JPS58200061A - Control device for air-fuel ratio in internal-combustion engine - Google Patents

Control device for air-fuel ratio in internal-combustion engine

Info

Publication number
JPS58200061A
JPS58200061A JP8426882A JP8426882A JPS58200061A JP S58200061 A JPS58200061 A JP S58200061A JP 8426882 A JP8426882 A JP 8426882A JP 8426882 A JP8426882 A JP 8426882A JP S58200061 A JPS58200061 A JP S58200061A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
fuel
sensor
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8426882A
Other languages
Japanese (ja)
Other versions
JPS6219576B2 (en
Inventor
Setsuhiro Shimomura
下村 節宏
Yuji Kishimoto
雄治 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP8426882A priority Critical patent/JPS58200061A/en
Publication of JPS58200061A publication Critical patent/JPS58200061A/en
Publication of JPS6219576B2 publication Critical patent/JPS6219576B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1486Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor with correction for particular operating conditions
    • F02D41/1488Inhibiting the regulation
    • F02D41/1489Replacing of the control value by a constant

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To provide an accurate control of air-fuel ratio over an entire operating range by a method wherein the air-fuel ratio is feed back controlled when an engine is not at an idling condition, an air-fuel ratio is controlled by a manual adjuster in case of idling operation, and a control amount of the manual adjuster is gradually decreased as the volume of suctioned air is increased. CONSTITUTION:A basic fuel calculation part 11 in a control device 1 calculates a basic volume of fuel on the basis of a sensed value of a suction air volume sensor 2, the calculated value is corrected by a correction calculation part 12 to which various sensors 4 are connected, an adjusting value calculating part 13 to which the manual adjuster 5 is connected, and a feed-back calculating part 14 to which O2 sensor 6 is connected. The feed-back calculator part 14 is operated through a switch 15 when the idler sensor 3 senses a non-idling condition. To the adjusting value calculating part 13 is fed a sensed value of the suction air volume sensor 2, a control value is gradually decreased as the suction air volume is increased in response to the most appropriate control value in case of the predetermined idling operation.

Description

【発明の詳細な説明】 本発朗祉内燃!!!関の諸パラメータに乙じて供給燃料
量をfliJIII L、これによって空燃比全制御す
る内燃S関の空燃比制御装置に関するものである。
[Detailed description of the invention] Honshu Roshi Internal Combustion! ! ! This invention relates to an air-fuel ratio control device for an internal combustion engine which completely controls the air-fuel ratio by controlling the amount of fuel supplied according to various parameters related to the internal combustion engine.

従来、内燃機関の空燃比制御装置においては、吸入空気
量センサを始めとして各種のセンサから内燃&関の諸パ
ラメータを検出し、この検出信号に応じて燃料制御弁を
制御している。しかるに、各センサには計測誤差がある
とともに燃料制御弁にも制御誤差があり、厳密な空燃比
制御を達成するために内燃11関の排気ガス中の酸素濃
度に応じた電気信号を出力する排気ガスセンサを設け、
該センサの出力に応じて空燃比の帰還制御を行っている
。このような帰還制御は各構成要素の初期公差や経時変
化を校正する上で極めて有力な手段であるが、周知のご
とく排気ガスセンサは排気ガス中のガス成分の電気化学
的作用によって空燃比に応じた電)信号を出力するもの
であシ、F9T足の活性化温度を維持できることが必須
条件である。しかるに、機関のアイドル状態のような軽
負衝時には排気ガスの温度が低下して上記の活性化ii
度を下回り勝ちであり、排気ガスセンサの電気出力は空
燃比に正しく応じたものではなくなる。従って、このよ
うな状態において空燃比の帰還制御を行うと所定外の空
燃比に整定することになって好ましくない。又、活性化
温度の確保が可能であったとしても、排気ガスセンサと
して現在実用化されている酸素センサのようにその出力
が理論空燃比の近傍で急激に反転するものを使用した場
合には、この出力の反転と機関が有する遅れ時間とが相
まって帰還制御は振動的となり、いわゆるリミットサイ
クルを描くことl/Cなる。換首すれば空燃比が機関状
態に応じた周期で振動子ることになる。通常この振動に
よって機−回転数などの変動が生じることはないが、ア
イドル状態においてはリミットサイクル周期が長くなる
こともあって胞転変動を招き易い。
Conventionally, in an air-fuel ratio control device for an internal combustion engine, various internal combustion and related parameters are detected from various sensors including an intake air amount sensor, and a fuel control valve is controlled in accordance with the detected signals. However, each sensor has a measurement error, and the fuel control valve also has a control error.In order to achieve strict air-fuel ratio control, the exhaust gas outputs an electric signal according to the oxygen concentration in the exhaust gas of the internal combustion valve 11. Install a gas sensor,
Feedback control of the air-fuel ratio is performed according to the output of the sensor. Feedback control like this is an extremely effective means of calibrating the initial tolerances and changes over time of each component, but as is well known, exhaust gas sensors respond to the air-fuel ratio through the electrochemical action of gas components in the exhaust gas. Since it is a device that outputs an electric signal, it is essential that it can maintain the activation temperature of the F9T foot. However, when the engine is under a light load, such as when the engine is idling, the temperature of the exhaust gas decreases and the activation ii.
The exhaust gas sensor's electrical output will no longer correspond correctly to the air-fuel ratio. Therefore, if air-fuel ratio feedback control is performed in such a state, the air-fuel ratio will settle to an unspecified air-fuel ratio, which is not preferable. Furthermore, even if it is possible to secure the activation temperature, if an exhaust gas sensor such as an oxygen sensor currently in practical use whose output rapidly reverses near the stoichiometric air-fuel ratio is used, This reversal of the output and the delay time of the engine combine to make the feedback control oscillatory, creating a so-called limit cycle. If the engine is replaced, the air-fuel ratio will oscillate at a frequency that corresponds to the engine condition. Normally, this vibration does not cause fluctuations in the machine rotational speed, but in an idle state, the limit cycle period becomes longer, which tends to cause rotational fluctuations.

