JPS58200997A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPS58200997A
JPS58200997A JP8164582A JP8164582A JPS58200997A JP S58200997 A JPS58200997 A JP S58200997A JP 8164582 A JP8164582 A JP 8164582A JP 8164582 A JP8164582 A JP 8164582A JP S58200997 A JPS58200997 A JP S58200997A
Authority
JP
Japan
Prior art keywords
heat exchanger
passage
refrigerant
cross
sectional area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8164582A
Other languages
Japanese (ja)
Other versions
JPH0536718B2 (en
Inventor
Toshio Hatada
畑田 敏夫
Shigeaki Kuroda
黒田 重昭
Akira Atsumi
晃 渥美
Takao Chiaki
千秋 隆雄
Kensaku Kokuni
研作 小国
Sadatoshi Minagawa
皆川 貞利
Naoji Ajiki
安食 直二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8164582A priority Critical patent/JPS58200997A/en
Publication of JPS58200997A publication Critical patent/JPS58200997A/en
Publication of JPH0536718B2 publication Critical patent/JPH0536718B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/025Tubular elements of cross-section which is non-circular with variable shape, e.g. with modified tube ends, with different geometrical features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • F28D1/0478Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/028Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using inserts for modifying the pattern of flow inside the header box, e.g. by using flow restrictors or permeable bodies or blocks with channels

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

PURPOSE:To maximize a heat-exchange rate by reducing the sectional areas of the opening ends of each path in succession in the leeward direction from the windward direction in the heat exchanger in which corrugated fins are arranged between each of the meandering multipass flat heat transfer pipe sections. CONSTITUTION:A meandering flat heat transfer pipe 16 has multipaths 16a- 16n of a uniform sectional area, and a meandering pipe end member 17 with opening sectional-areas 17a-17n of which path sectional-areas reduce in succession in welded to the end sections through braze, etc. Refrigerant inlet ends are arranged so that the sectional areas of the opening ends of each path are reduced in succession in the leeward direction 5 on an evaporator and refrigerant outlet ends are arranged so on a condenser. Accordingly, since the quantity of a refrigerant is changed in response to the temperature difference of air, there exists no unequal refrigerant superheating region, and the heat-exchange rate can be increased without decreasing temperature difference between air and the refrigerant.

Description

【発明の詳細な説明】 本発明は多流路の扁平伝熱管を用いた熱交換器に係り、
特に該伝熱管の各流路への適正な冷媒分配を実現する伝
熱管の端部形状に関する。
[Detailed description of the invention] The present invention relates to a heat exchanger using flat heat exchanger tubes with multiple channels,
In particular, the present invention relates to an end shape of a heat exchanger tube that realizes appropriate distribution of refrigerant to each flow path of the heat exchanger tube.

扁平伝熱管を用いた熱交換器は一般に第1図に示す構造
であり、蛇行状に曲折(、り扁平伝熱管1の平行管部の
間にコルゲートフィン2が配設されている。上記扁平伝
熱管1の両端部はヘッダ3゜4が接続され、ヘッダ金繰
て扁平伝熱管1内を流通する熱源流体とフィン2間を矢
印5のように流通する空気との間に熱交換が行なわれる
。上記扁平伝熱管1の断面は第2図に示すように多通路
6a・・・6nが形成されている。
A heat exchanger using flat heat exchanger tubes generally has a structure shown in FIG. Headers 3 and 4 are connected to both ends of the heat exchanger tube 1, and heat exchange is performed between the heat source fluid flowing within the flat heat exchanger tube 1 and the air flowing between the fins 2 as shown by the arrow 5. As shown in FIG. 2, the cross section of the flat heat exchanger tube 1 has multiple passages 6a...6n formed therein.

