室9の9気が強制的に循環
されるようになっている。前記除湿装置l1130は、
循環路28を通る空気の湿度を一定にth hするもの
で、例えにドライヤー等が用いられている。また、前記
圧力制御弁32は、圧力設定器34からの出力によりf
lil制御されている。圧力設定器34は、設定圧力と
前記圧力センサ24によって検出された圧力とを比較し
、その差によってIII記圧力制麹弁32を制御するも
ので、任意に圧力を設定でき、かつ圧力センサ24で検
出された圧力測定値をデジタル表示させることができる
The oh soil connection path 28 is provided with an on-off valve 29, a dehumidifier ff130, a pump 31, a pressure control valve 32, a temperature 111+control device 33 in order from the flow path 2611 to the flow path 27@.
The pump 31 forcibly circulates the air in the X-chamber 9. The dehumidifier l1130 is
It is used to keep the humidity of the air passing through the circulation path 28 constant, such as a dryer. Further, the pressure control valve 32 is operated at f by the output from the pressure setting device 34.
lil controlled. The pressure setting device 34 compares the set pressure with the pressure detected by the pressure sensor 24 and controls the pressure control valve 32 according to the difference. The pressure measurement values detected can be displayed digitally.

更に、前記温度制御装置33Fi、内部に前記循環路2
8と通じる連通管を螺旋状に配置したウォータジャケッ
ト33Aと、ウォータジャケット33Aから排出された
水を貯えその水温を一定0温度に制御する恒温水槽33
Bと、この恒温水槽33Bに貯えられた水を前記ウォー
タジャケット33人に循環させる47ゾ33Cとから構
成されている。
Furthermore, the temperature control device 33Fi includes the circulation path 2 therein.
8, a water jacket 33A in which a communicating pipe is arranged in a spiral pattern, and a constant temperature water tank 33 that stores water discharged from the water jacket 33A and controls the water temperature to a constant 0 temperature.
B, and a 47zo 33C that circulates water stored in the constant temperature water tank 33B to the water jacket 33.

前記恒温水槽33Bの水温は、温度設定器35からの出
力によ多制御されている。温度設定器35は、設定温度
と前記温度センサ25によって検出・l、i、。
The water temperature of the constant temperature water tank 33B is controlled by the output from the temperature setting device 35. The temperature setting device 35 detects the set temperature and the temperature sensor 25.

された温度とを比較し、その差によって前記恒温水槽3
3Bの水温を制御するもので、任意に温度を設定でき、
かつ温度センサ25で検出された潟&測定値をデジタル
表示させることかできる。
The temperature of the constant temperature water tank 3 is compared based on the difference.
It controls the water temperature of 3B, and the temperature can be set arbitrarily.
Additionally, the temperature and measured values detected by the temperature sensor 25 can be displayed digitally.

また、前記試料室8には、その−側壁に試料室8と大気
とを連通する換気管41が、他側壁に絞り弁42を介し
て試刺室8と前記ウォータジャケット33Aの排出側の
循環路28とを連通ずる分岐管43が七名ぞれ連結され
ている。
In addition, in the sample chamber 8, a ventilation pipe 41 for communicating the sample chamber 8 and the atmosphere is provided on one side wall of the sample chamber 8, and a ventilation pipe 41 is provided on the other side wall of the sample chamber 8 through a throttle valve 42 for circulation between the sample chamber 8 and the discharge side of the water jacket 33A. Seven branch pipes 43 communicating with the passage 28 are connected to each other.

