JPS5820295A - Control of air-blasting rate in activate sludge process - Google Patents

Control of air-blasting rate in activate sludge process

Info

Publication number
JPS5820295A
JPS5820295A JP56119934A JP11993481A JPS5820295A JP S5820295 A JPS5820295 A JP S5820295A JP 56119934 A JP56119934 A JP 56119934A JP 11993481 A JP11993481 A JP 11993481A JP S5820295 A JPS5820295 A JP S5820295A
Authority
JP
Japan
Prior art keywords
aeration tank
amount
air
inflow
internal respiration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56119934A
Other languages
Japanese (ja)
Inventor
Akio Fujinawa
藤縄 昭男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP56119934A priority Critical patent/JPS5820295A/en
Publication of JPS5820295A publication Critical patent/JPS5820295A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Abstract

PURPOSE:To stabilize the formation of flocks, by operating the internal respiration period of microorganism in an aeration tank from an inflow amount of filthy water, and controlling an air-blasting rate in a manner such that a dissolved oxygen amount is in inverse proportion to said internal respiration period. CONSTITUTION:A fixed time is preset in a propagating reaction period-setting instrument 12, an air-blasting rate necessary for the stable formation of flocks at an internal respiration period by an inflow amount of filthy water fixed at a standard is preset in a required air-blasting rate-setting instrument 14, and a coefficient of oxygen transfer from bubbles to filthy water when air is blasted into the filthy water is preset in an oxygen-transferring coefficient-setting instrument 15. Each value is obtained from experimental data. In addition, the actually-measured capacity of a tank 2 is preset to an aeration tank's capacity- setting instrument 13. When a reference dissolved-oxygen amount (Do) setting instrument is arranged as a setting instrument for an operator 16, a value Do necessary for the stable formation of flocks at the internal respiration period by the fixed filthy water-inflow amount is set on the basis of experiment.

Description

【発明の詳細な説明】 本発明は、好気性微生物により下水あるいは産業廃水等
の汚水を処理する活性汚泥プロセスに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an activated sludge process for treating wastewater such as sewage or industrial wastewater using aerobic microorganisms.

活性汚泥法には種々のものがあるが、そのうちの標準活
性汚泥法について第1図を参照して説明する。流入汚水
Aは最初沈殿池1に流入され、ここで沈殿した浮遊物は
沈殿池汚泥Bとなって除去され汚泥処理施設に送られる
。最初沈殿池1の流出汚水Cは、活性汚泥(返送汚泥G
)とともにエアレーションタンク2へ流入される。エア
レーションタンク2では、タンク2の底部の片側に長手
方向に沿って散気装置3が設置されており、汚水の流れ
に直交する方向に行なわれる散気装置3かラノエアレー
ションにより汚水を旋回させ活性汚泥と混合させつつ、
汚水を入口から出口まで流す。
There are various types of activated sludge methods, among which the standard activated sludge method will be explained with reference to FIG. The inflowing sewage A first flows into the sedimentation tank 1, where the suspended matter that settles becomes sedimentation tank sludge B, which is removed and sent to a sludge treatment facility. Outflow sewage C from the initial settling tank 1 is activated sludge (return sludge G
) into the aeration tank 2. In the aeration tank 2, an aeration device 3 is installed along the longitudinal direction on one side of the bottom of the tank 2, and the sewage is swirled and activated by the aeration device 3 or lano aeration, which is carried out in a direction perpendicular to the flow of sewage. While mixing with sludge,
Drain waste water from the inlet to the outlet.

この混合液りは最終沈殿池4へ移送され、そこで浮遊物
が沈殿除去され、上澄水は処理水Eとなつ ゛て越流す
る。沈殿した浮遊物は、一部が余剰汚泥Fとして汚泥処
理施設へ送られる一方、残部が返送汚泥Gとしてエアレ
ーションタンク2へ循環移送されて再び流入汚水の生物
学的処理に使用される。
This mixed liquid is transferred to the final settling tank 4, where the suspended matter is precipitated and removed, and the supernatant water becomes treated water E and overflows. A part of the precipitated floating matter is sent to the sludge treatment facility as surplus sludge F, while the rest is circulated to the aeration tank 2 as return sludge G and used again for biological treatment of inflow sewage.

