JPS58201491A - Color television signal processor - Google Patents

Color television signal processor

Info

Publication number
JPS58201491A
JPS58201491A JP8511182A JP8511182A JPS58201491A JP S58201491 A JPS58201491 A JP S58201491A JP 8511182 A JP8511182 A JP 8511182A JP 8511182 A JP8511182 A JP 8511182A JP S58201491 A JPS58201491 A JP S58201491A
Authority
JP
Japan
Prior art keywords
signal
line
circuit
delay
delayed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8511182A
Other languages
Japanese (ja)
Inventor
Michio Furuhashi
古橋 道夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8511182A priority Critical patent/JPS58201491A/en
Publication of JPS58201491A publication Critical patent/JPS58201491A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N11/00Colour television systems
    • H04N11/06Transmission systems characterised by the manner in which the individual colour picture signal components are combined
    • H04N11/18Transmission systems characterised by the manner in which the individual colour picture signal components are combined using simultaneous and sequential signals, e.g. SECAM-system
    • H04N11/186Decoding means therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Processing Of Color Television Signals (AREA)

Abstract

PURPOSE:To attain high circuit integration and to reduce the adjusting man- power, by performing line sequential/simultaneous conversion after frequency demodulation while keeping the line sequence, in a circuit demodulating and reproducing a color TV signal of the SECAM system or the like. CONSTITUTION:A line-sequential FM signal, the amplitude of which is limited at a limiter circuit 2 is applied to frequency demodulators 18a and 28b. An output signal of the demodulators 18a, 28b is applied to gate circuits 31, 33 via a de- emphasis circuit. An output signal of the gate circuits 31, 33 are applied to one- line delay circuits 3a, 3b. The delay signal of (B-Y) and (R-Y) signals obtained through the one-line delay circuits 3a, 3b are synthesized with a non-delay signal (direct signal) of the (B-Y) and (R-Y) respectively at synthesis circuits 35, 36 to obtain required (B-Y) and (R-Y) color difference signals.

Description

【発明の詳細な説明】 本発明は、SECAM方式のカラーテレビジョン信号を
復調再生する信号処理装置に関するものであり、SEC
AM方式のカラーテレビジョン受信機や記録再生処理装
置に利用することができ、SECAM方式のカラーテレ
ビジョン信号を復調再生する回路を従来に比べて高集積
回路化することにより、部品点数の削減、調整箇所の減
少、性能の向上をはかり、総合的にコスト低下をはかる
ことのできるものを提供しようとするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a signal processing device for demodulating and reproducing SECAM color television signals, and
It can be used in AM color television receivers and recording/playback processing equipment, and by making the circuit that demodulates and reproduces SECAM color television signals more highly integrated than conventional circuits, the number of components can be reduced. The aim is to reduce the number of adjustment points, improve performance, and provide a product that can reduce costs overall.

まず、第1図に従来のSE(3AM方式カラーテレビジ
ョン信号処理回路の要部系統図を示す。
First, FIG. 1 shows a system diagram of the main parts of a conventional SE (3AM system color television signal processing circuit).

周知の通り、SECAM方式の搬送色信号は、(R−Y
)及び(B−Y)の二つの色差信号を線順次に切り換え
、プリエンファシスと帯域制限したあと、色副搬送波を
周波数変調し、輝度信号に重畳されている。この副搬送
波は、水平走査線ごとに周波数が切換えられ、色差信号
がゼロのとき(即ち無彩色)の副搬送波′周波数が、(
R−Y)信号の時に4.40625 MH2、(B−Y
)信号の時に4.25MH2になされている。この方式
は周波数変調であるため、周波数インターリ−ピングの
効果が得られず、NTSC方式やPAL方式に比べてド
ツト妨害が見えやすい。このため、ベルフィルタと称す
る帯域フィルタを通して、無彩色あるいはそれに近いレ
ベルの色差信号時の副搬送波を抑圧して、受信時の”画
面のドツト妨害を減少させるようにしている。従って、
受像機の回路では、送信あるいはエンコード側と逆の帯
域特性のベルフィルタと通称されるフィルタを入れて信
号の補正をしている。
As is well known, the carrier color signal of the SECAM system is (R-Y
) and (B-Y) are switched line-sequentially, pre-emphasized and band-limited, then the color subcarrier is frequency modulated and superimposed on the luminance signal. The frequency of this subcarrier is switched for each horizontal scanning line, and the subcarrier' frequency when the color difference signal is zero (i.e., achromatic color) is (
4.40625 MH2, (B-Y) signal
) signal is set to 4.25MH2. Since this system uses frequency modulation, the effect of frequency interleaving cannot be obtained, and dot interference is more visible than in the NTSC and PAL systems. For this reason, the subcarriers of color difference signals of achromatic color or a level close to it are suppressed through a bandpass filter called a bell filter, thereby reducing the "dot interference on the screen" during reception.Therefore,
In the receiver circuit, a filter commonly called a Bell filter with a band characteristic opposite to that on the transmitting or encoding side is installed to correct the signal.