さて、このような構成において、ポンプ31を作動させ
ると、Xg室9の空気が循環路28を通って強制的に循
環されるとともに、その一部が絞シ弁42を介して試料
室8を通って換気管41から外部へ排出される。循環路
28を循環される空気は、まず除湿装fi30によって
除湿され&1.度か一定に制御された後、圧力制御弁3
2により圧力が制御され、更に温度制御装置33によシ
混度が制御される。ここで、xII室9の圧力が圧力セ
ンサ24により検出され、それが圧力設定器34に設定
された値と比較され、その差によって圧力制御弁32が
作動されることにより、X線量9の圧力は圧力設定器3
4に設定された値に一定に制御される。また、x@室9
の温度が温度センサ25にり検出され、それが温度設定
器35に設定された値と比較され、その差によって恒温
水槽33Bの水温が制御されることにより、X11m9
の温度は温度設定器35に設定された値に一定に制御さ
れる。その結果、X線発生器22からX線を試料11に
照射し、その試料11から放射される螢光X線の強度を
カウンタ23によって測定する場合、X線および螢光X
線の通過空間の気圧、温度および湿度がそれぞれ一定に
制御されているため、これらX線の線量に影譬を与える
因子について補正をすることなく、いかなる大気条件の
ものでも正確な測定値を得ることができる。
Now, in such a configuration, when the pump 31 is operated, the air in the Xg chamber 9 is forcibly circulated through the circulation path 28, and a part of the air is forced into the sample chamber 8 via the throttle valve 42. The air is discharged through the ventilation pipe 41 to the outside. The air circulated through the circulation path 28 is first dehumidified by the dehumidifier fi30 &1. After the pressure control valve 3 is controlled at a constant level,
2 controls the pressure, and a temperature control device 33 controls the degree of mixing. Here, the pressure in the xII chamber 9 is detected by the pressure sensor 24, it is compared with the value set in the pressure setting device 34, and the pressure control valve 32 is operated based on the difference, so that the pressure of the X-ray dose 9 is is pressure setting device 3
It is controlled to a constant value set to 4. Also, x@room 9
The temperature of
The temperature is controlled to be constant at the value set in the temperature setting device 35. As a result, when the sample 11 is irradiated with X-rays from the X-ray generator 22 and the intensity of the fluorescent X-rays emitted from the sample 11 is measured by the counter 23, the X-rays and the fluorescent
Because the air pressure, temperature, and humidity of the space through which the rays pass are controlled to be constant, accurate measurements can be obtained under any atmospheric conditions without making corrections for factors that affect the X-ray dose. be able to.

従って、本実施例では、試料収納槽1のX@皇9の空気
を循環させる循環器28を設け、この循環路28に除湿
鋏@30.圧力制御弁32および温度制御装置33をそ
れぞれ設けたので、これらの手段によシX線量9の湿度
、気圧および温度をそれぞれ一定に制御することができ
、従ってX線および螢光X線の通過空間の湿度、気圧お
よび温度がそれぞれ一定に制御されているため、これら
の湿度、気圧および温度について補正をすることなく、
いかなる大気条件のもとでも正確な測定値を得ることが
できる。
Therefore, in this embodiment, a circulator 28 for circulating the air of the sample storage tank 1 is provided, and a dehumidifying shears @30. Since the pressure control valve 32 and the temperature control device 33 are respectively provided, the humidity, pressure and temperature of the X-ray dose 9 can be controlled to be constant by these means, respectively, so that the passage of X-rays and fluorescent X-rays is controlled. Since the humidity, atmospheric pressure, and temperature of the space are controlled to be constant, there is no need to compensate for these humidity, atmospheric pressure, and temperature.
Accurate measurements can be obtained under any atmospheric conditions.

ま九、X@819に圧力センサ24および温度センサ2
5をそれぞれ設け、この圧力センサ24で検出された圧
力と圧力設定器34の設定値とを比較し、その差によっ
て前記圧力制御弁32を、温度セン?25によって検出
された温度と温IIL設定器35の設定値とを比較し、
その差によって前記温皺制fl鋏t33をそれぞれ制御
するようにしたので、各設定器34.35の設定値にX
線量9の圧力およびgA度を一定に自動制御することが
でき、従って各設定器34.35の設定値を選択すれば
、X線量9の圧力および温度を測定に当って理想的な状
MK!*持させることができる。しかも、圧力設定器3
4には圧力センサ24で検出された測定値が、温度設定
器35には温度センサ25で検出された測定値がそれぞ
れ表示されているので、これらの表示から装置が正常に
作動しているか否かを確認することができる。
Maku, pressure sensor 24 and temperature sensor 2 on X@819
The pressure detected by the pressure sensor 24 is compared with the set value of the pressure setting device 34, and based on the difference, the pressure control valve 32 is set to the temperature sensor or the temperature sensor. 25 and the set value of the temperature IIL setting device 35,
Since the temperature wrinkle control fl scissors t33 are respectively controlled based on the difference, the setting value of each setting device 34,35 is
The pressure and gA degree of the X-ray dose 9 can be automatically controlled to be constant, so by selecting the setting values of each setting device 34 and 35, the ideal state MK! *Can be held. Moreover, the pressure setting device 3
4 displays the measured value detected by the pressure sensor 24, and the temperature setting device 35 displays the measured value detected by the temperature sensor 25, so it can be determined from these displays whether or not the device is operating normally. You can check whether

まえ、試料容器6を、下面にセルシート14を張設した
容体12と、この容体12に嵌合される蓋体13とから
構成し、試料収納槽1に対して着脱自在としたので、洗
浄により再使用できる。しかも、蓋体13に逃げ穴15
を設けたので、高揮発性の試料11についても正確な測
定を行える。
First, the sample container 6 is composed of a container 12 with a cell sheet 14 stretched on the bottom surface and a lid 13 fitted to the container 12, and is detachable from the sample storage tank 1, so that it can be easily cleaned. can be reused. Moreover, the escape hole 15 in the lid body 13
, it is possible to accurately measure even the highly volatile sample 11.