第3図は上巳扁平伝熱管1内部の冷媒の状態を示す。い
ま蒸発器として用いる場合を考えると、各通路6a・・
・6n((均一に冷媒金離す場合、空気流5に対して図
示に符号15で示すような冷媒の過熱20 ガス鎮域が
形成され、反対に符号14で示すように気液二相域が形
成され熱交換効率が低下する。この現象全防止し熱交換
効率を上げる為に従来広の様な代表的な二つの例が提案
されている。その一つの例を第4図に示す。この提案は
へラダ3に取り付ける扁平伝熱管端部の切り口を傾斜さ
すたちので、帆る。この例はへラダ3から扁平伝熱管l
の各流路6a・・6nに冷媒を分配させる際、人「1.
′T′^:部6a’、、 6b’+・・・6n’の流体
抵抗を変化させることにより、流路6a側に多く流路6
n側に順次・νなく分配させるものである。しかし、熱
交換器の人[]から出口間の圧力損失を実験と計算で検
討した結末、圧力損失の大半は各流路の入口から出口間
の一相流の圧力損失であり、入口付近の曲りの損失は袷
めて少ないことがわかった。即ち、第4図の9口き構造
を用いたとしても実際上の効果を得ることはほとんど期
待できない。
FIG. 3 shows the state of the refrigerant inside the Uami flat heat exchanger tube 1. Now considering the case where it is used as an evaporator, each passage 6a...
・6n ((If the refrigerant is separated uniformly, a superheated refrigerant 20 gas stagnation region is formed as shown by the numeral 15 in the figure with respect to the air flow 5, and on the contrary, a gas-liquid two-phase region is formed as shown by the numeral 14. In order to completely prevent this phenomenon and increase heat exchange efficiency, two typical examples have been proposed. One example is shown in Figure 4. The proposal is to slope the cut end of the flat heat exchanger tube that is attached to the heater 3.
When distributing the refrigerant to each flow path 6a...6n, a person "1.
'T'^: By changing the fluid resistance of portions 6a', 6b'+...6n', more flow paths 6 are formed on the flow path 6a side.
It distributes to the n side sequentially without ν. However, after examining the pressure loss between the heat exchanger and the outlet through experiments and calculations, we found that most of the pressure loss is due to the one-phase flow between the inlet and outlet of each channel, and the pressure loss near the inlet. It was found that the loss due to bending was much smaller. That is, even if the nine-hole structure shown in FIG. 4 is used, it is hardly expected that any practical effect will be obtained.

次に他の例全第5図に示す。この例は入[1がら出口に
至る通路7a 、 7b 、 7c・・・7n自身の流
路断面積を図示のように順次変化させたものでル)る。
Next, another example is shown in FIG. In this example, the cross-sectional areas of the passages 7a, 7b, 7c, . . . , 7n from the inlet to the outlet are sequentially changed as shown.

本例によれば流量を各流路毎に変えることは可能である
が、次の一つの問題点k 丁する。まず第1に性能上の
問題であるが、第61羽に示したモリエル線図上に示す
ように、蒸発器の圧力損失が各流路ともに同じように増
加1−蒸発1腺12全たどることになる。この場合均等
分配の場合の蒸発線13に比較して平均蒸発温度が上昇
する3 このことは空気と冷媒の温度差が減少すること
t意味し、実際」二性能が低下したことに等しい。゛つ
まり本例によって大きな性能上の効果は期待できない。
According to this example, it is possible to change the flow rate for each flow path, but there is one problem as follows. First of all, there is a performance issue, but as shown on the Mollier diagram shown in No. 61, the pressure loss of the evaporator increases in the same way in each flow path. become. In this case, the average evaporation temperature increases compared to the evaporation line 13 in the case of uniform distribution.3 This means that the temperature difference between the air and the refrigerant decreases, which is actually equivalent to a decrease in performance. ``In other words, no significant performance effect can be expected from this example.

10は飽和液線、11は飽和蒸気線、Pは圧力、iはエ
ンタルの ピ全示す。第2は生産性迩問題である。本例の如き各流
路断面積が変化する形状の伝熱管は第2図に示す一般の
形態のものに比較して製造工程が複雑になるとともに、
材料費そのものに極めて無駄が多い。
10 is a saturated liquid line, 11 is a saturated vapor line, P is a pressure, and i is an enthalpy total. The second issue is productivity. A heat exchanger tube with a shape in which the cross-sectional area of each flow path changes as in this example requires a complicated manufacturing process compared to the general shape shown in FIG.
The cost of materials itself is extremely wasteful.