エアレーションタンク2内での微生物反応は、入口から
出口までの間に吸着→増殖→体内呼吸の順で進み、その
間に浮遊物が活性微生物によって摂取されて浮遊物分離
のための70ツクが生成する。そしてエアレーションタ
ンク2の長さ方向に沿って入口から出口までの溶存酸素
量(以下り。
The microbial reaction in the aeration tank 2 progresses in the order of adsorption → multiplication → internal respiration from the inlet to the outlet, and during this time, suspended matter is ingested by active microorganisms and 70 tsuku for suspended matter separation is generated. . The amount of dissolved oxygen from the inlet to the outlet along the length of the aeration tank 2 (see below).

と記す)を測定すると、第2図の実線の如き変化を示す
。領域■は微生物の増殖反応期に当たり、この時期は微
生物の酸素利用速度が大きいためり。
When measured, the change shown in the solid line in FIG. 2 is observed. Region ■ corresponds to the growth reaction period of microorganisms, and this is because the oxygen utilization rate of microorganisms is high during this period.

が減少している。領域■は微生物の体内呼吸反応期に当
たり、この時期は微生物の酸素利用速度が小さいためD
Oが増加し、かつ安定した値を示している。
is decreasing. Area ■ corresponds to the internal respiration reaction period of microorganisms, and the oxygen utilization rate of microorganisms is low during this period, so it is D.
O increases and shows a stable value.

従来の活性汚泥法では、エアレーションタンク2内での
所定位置でのDOを一定に保つことによ′す、処理水の
水質を安定化し、送気風量の無駄を省いている。すなわ
ち、エアレーションタンク2内で、第2図の領域■のD
Oがほとんど安定している領域にDo測定器5を設置し
、その信号によりDO調節計6を介して送風機7につな
がる送風量制御装置8を作動させることにより、DOが
一定に保たれるように送風量を制御している。
In the conventional activated sludge method, the quality of the treated water is stabilized by keeping the DO at a predetermined position in the aeration tank 2 constant, thereby eliminating wasted air flow. That is, in the aeration tank 2, area D in FIG.
A Do measuring device 5 is installed in an area where O is almost stable, and its signal operates an air flow control device 8 connected to a blower 7 via a DO controller 6, so that DO can be kept constant. The air flow rate is controlled.

しかしながら、実際のプロセスでは汚水の流入量が変動
する。例えば、流入量が増加した場合を考よると、エア
レーションタンク2内の汚水の流速が大きくなり、第2
図のDO曲線は実線から破線のように変化して微生物の
増殖反応期と体内呼吸反応期にそれぞれ対応する領域工
と■の領域■と■のように変化する。エアレーションタ
ンク2内の微生物の反応はDOと反応時間の積に比例し
て進行しているので、DOが一定に保たれたエアレーシ
ョンタンク2内では、流入量の増加は微生物の体内呼吸
反応期での反応を不十分なものにしてフロックの生成を
不安定にし、延いては処理水の水質を不安定にする問題
がある。一方、ゝ流入量が減少した場合には、DO一定
のエアレーションタンク2内では逆に微生物の体内呼吸
反応期での反応を過大なものにして、やはりフロックめ
生成を不安定にするとともに、無駄なエアレーションを
行なう問題がある。
However, in actual processes, the amount of wastewater flowing in fluctuates. For example, if we consider the case where the inflow rate increases, the flow rate of wastewater in the aeration tank 2 increases, and the
The DO curve in the figure changes from a solid line to a broken line, and changes as shown in areas (2) and (2) corresponding to the growth reaction period of microorganisms and the internal respiration reaction period, respectively. The reaction of microorganisms in the aeration tank 2 progresses in proportion to the product of DO and reaction time, so in the aeration tank 2 where the DO is kept constant, the increase in the amount of inflow occurs during the internal respiration reaction period of the microorganisms. There is a problem in that the reaction becomes insufficient, the formation of flocs becomes unstable, and the quality of the treated water becomes unstable. On the other hand, if the inflow rate decreases, in the aeration tank 2 where the DO is constant, the reaction of microorganisms during the internal respiration reaction period will be exaggerated, making the floc production unstable and causing waste. There is a problem with proper aeration.

本発明は活性汚泥法における上記問題に鑑みてなされた
もので、汚水流入量の変化に伴ってり。
The present invention was made in view of the above-mentioned problems in the activated sludge method, which are caused by changes in the amount of wastewater inflow.

を変化させることによ、す、フロックの生成を安定゛に
して処理水の水質を安定化するとともに、送風量の無駄
を省くことを目的とするものである。
By changing the flow rate, the purpose is to stabilize the formation of flocs and stabilize the quality of the treated water, as well as to avoid wasting the amount of air blown.