通常、高揮発性の試料の#j定では、開放型の容器を使
用した場合軽質分の蒸発損失によって測定精度が低下し
、また密閉型容器を使用した場合軽質分の蒸気圧によっ
てセルシートが膨張し測定が不可能となることが多い。
Normally, when measuring #j for highly volatile samples, if an open container is used, the measurement accuracy will decrease due to evaporation loss of light components, and if a closed container is used, the cell sheet will be damaged due to the vapor pressure of light components. It often swells and becomes impossible to measure.

この点、本実施例の試料容器6では、嚢体13に逃は穴
15を設けであるため、その逃げ穴15によシ圧力の上
昇が抑えられ、かつ軽質分の蒸発が極力抑えられるため
、高揮発性の試料11についても正確な測定が行える。
In this regard, in the sample container 6 of this embodiment, since the escape hole 15 is provided in the sac 13, the rise in pressure is suppressed by the escape hole 15, and the evaporation of light components is suppressed as much as possible. , accurate measurement can be performed even for the highly volatile sample 11.

更に、試料収納槽1のX線量9に、試料容器6のセルシ
ート14のやや下方に位置してマイラシート21を張設
したので、セルシート14が破損して試料容器6内の試
料11が流出しても、マイラシート21によって受けら
れるから、試料容器6から流出した試料11がマイラシ
ート21によって仕切られた下部室9Bへ流入すること
がなく、従ってX線発生器22やカウンタ23等の汚損
も防止できる。
Furthermore, since a Mylar sheet 21 was placed over the X-ray dose 9 of the sample storage tank 1 at a position slightly below the cell sheet 14 of the sample container 6, the cell sheet 14 would be damaged and the sample 11 in the sample container 6 would be damaged. Even if the sample 11 flows out, it is caught by the Mylar sheet 21, so that the sample 11 flowing out from the sample container 6 does not flow into the lower chamber 9B partitioned by the Mylar sheet 21. Therefore, the X-ray generator 22, counter 23, etc. It can also prevent staining.

なお、上記実施例では、X線量9の空気を循環させ、そ
の循環路28に除湿装置t3o、圧力制御弁32および
温度制御装置33を設けたが、特にx6.を室9の空気
を循環させることなく、X線量9の内部にそれらの手段
を直接設けるようにしてもてはそれ程大きな影醤を与え
ないため、測定に当って温度および圧力を一定に制御す
れば充分正確な測定値を得ることができる。
In the above embodiment, air with an X-ray dose of 9 was circulated, and the circulation path 28 was provided with a dehumidifier t3o, a pressure control valve 32, and a temperature control device 33. If these means are provided directly inside the X-ray dose chamber 9 without circulating the air in the chamber 9, it will not have such a large influence, so the temperature and pressure should be controlled at a constant level during measurement. sufficiently accurate measurements can be obtained.

以上の通シ、本発明によれば、いがなる大気条件のもの
でも補正が不要な螢光X綜分析方法および装置を提供す
ることができる。
In summary, according to the present invention, it is possible to provide a fluorescence X-ray analysis method and apparatus that do not require correction even under different atmospheric conditions.

【図面の簡単な説明】[Brief explanation of drawings]

゛ ・、 図は本発明の螢光X線分析装置の一実施例を示す断面図
である。 1・・・試料収納槽、11・・・試料、22・・・X4
m発生手段としてのX線発生器、23・・・X線強度測
定手段としてのカウンタ、32・・・圧力制御弁、33
・・・温度制御装置。 代理人弁理土木下貫三
゛・The figure is a sectional view showing one embodiment of the fluorescent X-ray analyzer of the present invention. 1...sample storage tank, 11...sample, 22...X4
X-ray generator as m generation means, 23... Counter as X-ray intensity measurement means, 32... Pressure control valve, 33
...Temperature control device. Agent Patent Attorney Civil Engineer Kanzo Shimo

Claims (1)