第1図において、端子21から入力されるSXCAM方
式カラーテレビ信号からベルフィルタ1で搬送色信号を
取出し、リミッタ回路2において、FM信号の振幅制限
をする。振幅制限されたFM信号は2経路に分けられ、
一方は直接信号として切換回路6の一方の入力端子18
に入力される。
In FIG. 1, a bell filter 1 extracts a carrier color signal from an SXCAM color television signal inputted from a terminal 21, and a limiter circuit 2 limits the amplitude of the FM signal. The amplitude-limited FM signal is divided into two paths,
One input terminal 18 of the switching circuit 6 is used as a direct signal.
is input.

もう一方のFM信号は、1水平ラインに相当する時間だ
け遅延する超音波ガラス遅延線3を通ってもう一方の入
力端子17に入力される。1ライン遅延線3の入力及び
出力インピーダンス整合などのため、図示の如く、イン
ダクタンスを調整できるコイル13.15やコンデンサ
12.14が付加される。
The other FM signal is input to the other input terminal 17 through the ultrasonic glass delay line 3 which is delayed by a time corresponding to one horizontal line. For input and output impedance matching of the one-line delay line 3, a coil 13.15 and a capacitor 12.14 whose inductance can be adjusted are added as shown.

前記の如く、搬送色信号は(R−Y)成分を搬送するF
M信号と(B−Y)成分を搬送するFM信号とが線順次
で送られて来るから、1ライン遅延線3を通った信号と
通らない信号とを走査線ごとに交互に切換回路6で切換
えて、順次信号から同時信号への変換をする。この切換
回路6の動作は、送信あるいはエンコード側と同期して
、二つの色差信号が正しく得られるように切換わらなく
てはならない。このだめ、水平パンクポーチ部に重畳さ
れているライン識別信号を利用して切換え制御が行われ
ている。即ち、リミッタ2を経由して得られた搬送色信
号から、ゲート回路1oにおいて端子22から供給され
゛るゲートパルスを利用して、ライン識別信号を抽出す
る。
As mentioned above, the carrier color signal is F, which carries the (R-Y) component.
Since the M signal and the FM signal carrying the (B-Y) component are sent line-sequentially, the switching circuit 6 alternately switches signals that have passed through the one-line delay line 3 and signals that have not passed through the one-line delay line 3. Switch to convert sequential signals to simultaneous signals. The operation of this switching circuit 6 must be switched in synchronization with the transmission or encoding side so that two color difference signals can be obtained correctly. To avoid this, switching control is performed using a line identification signal superimposed on the horizontal puncture porch. That is, from the carrier color signal obtained via the limiter 2, the line identification signal is extracted by using the gate pulse supplied from the terminal 22 in the gate circuit 1o.

切換回路6は1水平走査線ごとに信号経路を切換える動
作をする′が、この切換え制御は端子23から供給され
る水平周波数fHの水平パルスを利用してフリップフロ
ップ6を駆動し、その−fHの周波数の矩形波となるフ
リップフロップ出力信号を利用している。
The switching circuit 6 operates to switch the signal path for each horizontal scanning line, and this switching control is performed by driving the flip-flop 6 using a horizontal pulse of horizontal frequency fH supplied from the terminal 23, It uses a flip-flop output signal that is a rectangular wave with a frequency of .