して空燃比の帰還制御を停止し、空燃比の誤差を他の調
整手段によって校正する方法が多く行われておシ、アイ
ドル状態では手動調整により、又非アイドル状態では帰
還制御によシ空燃比のIMJ!1を行っている。しかる
にこの方法には次のような欠点がある。即ち、アイドル
状態かられずかに加速した状態に移行した際には前記手
動調整から帰還制御へ切換えられるが、この際帰還制御
が整定されるまでの間は空燃比の誤差が校正されず、空
燃比の過渡的な跳躍が生じる。例えば、空燃比を過薄側
から濃くする側へ校正している際には機関出力が減少し
回転数の低下が生じて著しく運転性能を払うととKなる
。このような不都合を除去するためI/cは、アイドル
状態において得られた手動調整iを帰還制御を行う際に
も作用させておくことが考えられ、このようにすれはア
イドル状態から非アイドル状馳への移行において空燃比
の連続性が得られて空燃比の過渡的な跳躍が生じること
がなく、1転数の一時的な低下も生じない。しかるに、
前述した各種のセンサによる計測誤差や燃料制御弁の制
御誤差などの棟々の誤差要因は各々独立に作用するもの
であシ、アイドル状態で得られた調整量を機関の高負荷
状態にまで適用するとかえって誤差を助長する場合も多
く、この場合帰還制御による調整に負うところが大きく
な9、空燃比の整定遅れによる排気ガスの劣化をいたず
らに招くことになる。
In many cases, the air-fuel ratio feedback control is stopped and the error in the air-fuel ratio is corrected by other adjustment means. Fuel ratio IMJ! I am doing 1. However, this method has the following drawbacks. That is, when transitioning from an idling state to a state of slight acceleration, the manual adjustment is switched to feedback control, but at this time, the error in the air-fuel ratio is not calibrated until the feedback control is stabilized, and the air-fuel ratio is not corrected. A transient jump in fuel ratio occurs. For example, when the air-fuel ratio is calibrated from the lean side to the rich side, the engine output decreases, the rotational speed decreases, and the operating performance is significantly impaired. In order to eliminate this kind of inconvenience, it is possible to apply the manual adjustment i obtained in the idle state to the I/C also when performing feedback control. Continuity of the air-fuel ratio is obtained during the transition to the first rotation, so that no transient jump in the air-fuel ratio occurs, and no temporary drop in the number of revolutions occurs. However,
The various error factors mentioned above, such as measurement errors by the various sensors and control errors of the fuel control valve, act independently, and the amount of adjustment obtained in the idle state is applied even to the high load state of the engine. In many cases, this may actually aggravate errors, and in this case, the adjustment by feedback control is largely required9, unnecessarily causing exhaust gas deterioration due to a delay in air-fuel ratio stabilization.