以上のように従来技術は、性能上の効果、生産性いずれ
の点においても種々の問題点があった。
As described above, the conventional techniques have various problems in terms of performance effects and productivity.

1 本発明は上記に鑑みて発明さ、れたもので、多通路より
成る扁平伝熱管を用いた熱交換器において、該熱交換器
全最高効率点で使用するための冷媒分配機構全提供する
こと全目的とする。
1 The present invention was invented in view of the above, and provides a complete refrigerant distribution mechanism for use at the highest efficiency point of a heat exchanger using flat heat transfer tubes consisting of multiple passages. This is the entire purpose.

上記目的全達成するため本発明は、多通路孕備えた扁平
伝熱管の入口端、出口端の少なくとも一方を、また蒸発
器の場合は冷媒入口端を、凝縮器の場合は冷媒出口端の
各連路の開1−コIγ+++i ttfr l!’II
 ft’i ?L″風上側より風下側方向に順次減少さ
せた特徴レイIする。
In order to achieve all of the above objects, the present invention provides at least one of the inlet end and the outlet end of a flat heat transfer tube having multiple passages, the refrigerant inlet end in the case of an evaporator, and the refrigerant outlet end in the case of a condenser. Opening of continuous path 1-koIγ+++i ttfr l! 'II
ft'i? L″ The characteristic ray I is sequentially decreased from the windward side to the leeward side.

本発明の一実施例を第7図、第8図(こ隻すき説明する
。この実施例は多通路を有する扁平伝熱管の一端に流路
断面積の異なる管端部材を設けたものである。製作方法
としては、前述の第2図と同様の均等断面の多通路16
a 116b + lbc・・16nを有する扁平伝熱
管16の端部に該通路の中心延長部の通路断面積が図示
のように順次異なる開口断面積17a 、 +7b 、
 17c −17nを有し、外形は響1平伝熱管16と
同形の管端部材17をロー付は等にて溶着して形成する
。管端部材17の通路断面は風り側曲路から風下側通路
方向に順次減少するように形!’+’j L−1またそ
の形状は図示の様に円形に限らず、多角形、四角形ある
いは三角形であってもよい。
An embodiment of the present invention is shown in FIGS. 7 and 8 (explained below). In this embodiment, tube end members having different flow passage cross-sectional areas are provided at one end of a flat heat exchanger tube having multiple passages. As for the manufacturing method, a multi-passage 16 with an equal cross section similar to that shown in FIG.
At the end of the flat heat exchanger tube 16 having a 116b + lbc...16n, the passage cross-sectional area of the central extension of the passage is sequentially different as shown in the drawing, with opening cross-sectional areas 17a, +7b,
17c to 17n, and the outer shape is the same as that of the Hibiki 1-flat heat exchanger tube 16. The tube end member 17 is formed by welding by brazing or the like. The passage cross-section of the tube end member 17 is shaped so that it gradually decreases from the windward side curved passage to the leeward side passage direction! '+'j L-1 Also, its shape is not limited to a circle as shown in the figure, but may be polygonal, quadrilateral, or triangular.

第9図は他の実施例を示し、この実施例は多通路を有す
る扁平伝熱管26の各通路端部全潰して端部通路断面積
を順次異ならしめたもので、均等断面の多通路26a 
、 26b 、 26c・・・26ni有する扁平伝熱
管26の端部を各通路の一側壁26a’ 、 26b’
 、 26c’・・・26n”!iミープレス形等によ
って傾斜状に押し下げ、各押下げ側壁2f3a’ 、 
26b’ 、 26c’ =・26n’の高さ位置を順
次ずらし、各通路26a 、 26b 、 26c −
26nの端部の開口断面積全風下側通路方向に順次減少
させている。
FIG. 9 shows another embodiment, in which the ends of each passage of a flat heat exchanger tube 26 having multiple passages are completely flattened so that the cross-sectional areas of the end passages are sequentially different, and the multi-passage 26a with an equal cross section is
, 26b, 26c...26ni, the ends of the flat heat exchanger tubes 26 are connected to one side wall 26a', 26b' of each passage.
, 26c'...26n"!i Press down in an inclined manner using a me press type, etc., and each pressed down side wall 2f3a',
The height positions of 26b', 26c' = 26n' are sequentially shifted, and each passage 26a, 26b, 26c -
The cross-sectional area of the opening at the end of 26n is gradually decreased in the direction of the entire leeward passage.