ところが、この−i fHの切換えパルスが何らかの理
由により正しい順序とは逆の順序になると、それをライ
ン識別回路で検出し、フリップフロップ5を直ちにリセ
ットして、正しい切換えが行われるようになっている。
However, if the -i fH switching pulses are in the opposite order from the correct order for some reason, the line identification circuit detects this and immediately resets the flip-flop 5 to perform the correct switching. There is.

この切換パルスによって駆動される切換回路6は、いま
ある走査期間のとき実線の如く遅延された信号が入力端
子17から出力端子19に伝送され、遅延されない信号
が入力端子18から出力端子2oへ伝送されるものとす
れば、次の走査期間では点線の如く、遅延されだ信号は
端子17から端子20へ、遅延しない信号は端子18か
ら端子19へ伝送される。
The switching circuit 6 driven by this switching pulse transmits a delayed signal from the input terminal 17 to the output terminal 19 as shown by the solid line during the current scanning period, and a non-delayed signal from the input terminal 18 to the output terminal 2o. If so, in the next scanning period, the delayed signal is transmitted from the terminal 17 to the terminal 20, and the non-delayed signal is transmitted from the terminal 18 to the terminal 19, as shown by the dotted line.

この関係を、第2図に略示した波形で説明する。This relationship will be explained using the waveforms schematically shown in FIG.

即ち、第2図において、波形ムは端子18に入る遅延線
を通ら力い信号を示し、線順次信号であるから、(R−
Y )+ 、 (B−Y)+ 、 (R−Y)2・・・
・・・の順に伝送されているものとする。波形Bは、端
子17に入る遅延線を通り遅延された信号を示し、波形
ムの(R−Yいに相当するものを(R−Y);で示し、
(B−Y)+に相当する箇所を(B−Y)fで示してい
る。波形Cはフリップフロップ6の出力波形を示し、1
ライン毎に、オン・オフの切替え波形になっている。こ
れは、前記の切換回路6に供給され、ライン切換え制御
をする。
That is, in FIG. 2, the waveform M indicates a strong signal passing through the delay line that enters the terminal 18, and since it is a line sequential signal, (R-
Y)+, (B-Y)+, (R-Y)2...
It is assumed that the data are transmitted in the order of... Waveform B shows the delayed signal passing through the delay line entering terminal 17, and the waveform B corresponds to (RY);
The location corresponding to (BY)+ is indicated by (BY)f. Waveform C shows the output waveform of flip-flop 6, and 1
Each line has an on/off switching waveform. This is supplied to the switching circuit 6 described above to perform line switching control.

この切換回路6に、いま仮りに波形ムの(Ft−Y)+
信号が端子18に入力され、波形Bの(B−Y)’oが
端子17に加わえられているものと仮定し、同時に切換
経路が実線のようになっているものとすれば、出力端子
19には遅延信号の(B−y)′0が、出力端子2oに
は遅延されていない信号の(R−Y)、が得られる。次
の走査線では、波形Cの如くフリップフロップ6が反転
するので切換回路6の切換経路は点線のように切換り、
入力端子18に入力される遅延されていない信号(B−
Y)+(波形人)が出力端子19に、入力端子17から
入力される遅延信号の(R−Y)+(波形B)が出力端
子2oに現れる。この結果、切換回路6の出尖端子19
には波形りに、出力端子20には波形Eに、それぞれ示
すように、それぞれ(B−Y)及び(R−Y)の同時信
号に変換された信号が出力される。このようにして得ら
れた(B−Y)成分の搬送色信号と(R−Y)成分の搬
送色信号は、それぞれ、リミッタ回路7a、7bに供給
され、超音波遅延線で生じた振幅変動分を抑圧してから
、ディスクリミネータ8aで(B−Y)色差信号を復調
し、ディスクリミネータ8bで(R−Y)色差信号を復
調する。
In this switching circuit 6, let's say (Ft-Y)+ of the waveform.
Assuming that a signal is input to terminal 18 and that (B-Y)'o of waveform B is applied to terminal 17, and at the same time that the switching path is as shown by the solid line, the output terminal The delayed signal (B-y)'0 is obtained at the output terminal 19, and the undelayed signal (R-Y) is obtained at the output terminal 2o. In the next scanning line, the flip-flop 6 is inverted as shown by waveform C, so the switching path of the switching circuit 6 is switched as shown by the dotted line.
The undelayed signal (B-
Y)+(waveform) appears at the output terminal 19, and (RY)+(waveform B) of the delayed signal input from the input terminal 17 appears at the output terminal 2o. As a result, the protruding terminal 19 of the switching circuit 6
The output terminal 20 outputs signals converted into simultaneous signals of (B-Y) and (R-Y), respectively, as shown in the waveform E and as shown in the waveform E. The carrier color signal of the (B-Y) component and the carrier color signal of the (R-Y) component thus obtained are supplied to limiter circuits 7a and 7b, respectively, and the amplitude fluctuations caused by the ultrasonic delay line are supplied to limiter circuits 7a and 7b. After suppressing the difference, the discriminator 8a demodulates the (B-Y) color difference signal, and the discriminator 8b demodulates the (R-Y) color difference signal.