本発明は上記の点を考慮して成されたものでめシ、空燃
比の制御1を機関のアイドル状態では手動all整によ
り行うとともに非アイドル状態ではNI還制御によシ行
うようにした内燃機関の空燃比制御装置において、アイ
ドル状塵から非アイドル状態−への移行の際にも空燃比
を正確に制御することができ、全運転領域において空燃
比を正確に制御することができる内燃機関の空燃比制御
装置tを提供することを目的とする。
The present invention has been made in consideration of the above points, and provides an internal combustion engine in which air-fuel ratio control 1 is carried out by manual all adjustment when the engine is idling, and by NI return control when the engine is not idling. An internal combustion engine that can accurately control the air-fuel ratio even when transitioning from an idle state to a non-idle state in an engine air-fuel ratio control device, and that can accurately control the air-fuel ratio in the entire operating range. An object of the present invention is to provide an air-fuel ratio control device t.

以下本発明の実施例を図面とと本に説明する。Embodiments of the present invention will be described below with reference to the drawings and the book.

第1図において、■は制御装置、2は機関の吸入空気量
を検出する吸入空気量センサ、3#′i機関のアイドル
状態をスロットル一度で検出するアイドル検出器、4は
水温センサや吸気温センサなどの各種センナ、5は可変
抵抗器などKよる手動調整器、6は排気ガス中の酸累湊
度によって空燃比を検出する排気ガスセンサ、7は開弁
時間の制御によって所定量の燃料を機関に供給する燃料
制御弁である。又、制御装置lは基本燃料演算部11、
補正演算部12.調整量演算部13、帰還制御部14、
スイッチ15、弁制御部16および各乗算器17〜19
とから構成される。基本燃料演算部11は吸入空気量セ
ンサ2からの検出信号を受け、吸入空気量に対応して所
定空燃比となる燃料tを演算し、基本燃料信号Soを出
力する。補正演算部12は各極センサ4から例えd吸入
空気温度の・検出信号を受け、空気の密度変化を補正す
る。帰還制御部14ti例えに積分要素から成り、排気
ガスセンサ6の出力を受杖て空燃比の誤差を検出する。
In Figure 1, ■ is a control device, 2 is an intake air amount sensor that detects the intake air amount of the engine, 3#'i is an idle detector that detects the idle state of the engine with one throttle throttle, and 4 is a water temperature sensor and intake air temperature sensor. 5 is a manual regulator such as a variable resistor, 6 is an exhaust gas sensor that detects the air-fuel ratio based on the degree of acid accumulation in the exhaust gas, and 7 is a device that controls the valve opening time to control a predetermined amount of fuel. This is a fuel control valve that supplies fuel to the engine. Further, the control device l includes a basic fuel calculation unit 11,
Correction calculation unit 12. Adjustment amount calculation unit 13, feedback control unit 14,
Switch 15, valve control section 16, and each multiplier 17 to 19
It consists of The basic fuel calculation unit 11 receives the detection signal from the intake air amount sensor 2, calculates the fuel t that will give a predetermined air-fuel ratio in accordance with the intake air amount, and outputs the basic fuel signal So. The correction calculation unit 12 receives a detection signal of, for example, d intake air temperature from each pole sensor 4, and corrects the change in air density. The feedback control unit 14ti is composed of an integral element, for example, and receives the output of the exhaust gas sensor 6 to detect an error in the air-fuel ratio.

li1重量演算部13t;i吸入空気量センサ2および
手動調整器5の出力を受けて調整器を演算する。
li1 weight calculating section 13t; i receives the outputs of the intake air amount sensor 2 and manual adjuster 5 and calculates the adjuster;

スイッチ15はアイドル検出器3の出力を受け、アイド
ル状態では帰還制御部14の出力が空燃比制御に作用す
るのを阻止する。弁制御部16は所要燃料量に応じた時
間幅の燃料制御弁を駆動する信号を発生する。
The switch 15 receives the output of the idle detector 3, and prevents the output of the feedback control section 14 from acting on the air-fuel ratio control in the idle state. The valve control unit 16 generates a signal for driving the fuel control valve with a time width corresponding to the required amount of fuel.