本発明者は、第2図に示される増殖反応期Iの時間、す
なわち、微生物の増殖反応工程完了までの時間(以下増
殖反応時間メいう)は、汚水流入量の如何によらずほぼ
一定していることを見出した。そこで、本発明者はこの
知見に基づき、微生物の体内呼吸反応期■の反応量、す
なわちDo X反応時間を汚水流入量の増減に拘らず一
定に保つことにより、フロックの生成を安定化させる本
発明をなすに至ったものである。
The present inventor has discovered that the time for the growth reaction phase I shown in FIG. I found out that Therefore, based on this knowledge, the present inventors developed a book that stabilizes floc production by keeping the reaction amount of microorganisms during the internal respiration reaction period (2), that is, the Do This led to the invention.

次に本発明を標準活性汚泥法に適用した実施例゛につい
て、その概略を示す第3図を参照して詳細に説明する。
Next, an embodiment in which the present invention is applied to a standard activated sludge method will be described in detail with reference to FIG. 3, which schematically shows the embodiment.

第1図と同様に最初沈殿池1、星アレージョンタンク2
および最終沈殿池4を備え、エアレーションタンク2の
底部にはその片側に長手方向に沿って散気装置3が設置
され、またエアレーションタンク2の第2図に示される
領域■のDOの変化勾配がほとんどない領域、通常は出
口側にDO測定器5が設置されている。
As shown in Figure 1, first sedimentation tank 1, star allersion tank 2
and a final settling tank 4, and an air diffuser 3 is installed along the longitudinal direction on one side of the bottom of the aeration tank 2, and the gradient of change in DO in the area (2) shown in FIG. A DO measuring device 5 is installed in an area where there is almost no room, usually on the exit side.

10は最初沈殿池1とエアレーションタンク2の間の汚
水経路中に設置された流入量測定器で、最初沈殿池1か
らの流出汚水量を測定し、その測定値信号を演算器11
へ出力する。12は微生物の増殖反応時間設定器、13
はエアレーションタンク容量設定器で、演算器11は汚
水流入量測定値信号U1増殖反応時間設定信号T□及び
エアレーションタンク容量設定信号Vを入力信号として
、次式によ°り微生物の体内呼吸反応時間T2を演算す
る。
Reference numeral 10 denotes an inflow measuring device installed in the sewage path between the first settling tank 1 and the aeration tank 2, which measures the amount of wastewater flowing out from the first settling tank 1, and transmits the measured value signal to the calculator 11.
Output to. 12 is a microorganism growth reaction time setting device; 13
is an aeration tank capacity setting device, and the calculator 11 uses the sewage inflow measurement value signal U1, the growth reaction time setting signal T□, and the aeration tank capacity setting signal V as input signals, and calculates the internal respiration reaction time of microorganisms according to the following formula. Calculate T2.

■ 2   U   1 14は微生物の体内呼吸反応期の必要送気量設定器、1
5は酸素移動係数設定器である。16は演算器で、演算
器11により演算され出力される体内呼吸反応時間信号
T2 、体内呼吸反応期の必要送気量設定信号W及び酸
素移動係数設定信号Kを入力信号として、次式によりD
o設定値を演算する。
■ 2 U 1 14 is a necessary air supply amount setting device for the internal respiratory reaction period of microorganisms, 1
5 is an oxygen transfer coefficient setting device. Reference numeral 16 denotes a calculation unit, which uses the internal respiration reaction time signal T2 calculated and outputted by the calculation unit 11, the necessary air supply amount setting signal W for the internal respiration reaction period, and the oxygen transfer coefficient setting signal K as input signals, and calculates D according to the following equation.
o Calculate the set value.

信号を入力し、所定の時間(例えば増殖反応時間T□)
遅れでDo測定器5からDo測定値信号を入力してDo
設定値とDo測定値とを比較し、D。
Input the signal and wait for a predetermined time (e.g. proliferation reaction time T□)
Due to the delay, the Do measurement value signal is input from the Do measurement device 5 and the Do
Compare the set value and Do measurement value, D.