以上のように、従来のSKCAM方式の色復調回路では
、超音波1ライン遅延線を用いて、順次・同時変換をし
てから、それぞれ(R−Y)と(B−Y)の色差信号を
復調するようにしている。しかるに、近時、回路の集積
化が進み、周辺部品を〜削減し、部品点数削減9回路の
小形化、調整工数の低減がはかられているが、このガラ
ス遅延線及び、インピーダンス整合用の周辺物品が集積
回路外に依然として残っているのが現状である。また、
ミ超音波遅延線が周波数対振幅特性や反射伝播にともな
う不要成分を有したりするので、遅延されていない直接
入力端子18に入力される信号との間に差異が生じ、ラ
インクローリングのような妨害の縞模様が画面に生じ易
い。また、切換回路6などで、直接信号と遅延信号との
間でクロストークがあると、やはりラインクローリング
の妨害が顕。
As described above, the conventional SKCAM color demodulation circuit uses an ultrasonic one-line delay line to perform sequential and simultaneous conversion, and then converts the (RY) and (B-Y) color difference signals, respectively. I'm trying to demodulate it. However, in recent years, as circuits have become more integrated, efforts have been made to reduce the number of peripheral components, reduce the number of parts, make circuits smaller, and reduce adjustment man-hours. Currently, peripheral items still remain outside the integrated circuit. Also,
Since the ultrasonic delay line has unnecessary components due to frequency versus amplitude characteristics and reflection propagation, a difference occurs between the signal input to the direct input terminal 18 that is not delayed, and line crawling etc. Interfering stripes are likely to appear on the screen. Furthermore, if there is crosstalk between the direct signal and the delayed signal in the switching circuit 6, etc., interference with line crawling will become apparent.

著になる。Become a writer.

そこで本発明は、電荷転送素子(たとえばCCD)によ
る遅延回路を導入し、従来よりも高集積回路化をはかる
と共に、外部周辺回路の削減、調整工数の低減、ライン
クローリングの抑圧などの問題点を解決することのでき
る装置を提供することを目的とするものである。
Therefore, the present invention introduces a delay circuit using a charge transfer element (such as a CCD) to achieve higher integration than conventional circuits, and also solves problems such as reducing external peripheral circuits, reducing adjustment man-hours, and suppressing line crawling. The purpose is to provide a device that can solve the problem.

以下本発明につき、その一実施例を示す図面を用いて説
明する。
The present invention will be described below with reference to drawings showing one embodiment thereof.