次に上記装置の動作について説明する。非アイドル状態
では、吸入空気量に応じた基本燃料信号Soが基本燃料
演算部11から出力され、これに補正演算部12の補正
出力C1s調整量演算部13の調整出力C2、および帰
還制御部14からスイッチ15を介して出力される帰還
制御出力C3が乗算器17〜19において夫々乗算され
、5OXCIXC2X C3なる燃料要求信号が弁制御
部16に与えられ、弁制御部16はこの信号の値に応じ
た/母ルス幅の弁駆動信号を燃料制御弁7に与え、燃料
制御弁7は所定の空燃比となる燃料を機関に供給する。
Next, the operation of the above device will be explained. In a non-idling state, a basic fuel signal So corresponding to the intake air amount is outputted from the basic fuel calculation section 11, and this is combined with the correction output C1 of the correction calculation section 12, the adjustment output C2 of the adjustment amount calculation section 13, and the feedback control section 14. The feedback control output C3 outputted from the switch 15 is multiplied by the multipliers 17 to 19, respectively, and a fuel request signal of 5OXCIXC2XC3 is given to the valve control unit 16, and the valve control unit 16 responds to the value of this signal. A valve drive signal having a width of 1/2/base pulse width is given to the fuel control valve 7, and the fuel control valve 7 supplies fuel at a predetermined air-fuel ratio to the engine.

一方、アイドル状態ではアイドル検出器3がスイッチ1
5を制御し、これによって帰還制御部14の出力は阻止
されC3=1となるので空燃比の帰還制御は停止される
。この状態において、空燃比の状態例えば排気ガスセン
サ6の状態を観測しながら手動調整器5を調整する。手
動調整器5の出力に応じた調整量演算部13の―整出力
C3は基本燃料信号Soに乗算されるので空燃比が調整
され、所ぎ腔燃耽なうたところで手動調整器5を固足す
ると、以後との空燃比が維持される。調整量演算部13
にはさらに吸入空気量センサ2の出力が与えられておシ
、調整出力C冨Vcは第2図に示す特性が与えられる。
On the other hand, in the idle state, the idle detector 3
As a result, the output of the feedback control section 14 is blocked and C3=1, so the feedback control of the air-fuel ratio is stopped. In this state, the manual regulator 5 is adjusted while observing the state of the air-fuel ratio, for example, the state of the exhaust gas sensor 6. The adjustment output C3 of the adjustment amount calculation unit 13 corresponding to the output of the manual regulator 5 is multiplied by the basic fuel signal So, so the air-fuel ratio is adjusted, and the manual regulator 5 is stopped when the fuel is too hot. Then, the air-fuel ratio from then on is maintained. Adjustment amount calculation unit 13
Furthermore, the output of the intake air amount sensor 2 is given, and the adjusted output C-tension Vc is given the characteristic shown in FIG.

即ち、アイドル状態において調整を行った際の手動調整
器5の出力に応じた調整出力C鵞をCI′−とし、これ
より機関の吸入空気量Qaが増加するに従って調整出力
C3を漸減させる。
That is, the adjustment output C corresponding to the output of the manual regulator 5 when the adjustment is performed in an idling state is set as CI'-, and the adjustment output C3 is gradually decreased from this as the intake air amount Qa of the engine increases.

図において、実SはC2を直線的に減少させた例(QA
OはC3が零の際の吸入空気量)であり、一点鎖線は反
比例的に減少させた例であるが、その他任意の関数で減
少させても良い。
In the figure, the actual S is an example in which C2 is linearly decreased (QA
O is the amount of intake air when C3 is zero), and the dashed-dotted line is an example in which it is decreased inversely proportionally, but it may be decreased by any other arbitrary function.

尚、上記実施例では手動調整量の漸減を吸入空気量セン
サ2の出力に応じて行っているが、各誤差要因の誤差蓋
を変動させるパラメータ即ち吸入   1空気量、吸気
管圧力および機関回転数のいずれか一つあるいはこれら
を複合させたノ母うメータに応じて手動調整量を漸減さ
せても陶様の効果を得ることができる。従って、吸入空
気量センサ、吸気管圧力センサおよび機関回転数センサ
のうち少くとも一つを設置すれば良い。
In the above embodiment, the manual adjustment amount is gradually decreased according to the output of the intake air amount sensor 2, but the parameters that change the error cover of each error factor, namely, the intake air amount, intake pipe pressure, and engine speed A similar effect can be obtained even if the amount of manual adjustment is gradually decreased depending on the meter used for any one of these or a combination of these. Therefore, it is sufficient to install at least one of an intake air amount sensor, an intake pipe pressure sensor, and an engine speed sensor.