測定値の方が大きい場合には、散気装置3からの送風量
が小さくなるように送風機7につながる送風量制御装置
8を作動させる信号を出力し、逆にDO測定値の方が小
さい場合には、送風量が大きくなるように送風量制御装
置8を作動させる信号を出力してDo設定値とDo測定
値とが等しくなるように送風量制御装置8に信号を出方
する。
If the measured value is larger, a signal is output to activate the airflow rate control device 8 connected to the blower 7 so that the airflow rate from the air diffuser 3 is reduced; conversely, if the DO measurement value is smaller In this case, a signal is outputted to operate the airflow rate control device 8 so that the airflow rate increases, and a signal is output to the airflow rate control device 8 so that the Do setting value and the Do measurement value become equal.

また、演算器16は、入力信号として必要送気、置設定
信号と酸素移動係数設定信号との代りに、体内呼吸反応
期での基準’Do設定信号Dob  を入力し、次式に
よりDo設定値を演算するように構成してもよい。
In addition, the calculator 16 inputs the reference 'Do setting signal Dob in the internal respiratory reaction period as an input signal instead of the necessary air supply and position setting signal and the oxygen transfer coefficient setting signal, and calculates the Do setting value by the following equation. It may be configured to calculate.

Ob 2 一部構成の本発明において、各設定器12ないし15は
予め設定しておく。すなわち、増殖反応時間設定器12
には、第2図に示される領域Iに要する時間を、必要送
気量設定器14には基準に定めた汚水流入量において体
内呼吸反応期でフロックを安定に生成するために必要と
される送気量を、酸素移動係数設定器15には汚水に送
気したときの気泡から汚水への酸素移動係数を、それぞ
れ実験データから求めて設定する。また、エアレーショ
ンタンク容量設定器13には実測したタンク2の容量を
設定する。また、演算器16への設定器として基準Do
設定器を設&才た場合には、基準に定めた汚水流入量に
おいて体内呼吸反応期で70ツクを安定に生成するため
に必要とされるDO値を実験データから求めて設定して
おく。
Ob 2 In the present invention having a partial configuration, each setting device 12 to 15 is set in advance. That is, the proliferation reaction time setting device 12
The required air flow rate setting device 14 calculates the time required for region I shown in FIG. The amount of air to be supplied is set in the oxygen transfer coefficient setting device 15 by determining the oxygen transfer coefficient from bubbles to wastewater when air is sent to wastewater, respectively, from experimental data. Further, the actually measured capacity of the tank 2 is set in the aeration tank capacity setting device 13. Also, the reference Do is used as a setting device for the calculator 16.
When a setting device is installed and used, the DO value required to stably generate 70 tsuku during the internal respiratory reaction period at the inflow rate of sewage defined by the standard is determined and set from experimental data.

今、ある流量の汚水Aが流入してきたとする。Suppose now that a certain flow rate of sewage A is flowing in.

まず最初沈殿池1に入り、そこで沈殿した浮遊物は沈殿
池汚泥Bとして除去され、最初沈殿池−1から流出した
汚水Cは流入量測定器10を通り、返送汚泥Gとともに
エアレーションタンク2に流入される。エアレーション
タンク2では、汚水と活性汚泥の混合液が、散気装置3
からのエアレーションにより旋回されて混合されつつ入
口から出口に向って進行する。一方、流入量測定器10
の測定信号は演算器11に入力されて、その流入量での
体内呼吸反応時間T2が演算、される。その演算信号が
演算器16に入力されてその流入量でのDO設定値が演
算される。Do調節計6ではDo測量器5からの出力信
号と、所定時間前の演算器16の出力信号とを入力して
比較し、送風量制御装置8を介して送風機7から散気装
置3への送風量を制御しているので、エアレーションタ
ンク2内の送風量は、Do測定器5でのDoが、所定時
間前に流入量測定器10を通過し体内呼吸期に到達しつ
つある汚水の流入量に対応゛するように制御されている
。したがって、汚水Cの流入量が増加した場合には、所
定時間後にその流入量に対応するようにエアレーション
タンク2内のDo測定器5の位置でのDoが増加され、
逆に流入量が減少した場合には、所定時間後のDoが減
少される。
First, it enters the sedimentation tank 1, and the suspended matter precipitated there is removed as sedimentation tank sludge B. The sewage C that first flows out from the sedimentation tank -1 passes through the inflow meter 10 and flows into the aeration tank 2 together with the return sludge G. be done. In the aeration tank 2, the mixed liquid of sewage and activated sludge is transferred to the air diffuser 3.
It progresses from the inlet to the outlet while being swirled and mixed by aeration from the inlet. On the other hand, the inflow measuring device 10
The measurement signal is input to the calculator 11, and the internal respiration reaction time T2 at that inflow amount is calculated. The calculation signal is input to the calculation unit 16, and the DO setting value at that inflow amount is calculated. The Do controller 6 inputs and compares the output signal from the Do measuring instrument 5 and the output signal from the calculator 16 a predetermined time ago, and controls the air flow from the blower 7 to the diffuser 3 via the air volume control device 8. Since the amount of air blown is controlled, the amount of air blown in the aeration tank 2 is determined by the Do measured by the Do measuring device 5. It is controlled to correspond to the amount. Therefore, when the inflow amount of wastewater C increases, Do at the position of the Do measuring device 5 in the aeration tank 2 is increased to correspond to the inflow amount after a predetermined time,
Conversely, when the inflow amount decreases, Do after a predetermined period of time is decreased.