第3図は本発明の一実施例の構成を示す要部の系統図で
ある。端子21から入力されるSICCAM方式のカラ
ーテレビジョン信号をベルフィルり1に通して搬送色信
号を取出す。この搬送色信号は周波数変調されたFM信
号であり、リミッタ回路2で振幅制限される。振幅制限
された線順次のFM信号を、第4図表に示す検波特性(
基準点として4.26MH2を中心周波数にとる)を有
する周波数復調器1B+Lと第4図Bに示す検波特性(
基準点として4.aoMHzを中心周波数にとる)を有
する周波数復調器28bに供給する。
FIG. 3 is a system diagram of essential parts showing the configuration of an embodiment of the present invention. A SICCAM color television signal input from a terminal 21 is passed through a bell filter 1 to extract a carrier color signal. This carrier color signal is a frequency modulated FM signal, and its amplitude is limited by the limiter circuit 2. The detection characteristics of the amplitude-limited line-sequential FM signal (
The frequency demodulator 1B+L has a center frequency of 4.26MH2 as a reference point) and the detection characteristics shown in FIG. 4B (
4. as a reference point. The frequency demodulator 28b has a center frequency of aoMHz.

なお、本実施例ではSKOAM信号は周知の通り、次式
の関係でエンコードされるので、(B−Y)色差信号を
得る復調器と(R−Y)の復調器の特性を第4図表と第
4図Bの如くして、復調器出力における極性をそろえて
いる。すなわち、ここに、DB=1.9(B−Y)  
  ・・・・・・(2)DRユニー、6(R−Y)  
 ・・・・・・(3)foB==4.26 M)lz foR= 4.406 MH2 第4図表の復調特性をB−Y信号の復調に対応させ、f
OB = 4.25M1(z(無変調時)を出力セロや
基準にとり、第4図Bの復調特性をR−Y信号に対応す
るものとし、foR=:4.40MHz(無変調時)を
出力ゼロの基準にとるものとすれば、復調器181Lの
カラーパー信号に対する出力波形は、大略、第6図ム、
復調器28bの出力波形は、大略、第6図Bに示される
As is well known, in this embodiment, the SKOAM signal is encoded according to the following equation, so the characteristics of the demodulator for obtaining the (B-Y) color difference signal and the demodulator for (R-Y) are shown in Figure 4. As shown in FIG. 4B, the polarities of the demodulator outputs are aligned. That is, here, DB=1.9(B-Y)
・・・・・・(2) DR Uni, 6(RY)
...... (3) foB = = 4.26 M) lz foR = 4.406 MH2 The demodulation characteristics shown in Figure 4 correspond to the demodulation of the B-Y signal, and f
OB = 4.25M1 (z (when not modulated) is taken as the output cello or reference, the demodulation characteristics in Figure 4B corresponds to the R-Y signal, and foR =: 4.40MHz (when not modulated) is output. If we take zero as the standard, the output waveform of the demodulator 181L for the color par signal is approximately as shown in Fig. 6.
The output waveform of the demodulator 28b is roughly shown in FIG. 6B.

ここに、第6図ム、Bにおいて、第Nライン目に(B−
Y)信号、第(N+1)ライン目に(R−y)信号が線
順次で送られてきたものとする。
Here, in Figure 6, B, the Nth line (B-
It is assumed that the (R-y) signal is sent line-sequentially to the (N+1)th line.

第6図表において、第Nラインの(B−Y)信号が、無
変調(白/黒)で基準ゼロレベルとなり所要の復調信号
であり、第6図Bでは、第(N−4−1)ラインの(R
−Y)信号が、無変調(白/黒)で基準ノベル(ゼロ)
になり、所要の復調波形となる。また、エンコード側で
の(2+ 1 (31式の正、負の係数(極性)の違い
により、第6図表では第(N−1−1)ライン目の(、
R−Y)信号の位相が反転し、第6図Bでは第Nライン
目の(B−Y)信号の位相が反転している。
In Figure 6, the (B-Y) signal on the Nth line is the required demodulated signal with no modulation (white/black) and the reference zero level, and in Figure 6B, the (N-4-1) of the line (R
-Y) signal is standard novel (zero) with no modulation (white/black)
becomes the desired demodulated waveform. Also, due to the difference in the positive and negative coefficients (polarity) of (2+1) equation 31 on the encoding side, in Figure 6, the (N-1-1)th line (,
The phase of the (RY) signal is inverted, and in FIG. 6B, the phase of the (B-Y) signal on the Nth line is inverted.