第10図、第11図は更に他の実施例全示し、この実施
例は多通路を有する扁平伝熱管36全連設する〜ラダ3
3に開口面積の異なる覆壁35ヲ形成し、この覆壁35
にて扁平伝熱管36の端部を覆って扁平伝熱管の多数路
の端部開口面積を順次異々らしめたもので、ヘッダ33
の一側面に扁平伝熱管の端部を覆う覆壁35ヲ形成し、
この覆壁35に扁平伝熱管36の多通路の延長中心部に
順次開口面積の異なる開口35a 、 35b 、 3
5c 、 −35n k穿ち、この覆壁35で扁平伝熱
管36の端部を覆いロー付等にて溶着し、または外部フ
ィンと伝熱管36接合時に同時に接合して成り、扁平伝
熱管36の各通路36a・・・36nと〜ラグ33との
連通開口面積が風下側通路方向に順次減少されている。
FIG. 10 and FIG. 11 show still another embodiment, in which flat heat exchanger tubes 36 having multiple passages are all connected to the ladder 3.
A covering wall 35 with different opening areas is formed in the
The header 33 covers the end of the flat heat exchanger tube 36 to sequentially vary the end opening area of the multiple passages of the flat heat exchanger tube.
A covering wall 35 is formed on one side of the tube to cover the end of the flat heat exchanger tube,
In this covering wall 35, openings 35a, 35b, 3 with different opening areas are sequentially formed at the center of the extension of the multiple passages of the flat heat exchanger tubes 36.
5c, -35nk are bored, and the ends of the flat heat exchanger tubes 36 are covered with this covering wall 35 and welded by brazing or the like, or they are joined simultaneously when the external fins and the heat exchanger tubes 36 are joined, so that each of the flat heat exchanger tubes 36 is The communication opening area between the passages 36a...36n and the lug 33 is gradually reduced in the direction of the leeward passage.

次に上記各実施例の作用について説明する。上記三種類
の各実施例とも作用は同様である。この扁平伝熱管は蒸
発器としても利用できるL、また凝縮器としても利用で
き、方向が逆であって作用は全く類似している。そして
蒸発器としての作用のみを第7図、第8図の実施例にも
とに説明する。
Next, the effects of each of the above embodiments will be explained. The functions of each of the above three types of embodiments are the same. This flat heat exchanger tube L can be used as an evaporator, and can also be used as a condenser, and although the direction is reversed, the operation is completely similar. Only the function of the evaporator will be explained based on the embodiments shown in FIGS. 7 and 8.