エアレーションを完了した汚水と活性汚泥の混合溶液は
、エアレーションタンク2から最終沈殿。
The mixed solution of sewage and activated sludge that has undergone aeration is sent to the aeration tank 2 for final precipitation.

池4に移送されて、第1図の説明と同様に処理される。It is transferred to pond 4 and processed in the same manner as described in FIG.

本発明の具体例として、汚水流入量の300〜900t
yl’/hの範囲の変動に対し、DOが1.5〜4PP
m の範囲で変化した。これにより、処理水Eの水質が
安定するとともに、従来送気量が汚水流入量の約6倍で
あったものが、約3.5倍に低減した。
As a specific example of the present invention, the amount of wastewater inflow is 300 to 900 tons.
DO is 1.5 to 4PP for variation in the range of yl'/h
It varied over a range of m. As a result, the quality of treated water E was stabilized, and the amount of air supplied, which was conventionally about 6 times the amount of wastewater inflow, was reduced to about 3.5 times.

以上に説明した通り、本発明は汚水流入量を測定シてエ
アレーションタンク内での微生物の体内呼吸反応時間を
演算し、DOがこの体内呼吸反応時間に反比例するよう
に送風量を制御するものであるから、汚水流入量が変動
しても水質の安定した処理水が得られ、また過剰送風を
防いで送風に要する電力を節約することができる。
As explained above, the present invention measures the amount of sewage inflow, calculates the internal respiration reaction time of microorganisms in the aeration tank, and controls the air flow rate so that DO is inversely proportional to this internal respiration reaction time. Because of this, it is possible to obtain treated water of stable quality even if the amount of sewage inflow fluctuates, and it is also possible to prevent excessive air blowing and save the power required for air blowing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の標準活性汚泥法を示すブロック図、第2
図は壬アレージョンタンク内のDo変化を示す図、第3
図は本発明の一実施例を示すブロック図である。 1・・・最初沈殿池、2・・・エアレーションタンク、
3・・・散気装置、4・・・最終沈殿池、5・・・DO
測定器、6・・・Do調節計、7・・・送風機、8・・
・送風量制御装置、10・・・流入量測定器、11.1
6・・・演算器、12・・・増殖反応時間設定器、13
・・・エアレーションタンク容量設定器、14・・・必
要送気量設定器、15・・・酸素移動係数設定器。 特許出願人 富士電機製造株式会社 代 理 人 弁理士 青 山 葆 外2名第2図
Figure 1 is a block diagram showing the conventional standard activated sludge method, Figure 2
The figure is a diagram showing Do changes in the Mi allersion tank, 3rd figure.
The figure is a block diagram showing one embodiment of the present invention. 1... First settling tank, 2... Aeration tank,
3... Diffusion device, 4... Final settling tank, 5... DO
Measuring device, 6...Do controller, 7...Blower, 8...
・Blowing volume control device, 10...Inflow rate measuring device, 11.1
6... Arithmetic unit, 12... Proliferation reaction time setting device, 13
. . . Aeration tank capacity setting device, 14 . . . Required air supply amount setting device, 15 . . . Oxygen transfer coefficient setting device. Patent applicant: Fuji Electric Seizo Co., Ltd. Representative: Patent attorney Aoyama Aoyama and two others Figure 2

Claims (1)