第3図の第1の周波数復調器82L、第2の周波数復調
器8bの出力信号は、それぞれデエンファシス回路19
a、デエンファシス回路29bに通して、エンコード側
でプリエンファシスされた特性の補正をしたのち、第1
のゲート回路31と第2のゲート回路に供給される。
The output signals of the first frequency demodulator 82L and the second frequency demodulator 8b in FIG.
a. After passing through the de-emphasis circuit 29b and correcting the characteristics pre-emphasized on the encode side,
is supplied to the gate circuit 31 and the second gate circuit.

ゲート回路31の端子32には、フリップフロップ6か
ら第6図表に示す波形のゲート信号が供給され、ゲート
回路亀33の端子34には、これと反対に第7図表に示
す波形のゲート信号が供給される。すなわち、ゲート回
路31とゲート回路33とは、1ライン毎に交互に信号
を導通させる作用を行い、前記の通り、ゲート回路31
に供給される第6図表の信号から、第6図BのようにN
ライン、(N+2)ライン、 (N+4 )ライン・・
・・・・・・・の(B−Y)信号を抜取り、(N−M)
ライン、 (N+3 )ライン・・・・・・・・・の信
号部分を零レベルにする。同様に、ゲート回路2に供給
される第6図Bの信号から、第7図Bのように第(N+
1)ライン、 (N+3 )ライン・・・・・・・・・
の(R−Y)信号を抜取り、第Nライン、(N+2)ラ
イン、・・・・・・・・・の(B−Y)信号の部分を零
レベルにする。
A gate signal having a waveform shown in FIG. 6 is supplied from the flip-flop 6 to a terminal 32 of the gate circuit 31, and a gate signal having a waveform shown in FIG. 7 is supplied to a terminal 34 of the gate circuit 33. Supplied. That is, the gate circuit 31 and the gate circuit 33 act to alternately conduct signals for each line, and as described above, the gate circuit 31
From the signal in Figure 6 supplied to N, as shown in Figure 6B,
line, (N+2) line, (N+4) line...
Extract the (B-Y) signal of ......, (N-M)
Line, (N+3) line... Set the signal portion of the line to zero level. Similarly, from the signal of FIG. 6B supplied to the gate circuit 2, the (N+
1) line, (N+3) line...
The (RY) signals of the Nth line, (N+2) line, . . . are set to zero level.

こうして得られたゲート回路31.33の出力信号をそ
れぞれ、1ライン遅延回路31L、3bに供給する。1
ライン遅延回路31Lに第6図Bに示すゲート回路31
の出力信号が入力されると第6図Cに示すような時間関
係で遅延信号かえられる。
The output signals of the gate circuits 31 and 33 thus obtained are supplied to one-line delay circuits 31L and 3b, respectively. 1
The gate circuit 31 shown in FIG. 6B is added to the line delay circuit 31L.
When the output signal of is inputted, the delayed signal is changed according to the time relationship shown in FIG. 6C.

これに対し、遅延回路3bに第7図Bに示すゲート回路
33の出力信号が入力されると第7図Cに示すような遅
延信号(この場合は、第(N−1)ライン目の信号が図
示されている)かえられる。
On the other hand, when the output signal of the gate circuit 33 shown in FIG. 7B is input to the delay circuit 3b, the delayed signal shown in FIG. 7C (in this case, the signal of the (N-1)th line (Illustrated)).

1ライン遅延回路3a、3bを通して得られる(B−Y
)及び(R−Y)信号の遅延信号は、それぞれ合成回路
35.36において、(B−Y)及び(R−Y)の非遅
延信号(直接信号)と合成される。すなわち、合成回路
36において、第6図Bの波形と第6図Gの波形が合成
され、第6図りのような波形かえられる。これが、所要
の(B−Y’)色差信号になる。同様に、合成回路36
において、第7図Bの波形と第7図Gの波形が合成され
、第7図りの波形かえられる。これが所要の(’R−Y
)色差信号になる。
obtained through the one line delay circuits 3a and 3b (B-Y
) and (RY) signals are combined with non-delayed signals (direct signals) of (B-Y) and (RY) in combining circuits 35 and 36, respectively. That is, in the synthesis circuit 36, the waveform shown in FIG. 6B and the waveform shown in FIG. 6G are combined, and the waveform shown in FIG. 6 is changed. This becomes the required (B-Y') color difference signal. Similarly, the synthesis circuit 36
At , the waveform of FIG. 7B and the waveform of FIG. 7G are combined and the waveform of FIG. 7 is changed. This is the required ('RY
) becomes a color difference signal.