以上のように本発明に係る空燃比制御装置においては、
アイドル状態では調整器によって空燃比を調整するとと
もに非アイドル状態においても調整器による調整を適用
しているので、アイドル状態から非アイドル状態に移行
した際に空燃比に連続性が得られて空燃比の跳躍が生じ
ず、回転数の低下が生じない。又、非アイドル状態にお
ける調整器の調整量は例えば吸入空気量などの増大即ち
機関の負荷状態が高くなるほど漸減させているので、低
負荷時に得た調整量を誤差構成が異る高負荷時にまで反
映させる度合が少く、高負荷領域で空燃比を誤調整して
運転性能や排気ガスの劣化を生じさせない。
As described above, in the air-fuel ratio control device according to the present invention,
The air-fuel ratio is adjusted by the regulator in the idle state, and the adjustment by the regulator is also applied in the non-idle state, so when transitioning from the idle state to the non-idle state, continuity is obtained in the air-fuel ratio and the air-fuel ratio is adjusted. No jumping occurs, and no drop in rotational speed occurs. In addition, the adjustment amount of the regulator in a non-idling state is gradually decreased as the amount of intake air increases, that is, as the engine load condition increases, so the adjustment amount obtained at low load can be applied to high load, where the error composition is different. The degree of reflection is small, and the air-fuel ratio will not be erroneously adjusted in the high load range, causing deterioration of driving performance and exhaust gas.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る空燃比制御装置の構成図、第2図
は本発明に係る手動調整器における@**の特性図。 1・・・制御装置、2・・・吸入空気量センサ、3・・
・アイドル検出器、4・・・各種センサ、5・・・手動
調整器、6・・・排気ガスセンサ、7・・・燃料制御弁
、11・・・基本燃料演算部、12・・・補正演算部、
13・・・調整量演算部、14・・・帰還演算部、15
・・・スイッチ、16・・・弁制御部、17〜19・・
・乗算器。 代理人   葛  野  信  −
FIG. 1 is a block diagram of the air-fuel ratio control device according to the present invention, and FIG. 2 is a characteristic diagram of @** in the manual regulator according to the present invention. 1...Control device, 2...Intake air amount sensor, 3...
- Idle detector, 4...Various sensors, 5...Manual adjuster, 6...Exhaust gas sensor, 7...Fuel control valve, 11...Basic fuel calculation section, 12...Correction calculation Department,
13... Adjustment amount calculation section, 14... Feedback calculation section, 15
...Switch, 16...Valve control section, 17-19...
- Multiplier. Agent Shin Kuzuno −

Claims (1)

【特許請求の範囲】[Claims] (1)内me関の吸入空気量を検出する吸入空気蓋セン
サと吸気管圧力を検出する吸気管圧力センサと一転数を
検出する回転数センサのうちの少くとも一つと、排気ガ
ス中の酸素濃度によって空燃比を検出する排気ガスセン
サと、fk関のアイドル状態を検出するアイドル検出器
と、前記各センサおよび検出器の出力を受けて所定の空
燃比となる燃料量を演算する制御装置と、制御装置によ
り駆動制御されて機関に所定の空燃比となる燃料量を供
給する燃料制御弁と、制御装置に電気信号を与えて燃料
量の演算に作用(、て空燃比の調整を行う調整器とを備
え、機関のアイドル状物では排気ガスセンサの出力によ
る制御を停止するとともに一整器によって空燃比の!M
l整を行い、機関の非−アイドル状態では排気ガスセン
サの出方による制御を行うととも忙吸入空気量と吸気管
圧力と回転数のうちの少くとも一つが増加した際に調整
器の調整を漸減させるようにしたことを特徴とする内燃
fIIk関の空燃比111J御装置。
(1) At least one of the intake air lid sensor that detects the amount of intake air in the inner mezzanine, the intake pipe pressure sensor that detects the intake pipe pressure, and the rotation speed sensor that detects the rotation speed, and oxygen in the exhaust gas. an exhaust gas sensor that detects the air-fuel ratio based on concentration; an idle detector that detects the idle state of the fk engine; and a control device that receives the outputs of the sensors and detectors and calculates the amount of fuel that will give a predetermined air-fuel ratio; A fuel control valve that is driven and controlled by a control device to supply a fuel amount to a predetermined air-fuel ratio to the engine, and a regulator that applies an electric signal to the control device to calculate the fuel amount (and adjust the air-fuel ratio) When the engine is idling, the control based on the output of the exhaust gas sensor is stopped, and the air-fuel ratio is adjusted by the regulator.
When the engine is in a non-idling state, the engine is controlled by the output of the exhaust gas sensor, and when at least one of the intake air volume, intake pipe pressure, and rotational speed increases, the regulator is adjusted. An air-fuel ratio 111J control device for internal combustion fIIk, characterized in that the air-fuel ratio is gradually decreased.
JP8426882A 1982-05-17 1982-05-17 Control device for air-fuel ratio in internal-combustion engine Granted JPS58200061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8426882A JPS58200061A (en) 1982-05-17 1982-05-17 Control device for air-fuel ratio in internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8426882A JPS58200061A (en) 1982-05-17 1982-05-17 Control device for air-fuel ratio in internal-combustion engine