【特許請求の範囲】[Claims] は)流入汚水を活性汚泥とともにエアレーションタンク
に流入させて一定時間エアレージョンにより混合を行な
う活性汚泥プロセスにおいて、エアレーションタンクへ
の汚水流入経路に流入量測定器を設置し、エアレーショ
ンタンク内には溶存酸素量変化勾配のほとんどない領域
に溶存酸素量測定器を設置し、前記流入量測定器の測定
値からエアレーションタンク内での微生物の体内呼吸反
応時間を演算し、所定時間遅れで前記溶存酸素量測定器
の測定値が体内呼吸反応時間に反比例するようにエアレ
ーションタンクへの送風量を制御することを特徴とする
活性汚泥プロセスの送風量制御方法。
) In the activated sludge process, in which inflowing sewage flows into an aeration tank together with activated sludge and is mixed by aeration for a certain period of time, an inflow rate measuring device is installed in the sewage inflow route to the aeration tank, and dissolved water is detected in the aeration tank. A dissolved oxygen amount measuring device is installed in an area where there is almost no oxygen amount change gradient, and the internal respiration reaction time of microorganisms in the aeration tank is calculated from the measurement value of the inflow amount measuring device, and the dissolved oxygen amount is measured after a predetermined time delay. A method for controlling the amount of air blown into an activated sludge process, comprising controlling the amount of air blown to an aeration tank so that the measured value of a measuring device is inversely proportional to the internal respiration reaction time.
JP56119934A 1981-07-30 1981-07-30 Control of air-blasting rate in activate sludge process Pending JPS5820295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56119934A JPS5820295A (en) 1981-07-30 1981-07-30 Control of air-blasting rate in activate sludge process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56119934A JPS5820295A (en) 1981-07-30 1981-07-30 Control of air-blasting rate in activate sludge process

Publications (1)

Publication Number Publication Date
JPS5820295A true JPS5820295A (en) 1983-02-05

Family

ID=14773778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56119934A Pending JPS5820295A (en) 1981-07-30 1981-07-30 Control of air-blasting rate in activate sludge process

Country Status (1)

Country Link
JP (1) JPS5820295A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS526456A (en) * 1975-07-04 1977-01-18 Seiko Epson Corp A-d converter circuit
JPS52144169A (en) * 1976-05-25 1977-12-01 Meidensha Electric Mfg Co Ltd Apparatus for controlling amount of air supply to aeration tank
JPS52144168A (en) * 1976-05-25 1977-12-01 Meidensha Electric Mfg Co Ltd Apparatus for controlling amount of air supply to aeration tank
JPS54137855A (en) * 1978-04-18 1979-10-25 Meidensha Electric Mfg Co Ltd Device for treating water

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS526456A (en) * 1975-07-04 1977-01-18 Seiko Epson Corp A-d converter circuit
JPS52144169A (en) * 1976-05-25 1977-12-01 Meidensha Electric Mfg Co Ltd Apparatus for controlling amount of air supply to aeration tank
JPS52144168A (en) * 1976-05-25 1977-12-01 Meidensha Electric Mfg Co Ltd Apparatus for controlling amount of air supply to aeration tank
JPS54137855A (en) * 1978-04-18 1979-10-25 Meidensha Electric Mfg Co Ltd Device for treating water

Similar Documents

Publication Publication Date Title
JPH0665399B2 (en) Method and apparatus for treating activated sludge by intermittent aeration method
CN107207301B (en) Method for controlling aeration amount in activated sludge
JP2001353496A (en) Sewage disposal system and measuring system
JP2005052804A (en) Waste water treatment equipment and operation method for the same
CN211546081U (en) Dissolved oxygen adaptive control device
JPS5838235B2 (en) Aeration tank air flow control device
JP2015104712A (en) Sewage treatment system and method
JPS5820295A (en) Control of air-blasting rate in activate sludge process
JP2002177980A (en) Fuzzy controller for activated sludge treatment and method for the same
JPH0757353B2 (en) Wastewater treatment equipment
JP4620391B2 (en) Sewage treatment equipment
JPS6344033B2 (en)
JPS5838234B2 (en) Aeration tank air flow control device
JPH01130790A (en) Treatment of sewage
JP3460211B2 (en) Sewage treatment control device
JPS5843292A (en) Controlling method for air feed rate for aeration
JPS60102996A (en) Air quantity controller for aerating tank
JPH04277086A (en) Automatic control device for return sludge in activated sludge treating equipment
JP2002320989A (en) Biological water treatment equipment
JPH05138188A (en) Device for controlling flow rate of excess sludge
JPS59139996A (en) Controlling means for concentration of sludge inside aeration tank in sewage disposal process
JPS61212393A (en) Method for controlling oxidation ditch
JPH10235387A (en) Uniform flow liquid level control device for raw water tank
JPS5816957B2 (en) Air supply control device to the aeration tank
JPH05208196A (en) Controlling device for aerated quantity in aeration tank