【特許請求の範囲】 (11試料に一次X線1r照射し、その試料から放射さ
れる二次Xll1I中の所定t&長の強度を予め標準1
和から律ら名九検′j#線と比較し、試料中の所定元素
の含有量を測定する螢光X@分析力法において、前記−
次X線および二次X線の通過空間の気圧および温良を一
定に制御したことを41)徴とする螢光X線分析方法。 (2)試料を収納する試料収納槽と、この試料収納槽の
内部に設けられ前記試料に対して一次xli1を照射す
るX線発生手段と、前FlIt料収納槽の内部に設けら
れ前記X線発生手段から照射された一次X@にょ多試料
から放射される二次X縁を受けてその二次X#中の庖定
汲長の強度を1測する測定手段と、前に試刺収納格の内
部の気圧および温度を一定に制御する手段とを具体した
ことを特徴とする螢光X#分析[i
[Claims] (11 samples are irradiated with 1r of primary X-rays, and the intensity of the secondary
In the fluorescence
41) A fluorescent X-ray analysis method characterized by controlling the air pressure and temperature of the space through which the primary X-rays and secondary X-rays pass to be constant. (2) A sample storage tank for storing a sample; an X-ray generation means provided inside the sample storage tank for irradiating the sample with primary xli1; A measuring means for receiving the secondary X edge emitted from the primary X@Nyota sample irradiated from the generating means and measuring the intensity of the elongation length in the secondary X#, and a sample storage case in front. Fluorescent X# analysis [i
JP57087657A 1982-05-24 1982-05-24 Method and apparatus of fluorescence x-ray analysis Pending JPS58204357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57087657A JPS58204357A (en) 1982-05-24 1982-05-24 Method and apparatus of fluorescence x-ray analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57087657A JPS58204357A (en) 1982-05-24 1982-05-24 Method and apparatus of fluorescence x-ray analysis

Publications (1)

Publication Number Publication Date
JPS58204357A true JPS58204357A (en) 1983-11-29

Family

ID=13921024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57087657A Pending JPS58204357A (en) 1982-05-24 1982-05-24 Method and apparatus of fluorescence x-ray analysis

Country Status (1)

Country Link
JP (1) JPS58204357A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02234055A (en) * 1989-03-07 1990-09-17 Shimadzu Corp Fluorescent x-ray analyzing instrument
US5721759A (en) * 1994-11-14 1998-02-24 Ima Engineering Ltd. Oy Method and equipment for determining the content of an element
DE10242896B4 (en) * 2001-09-18 2007-08-02 Rigaku Industrial Corporation, Takatsuki Sample preprocessing device for X-ray fluorescence analysis and X-ray fluorescence spectrometer device
EP4296658A1 (en) * 2022-06-20 2023-12-27 Jeol Ltd. Sample container and measuring method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02234055A (en) * 1989-03-07 1990-09-17 Shimadzu Corp Fluorescent x-ray analyzing instrument
US5721759A (en) * 1994-11-14 1998-02-24 Ima Engineering Ltd. Oy Method and equipment for determining the content of an element
DE10242896B4 (en) * 2001-09-18 2007-08-02 Rigaku Industrial Corporation, Takatsuki Sample preprocessing device for X-ray fluorescence analysis and X-ray fluorescence spectrometer device
EP4296658A1 (en) * 2022-06-20 2023-12-27 Jeol Ltd. Sample container and measuring method

Similar Documents

Publication Publication Date Title
ES2252748T3 (en) SPECTROSCOPY OF QUANTITATIVE TRANSMISSION THAT USES SAMPLE SUPPORTS WITH NETWORKS.
EP1850111B1 (en) Measuring device for gravimetric moisture determination
US4407152A (en) Breath test simulator and method
JP6994216B2 (en) Moisture vapor transmission rate and mass change measuring device and its measuring method
US7404311B2 (en) Breath test simulator
FI113897B (en) Automatic exposure procedure and automatic exposure system
US20200124766A1 (en) Apparatus and method for radio-sonde temperature and humidity calibration using upper air simulation technology
EP0172725A2 (en) Measuring water vapour transmission through materials
Fox Jr Stable internal standard flame photometer for potassium and sodium analyses
JPS58204357A (en) Method and apparatus of fluorescence x-ray analysis
US6455787B1 (en) Method for determining the weights of liquid units, weighing insert and weighing arrangement
CN208799973U (en) A kind of air distributing device of low concentration calibrating gas
US2473553A (en) Method of and apparatus for measuring the film strength of liquids
CN109477801A (en) A kind of microfluid process water analyzer
US3448277A (en) Photoelectric absorption measurer having plunger for enclosing variable beam path lengths
US5320733A (en) Sensor system
DE4105440A1 (en) Climatic tester for electronic components and modules - uses at least two thermostatically controlled humidity chambers contg. saturated salt solns. at characteristic relative moistness levels
US1014842A (en) Method of and apparatus for testing paint.
US2495297A (en) Electrophoretic liquid analysis apparatus having a diaphragm and cylindrical lens inthe optic path
US3886057A (en) Cell useful for determining water vapor transmission rate or water content
JP7081851B1 (en) How to heat the environmental tester and the test tank of the environmental tester
USRE23653E (en) G stern
US20040099040A1 (en) Calibration method compensating for the concentration of water vapor
US5664252A (en) Apparatus for use in optimizing photographic film developer apparatus
JPS6157834A (en) Method of inspecting steam transmission characteristic of sheet material