本実施例はすでに述べたようら構造であるから、ヘッダ
より扁平伝熱管に流入する冷媒はまず断面の異なる各通
路に分岐する冷媒の流量は入口ヘッダから出口ヘッダま
での圧力損失が当しくなるように流れる。即ち、入口付
近の流路断面の大きい流路は該流路断面の小さい流路に
比較して、入口部分の損失が少いので、流量が多(なる
。その状態金モリエル線図上で説明すると第12図のよ
うになる。熱交換器の圧力損失は入口ヘッダ部47がら
出口ヘッダ部48の間の損失であるが、流路17aから
17nに対応する蒸発線は第12図の40〜46という
形で表わされる。この図かられかるように、本実施例に
よる蒸発器は、蒸発温度の高い流路と低い流路が存在し
、平均蒸発温度は第2図に示すもとの一般的伝熱管に冷
媒を均等に流した場合と大差にない。しかも本実施例に
よれば空気の温度差に応じて冷媒量ヲ変えることができ
るので、第3図ですでに説明したような、不均一な冷媒
過熱域15は存在し々い。このことは、熱交換効率の高
い二相流部の面積割合全増すことができるということで
ある。以上のように、本実施例による蒸発器は空気と冷
媒との温度差全減少させないで且つ熱交換効率全増加さ
せることができる。この結果、熱交換量を大幅に増加さ
せることかでき、さらに本実施例は特別に生産性を低下
させることなく実現が可能であり、実用上のメリットが
大である。
Since this embodiment has the structure as described above, the refrigerant flowing into the flat heat exchanger tube from the header first branches into each passage with a different cross section.The flow rate of the refrigerant is determined by the pressure loss from the inlet header to the outlet header. It flows like that. In other words, a channel with a large channel cross section near the inlet has less loss at the inlet than a channel with a small channel cross section, so the flow rate is large (this state is explained on the Gold Mollier diagram). Then, the result will be as shown in Fig. 12.The pressure loss of the heat exchanger is the loss between the inlet header section 47 and the outlet header section 48, but the evaporation lines corresponding to the flow paths 17a to 17n are from 40 to 40 in Fig. 12. 46. As can be seen from this figure, the evaporator according to this example has a flow path with a high evaporation temperature and a flow path with a low evaporation temperature, and the average evaporation temperature is equal to that of the original general evaporation temperature shown in FIG. This is not much different from the case where the refrigerant is uniformly flowed through the heat exchanger tubes.Furthermore, according to this embodiment, the amount of refrigerant can be changed according to the temperature difference of the air, so as already explained in FIG. Non-uniform refrigerant superheating regions 15 often exist.This means that the total area ratio of the two-phase flow section with high heat exchange efficiency can be increased.As described above, the evaporator according to this embodiment can increase the heat exchange efficiency without reducing the temperature difference between the air and the refrigerant.As a result, the amount of heat exchange can be significantly increased, and this embodiment does not particularly reduce productivity. It can be realized without any problems, and has great practical advantages.

以上説明したよう□に、本発明によれば、多通路を備え
た扁平伝熱管にて形成される熱交換器の各通路には、最
も熱交換率が高くなるように冷媒を分配815人させる
ことができ、熱交換量全大巾に向−」ニすることが出来
る。
As explained above, according to the present invention, refrigerant is distributed to each passage of a heat exchanger formed of flat heat exchanger tubes with multiple passages so as to obtain the highest heat exchange efficiency. It is possible to direct the entire heat exchange amount.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の対象とする熱交換器の外観図、第2図
は第1図の■−■線矢視断面図、第3図(・ま従来の熱
交換器の管内流モデル、第4図及び第5図は夫々従来の
伝熱管を示す図、第6図は従来の伝熱管のモリエル線図
、第7図は本発明の一実施例を示す熱交換器の伝熱管部
の斜視図、第8図は第7図の■−■線矢視断面図、第9
図は本発明の他の実施例を示す伝熱管部の斜視図、第1
O図は本発明の更に他の実施例を示す伝熱管部の正面図
、第11図は第10図のXI−XI線矢視断面図、第1
2図は本発明の熱交換器のモリエル線図である。 1・・・扁平管、2・・・コルゲートフィン、3,4・
・・ヘッダ、5・・・流入空気、14・・・二相域、]
5・・・ガス域、16・・・扁平伝熱管、16a〜16
h・・・通路、17・・・管端部材、17a〜17n・
・・通路、26・・・扁平伝熱管、26 a〜26 n
・・・通路、26a′〜26n′・・・押下側壁、36
′・・・扁平伝熱管、33′・・・ヘッダ、35・・・
覆壁、35a〜35n・・・通路。 代理人弁理士  秋 本  IE  実第1図 第2図 第4図 第5図 第6図 第7図 6 第8図 第9図 第10図 第1I図 第12図 p 第1頁の続き− 0発 明 者 安食直二 清水市村松390番地株式会社日 立製作所清水工場内
Fig. 1 is an external view of a heat exchanger to which the present invention is applied, Fig. 2 is a sectional view taken along the line ■-■ in Fig. 1, and Fig. 3 is a flow model in the pipes of a conventional heat exchanger. 4 and 5 are diagrams showing conventional heat exchanger tubes, FIG. 6 is a Mollier diagram of a conventional heat exchanger tube, and FIG. 7 is a diagram of a heat exchanger tube section of a heat exchanger showing an embodiment of the present invention. A perspective view, Figure 8 is a sectional view taken along the line ■-■ in Figure 7, and Figure 9 is a perspective view.
The figure is a perspective view of a heat exchanger tube section showing another embodiment of the present invention.
FIG.
FIG. 2 is a Mollier diagram of the heat exchanger of the present invention. 1... Flat tube, 2... Corrugated fin, 3, 4.
...Header, 5...Incoming air, 14...Two-phase area,]
5... Gas region, 16... Flat heat exchanger tube, 16a-16
h...Passage, 17...Pipe end member, 17a to 17n.
...Passage, 26...Flat heat exchanger tube, 26 a to 26 n
...Passage, 26a' to 26n'...Press down side wall, 36
'... Flat heat exchanger tube, 33'... Header, 35...
Covering wall, 35a-35n... passage. Representative Patent Attorney Akimoto IE Actual Figure 1 Figure 2 Figure 4 Figure 5 Figure 6 Figure 7 Figure 6 Figure 8 Figure 9 Figure 10 Figure 1 I Figure 12 p Continuation of page 1 - 0 Inventor Naoji Ajiki 390 Muramatsu, Shimizu City, Shimizu Factory, Hitachi, Ltd.