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP3118188A Division JPS63212745A (en) 1988-02-12 1988-02-12 Air fuel ratio control device of internal combustion engine

Publications (2)

Publication Number Publication Date
JPS58200061A true JPS58200061A (en) 1983-11-21
JPS6219576B2 JPS6219576B2 (en) 1987-04-30

Family

ID=13825702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8426882A Granted JPS58200061A (en) 1982-05-17 1982-05-17 Control device for air-fuel ratio in internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS58200061A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63212745A (en) * 1988-02-12 1988-09-05 Mitsubishi Electric Corp Air fuel ratio control device of internal combustion engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4946006A (en) * 1972-09-08 1974-05-02
JPS51143134A (en) * 1975-06-05 1976-12-09 Nippon Denso Co Ltd Fuel ratio feed back fuel injection controller
JPS5634932A (en) * 1979-08-29 1981-04-07 Japan Electronic Control Syst Co Ltd Electronic control fuel injector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4946006A (en) * 1972-09-08 1974-05-02
JPS51143134A (en) * 1975-06-05 1976-12-09 Nippon Denso Co Ltd Fuel ratio feed back fuel injection controller
JPS5634932A (en) * 1979-08-29 1981-04-07 Japan Electronic Control Syst Co Ltd Electronic control fuel injector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63212745A (en) * 1988-02-12 1988-09-05 Mitsubishi Electric Corp Air fuel ratio control device of internal combustion engine
JPH0532571B2 (en) * 1988-02-12 1993-05-17 Mitsubishi Electric Corp

Also Published As

Publication number Publication date
JPS6219576B2 (en) 1987-04-30

Similar Documents

Publication Publication Date Title
US4546747A (en) Lean mixture control system using a biased oxygen concentration sensor
JPH01100334A (en) Fuel supply control device for internal combustion engine
JPH04339147A (en) Control device for air-fuel ratio of internal combustion engine
JPS58200061A (en) Control device for air-fuel ratio in internal-combustion engine
JP2690482B2 (en) Air-fuel ratio control device for internal combustion engine
JPH05163992A (en) Fail safe device for mixed fuel supply device
JP2582562B2 (en) Air-fuel ratio control device for internal combustion engine
JP3826996B2 (en) Air-fuel ratio control device for internal combustion engine
JP2668027B2 (en) Engine air-fuel ratio adjustment method
JP2521037B2 (en) Engine air-fuel ratio control device
JPS5949346A (en) Air-fuel ratio control device of internal-combustion engine of electronically controlled fuel injection type
JPS63212745A (en) Air fuel ratio control device of internal combustion engine
JP2596054Y2 (en) Air-fuel ratio feedback control device for internal combustion engine
JP4371028B2 (en) Engine air-fuel ratio control device
JP2550938B2 (en) Engine air-fuel ratio control device
JP3008770B2 (en) Air-fuel ratio control device for internal combustion engine
JP2627798B2 (en) Intake pressure detection device for internal combustion engine
JP2752629B2 (en) Air-fuel ratio control device for internal combustion engine
JP3775570B2 (en) Air-fuel ratio control device for internal combustion engine
JPH01155046A (en) Electronic control fuel injection system for internal combustion engine
JPH09203343A (en) Air-fuel ratio detecting device for internal combustion engine
JPH0517398Y2 (en)
JPH11173218A (en) Egr rate estimation device for engine
JPH0275737A (en) Air/fuel ratio controller for internal combustion engine
JPS60187724A (en) Controlling device of air-fuel ratio in internal-combustion engine