以上、詳述したように、本発明の構成にすれば線順次の
まま周波数復調をしてから、線順次・同時変換をするの
で、従来の構成において生じていたライン切換回路にお
ける搬送波段階のクロストークの生じ易さを回避でき、
画質の良化に寄与できる。色差信号の帯域はIMH2以
下であり、電荷転送素子で1ライン遅延を実現すること
は現行技術で容易であるので、半導体集積回路化が容易
となり、遅延回路も含めた高集積化ICの実現を可能と
なる。電荷転送素子を用いれば、従来の超音波ガラス遅
延線で生じ易い反射妨害信号による一ラインクローリン
グの心配もなくなる。また、周波数帯域特性も良くなる
ので、直接信号と遅延信号との特性差も少くすることが
できる。また、超音波ガラス遅延線の入出力端における
マツチング回路とその調整も削減できる。
As described in detail above, with the configuration of the present invention, frequency demodulation is performed line-sequentially, and then line-sequential/simultaneous conversion is performed. You can avoid the possibility of talk,
It can contribute to improving image quality. The band of the color difference signal is IMH2 or less, and it is easy to achieve one line delay with charge transfer elements using current technology, making it easy to integrate semiconductor circuits and realizing highly integrated ICs that include delay circuits. It becomes possible. If a charge transfer element is used, there is no need to worry about single-line crawling caused by reflected interference signals, which tends to occur with conventional ultrasonic glass delay lines. Furthermore, since the frequency band characteristics are improved, the difference in characteristics between the direct signal and the delayed signal can also be reduced. Furthermore, matching circuits and their adjustments at the input and output ends of the ultrasonic glass delay line can be reduced.

以上の効果を総合すれば、本発明により高集積回路化に
よる部品点数の削減1回路の小型化、調整工数の低減9
回路性能向上によるラインクローリング妨害の改善など
、性能品質及び経済性の改善向上に寄与できる。
Combining the above effects, the present invention can reduce the number of parts through highly integrated circuits, reduce the size of circuits, and reduce adjustment man-hours9.
This can contribute to improving performance quality and economic efficiency, such as improving line crawling interference by improving circuit performance.

なお、本発明は、電荷転送素子以外の遅延手段で実施で
きることは、いうまでもない。
It goes without saying that the present invention can be implemented using delay means other than charge transfer elements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のSElAM方式のカラーテレビジョン信
号処理装置のブロック図、第2図はその処理動作を説明
する各部の信号波形図、第3図はその復調作用を説明す
る特性図、第6図は周波数復調器で線順次のSIIAM
方式搬送色信号を復調したときの波形図、第6図、第7
図はそのゲート及び合成回路の動作説明のだめの波形図
である。 sa、sb・・・・・・周波数復調器、31.33・・
・・・・ゲート回路、sa、3b・・・・・・1ライン
遅延線、36.36・・・・・・合成回路。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名〜 
   吻 ご         〜  へ 2図 第 5 図 第6図 (X創ブ石′5)
FIG. 1 is a block diagram of a conventional SElAM color television signal processing device, FIG. 2 is a signal waveform diagram of each part explaining its processing operation, FIG. 3 is a characteristic diagram explaining its demodulation action, and FIG. The figure shows line-sequential SIIAM with a frequency demodulator.
Waveform diagrams when the system carrier color signal is demodulated, Figures 6 and 7
The figure is a waveform diagram for explaining the operation of the gate and synthesis circuit. sa, sb... Frequency demodulator, 31.33...
...Gate circuit, sa, 3b...1 line delay line, 36.36...Synthesis circuit. Name of agent: Patent attorney Toshio Nakao and one other person
Proboscis ~ To Figure 2 Figure 5 Figure 6 (X-bu stone '5)