Claims (1)

【特許請求の範囲】 1、 多通路全備えた扁平伝熱管を蛇行状に曲折し、こ
の扁平伝熱管の平行直管部の間にコルゲ−トフィンを配
置■7てなる熱交換器において、上記扁平伝熱管の入口
端、出口端の少なくとも一力の各通路の開口端断面積を
風上側より風下側方向に順次減少させたことを特徴とす
る熱交換器、。 2、各通路の開口端断面積を順次減少させる手段が扁平
伝熱管の端部に各通路の延長部の1Fn路断面積金順次
変化させた管端部材を0着1.てなる特許請求の範囲第
1項記載の熱交換器。 3、各通路の開口端断面積を順次減少させる手段が、各
通路の端部全潰し、この潰し度合を順次・変化させてな
る特許請求の範囲第1項記載の熱交換器。 4、各直路の開口端断面積を順次減少させる手段が、ヘ
ッダに各通路の端部全種う覆壁全数け、該覆壁に各通路
の延長部に開口断簡積を順次変化さぜた通路を設けてな
る特許請求の範囲第1項記載の熱交換器。
[Claims] 1. A heat exchanger comprising: 1. A flat heat exchanger tube fully equipped with multiple passages is bent in a meandering pattern, and corrugated fins are arranged between the parallel straight pipe portions of the flat heat exchanger tube. A heat exchanger characterized in that the opening end cross-sectional area of at least one passage at the inlet end and the outlet end of the flat heat exchanger tube is sequentially decreased from the windward side to the leeward side. 2. The means for sequentially reducing the cross-sectional area of the opening end of each passage is to attach a tube end member having a 1Fn passage cross-sectional area of the extended portion of each passage to the end of the flat heat exchanger tube. A heat exchanger according to claim 1, comprising: 3. The heat exchanger according to claim 1, wherein the means for sequentially reducing the cross-sectional area of the opening end of each passage completely collapses the end of each passage and sequentially changes the degree of collapse. 4. The means for sequentially reducing the cross-sectional area of the opening end of each straight passage includes covering all types of covering walls at the ends of each passage in the header, and sequentially changing the opening cross-sectional area of the extension part of each passage on the covering wall. A heat exchanger according to claim 1, which is provided with a passage.
JP8164582A 1982-05-17 1982-05-17 Heat exchanger Granted JPS58200997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8164582A JPS58200997A (en) 1982-05-17 1982-05-17 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8164582A JPS58200997A (en) 1982-05-17 1982-05-17 Heat exchanger

Publications (2)

Publication Number Publication Date
JPS58200997A true JPS58200997A (en) 1983-11-22
JPH0536718B2 JPH0536718B2 (en) 1993-05-31

Family

ID=13752072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8164582A Granted JPS58200997A (en) 1982-05-17 1982-05-17 Heat exchanger

Country Status (1)