Claims (1)

【特許請求の範囲】[Claims] 線順次で周波数変調された搬送色信号をそれぞれ周波数
復調する第1及び第2の復調手段と、前記第1及び第2
の復調手段にそれぞれ接続され、線順次信号のうち所要
のライン区間の信号を抽出し、不要のライン区間の信号
を除去する第1及び第2のゲート手段と、前記第1.第
2のゲート手段で得られた出力信号をそれぞれ遅延させ
る第1及び第2の遅延手段と、前記第1の遅延手段の出
力遅延信号とその遅延入力信号に相当する非遅延−信号
とを合成する第1の合成手段と、第2の遅延手段の出力
遅延信号とその遅延入力信号に相当する非遅延信号とを
合成する第2の合成手段とを具備し、前記第1及び第2
の合成手段から第1及び第2の色差信号を出力すること
を特徴とするカラーテレビジョン信号処理装置。
first and second demodulation means for frequency demodulating the line-sequentially frequency-modulated carrier color signals;
first and second gate means respectively connected to the demodulation means for extracting a signal of a desired line section from the line sequential signal and removing a signal of an unnecessary line section; First and second delay means that respectively delay the output signal obtained by the second gate means, and synthesize the output delayed signal of the first delay means and a non-delayed signal corresponding to the delayed input signal. and a second synthesizing means for synthesizing the delayed output signal of the second delaying means and a non-delayed signal corresponding to the delayed input signal,
A color television signal processing device, characterized in that first and second color difference signals are output from a combining means.
JP8511182A 1982-05-19 1982-05-19 Color television signal processor Pending JPS58201491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8511182A JPS58201491A (en) 1982-05-19 1982-05-19 Color television signal processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8511182A JPS58201491A (en) 1982-05-19 1982-05-19 Color television signal processor

Publications (1)

Publication Number Publication Date
JPS58201491A true JPS58201491A (en) 1983-11-24

Family

ID=13849509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8511182A Pending JPS58201491A (en) 1982-05-19 1982-05-19 Color television signal processor

Country Status (1)

Country Link
JP (1) JPS58201491A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6197284U (en) * 1984-11-30 1986-06-21

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6197284U (en) * 1984-11-30 1986-06-21
JPH0422622Y2 (en) * 1984-11-30 1992-05-25

Similar Documents

Publication Publication Date Title
JPS59171387A (en) Method for constituting television signal
US4589011A (en) Single sideband modulated chrominance information for compatible high-definition television
US4646135A (en) System for allowing two television programs simultaneously to use the normal bandwidth for one program by chrominance time compression and luminance bandwidth reduction
US4622578A (en) Fully compatible high definition television
US3871019A (en) Line sequential color television recording system
US4564857A (en) Aspect ratio improvement for compatible high-definition television
US4920408A (en) Circuit for separating composite color television signal into luminance signal and chrominance signal
JPS58201491A (en) Color television signal processor
JPH0628468B2 (en) Improving Signal-to-Noise Ratio Using Baseband in FM Television Systems
US4809085A (en) Recording and reproducing apparatus for reducing cross-talk in color television signal
JPS62236288A (en) Multiplex signal transmission system
JPH09506482A (en) Color television signal processing
US3710014A (en) Color television system
JP2786686B2 (en) Secum color signal processing circuit
JP2513729B2 (en) Color television signal receiver
JPS58201490A (en) Color television signal processor
US4472746A (en) Chrominance channel bandwidth modification system
JP2638937B2 (en) YC separation control circuit
JPS6223196Y2 (en)
JPS58221588A (en) Chrominance signal processor
RU2030843C1 (en) Method of and device for receiving and transmitting color picture signals
JPS6032493A (en) Converter for high precision television signal
KR930008664Y1 (en) Color signal converting circuit of vcr
JP2616753B2 (en) Television receiver
JPH05122717A (en) Color encoder of secam system