Country Link
JP (1) JPS58200997A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59163790U (en) * 1983-04-13 1984-11-02 三菱重工業株式会社 Heat exchanger
FR2754047A1 (en) * 1996-09-30 1998-04-03 Valeo Climatisation Heat exchanger with sub-divided flat cooling tubes
JP2008261518A (en) * 2007-04-10 2008-10-30 Mitsubishi Electric Corp Heat exchanger and air conditioner comprising the same
JP2009250497A (en) * 2008-04-04 2009-10-29 Sharp Corp Heat exchanger
JP2010516997A (en) * 2007-01-30 2010-05-20 ブラッドレー・ユニバーシティ Heat transfer device and heat transfer method
US20160370119A1 (en) * 2015-06-17 2016-12-22 Mahle International Gmbh Heat exchanger assembly having a refrigerant distribution control using selective tube port closures
EP3800416A1 (en) * 2019-10-04 2021-04-07 Hamilton Sundstrand Corporation Enhanced heat exchanger performance under frosting conditions

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52126452U (en) * 1976-03-24 1977-09-26
JPS58107475U (en) * 1982-01-11 1983-07-21 カルソニックカンセイ株式会社 Deformed tube evaporator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52126452U (en) * 1976-03-24 1977-09-26
JPS58107475U (en) * 1982-01-11 1983-07-21 カルソニックカンセイ株式会社 Deformed tube evaporator

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59163790U (en) * 1983-04-13 1984-11-02 三菱重工業株式会社 Heat exchanger
FR2754047A1 (en) * 1996-09-30 1998-04-03 Valeo Climatisation Heat exchanger with sub-divided flat cooling tubes
JP2010516997A (en) * 2007-01-30 2010-05-20 ブラッドレー・ユニバーシティ Heat transfer device and heat transfer method
JP2008261518A (en) * 2007-04-10 2008-10-30 Mitsubishi Electric Corp Heat exchanger and air conditioner comprising the same
JP4671985B2 (en) * 2007-04-10 2011-04-20 三菱電機株式会社 Heat exchanger and air conditioner equipped with the heat exchanger
JP2009250497A (en) * 2008-04-04 2009-10-29 Sharp Corp Heat exchanger
US20160370119A1 (en) * 2015-06-17 2016-12-22 Mahle International Gmbh Heat exchanger assembly having a refrigerant distribution control using selective tube port closures
US10126065B2 (en) * 2015-06-17 2018-11-13 Mahle International Gmbh Heat exchanger assembly having a refrigerant distribution control using selective tube port closures
EP3800416A1 (en) * 2019-10-04 2021-04-07 Hamilton Sundstrand Corporation Enhanced heat exchanger performance under frosting conditions
US11525618B2 (en) 2019-10-04 2022-12-13 Hamilton Sundstrand Corporation Enhanced heat exchanger performance under frosting conditions

Also Published As

Publication number Publication date
JPH0536718B2 (en) 1993-05-31

Similar Documents

Publication Publication Date Title
US5137082A (en) Plate-type refrigerant evaporator
US5172759A (en) Plate-type refrigerant evaporator
US6016864A (en) Heat exchanger with relatively flat fluid conduits
KR20110110722A (en) Improved heat exchanger having an inlet distributor and outlet collector
US6823933B2 (en) Stacked-type, multi-flow heat exchangers
CN100483045C (en) Heat exchanger
JP5545160B2 (en) Heat exchanger
JPS58200997A (en) Heat exchanger
US6446715B2 (en) Flat heat exchange tubes
JP2002130973A (en) Heat exchanger
JP2000266484A (en) Heat exchanger
JPH04344033A (en) Air heat exchanger
JP4513207B2 (en) Air heat exchanger
JP2576197B2 (en) Heat exchanger
KR100213778B1 (en) Heat exchanger
JPS61191889A (en) Heat exchanger
JPS63197887A (en) Heat exchanger
JP2001255096A (en) Heat exchanger
JPH0620054Y2 (en) Heat exchanger
JPH0645150Y2 (en) Vehicle heat exchanger
JPH03177759A (en) Heat exchanger
JPH0711332Y2 (en) Heat exchanger
JPH1137683A (en) Heat exchanger
JP2004069258A (en) Flat tube, and method of manufacturing heat exchanger using flat tube
JPH0245734Y2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term