JPS58199615A - Removing method of load due to roll eccentricity in rolling mill - Google Patents

Removing method of load due to roll eccentricity in rolling mill

Info

Publication number
JPS58199615A
JPS58199615A JP57082905A JP8290582A JPS58199615A JP S58199615 A JPS58199615 A JP S58199615A JP 57082905 A JP57082905 A JP 57082905A JP 8290582 A JP8290582 A JP 8290582A JP S58199615 A JPS58199615 A JP S58199615A
Authority
JP
Japan
Prior art keywords
roll
eccentricity
output
component
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57082905A
Other languages
Japanese (ja)
Inventor
Sunao Tanimoto
直 谷本
Yoshitaka Hayashi
林 美孝
Morio Saito
斉藤 森生
Toshifumi Yabuuchi
薮内 捷文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP57082905A priority Critical patent/JPS58199615A/en
Publication of JPS58199615A publication Critical patent/JPS58199615A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control
    • B21B37/66Roll eccentricity compensation systems

Abstract

PURPOSE:To remove a load due to roll eccentricity from a rolling load by a simple controlling device, by extracting a component corresponding to the roll eccentricity from a differential signal obtained by differentiating a rolling load signal through a resonance circuit accepting the number of revolutions of a roll as a coexisting frequency. CONSTITUTION:A rolling load P(t) is inputted to a differentiation circuit of a block 1. An output (u) is expressed by the equation I (a dot.shows a time differential). The output U is inputted to a resonance circuit of a block 2. The output X of the block 2 is expressed by the equation II(omega0 is the number of revolution of a roll (angular velocity), zeta is a damping constant). A block 3 is a gain circuit, and an output (y), expressed by the equation III, is the whole output and corresponds to a component of eccentricity. Thus an excellent ratio, signal/ noise, is obtained by extracting the component of eccentricity.

Description

【発明の詳細な説明】 ζ(DR@は、圧延機において圧延荷重からロール偏心
に起因する変動成分を除去する方法に関するものである
・ 圧延中の板厚を推定すゐ方法に公知のr−ジメータ推定
方法が有る0本方法では、圧延反力(圧延荷重)を圧延
機内に組込んだ荷重針で針側し、本反力に依シ生じる圧
延機の板厚方向伸びを推定することを基本としている。
Detailed Description of the Invention ζ(DR@) relates to a method for removing the fluctuation component caused by roll eccentricity from the rolling load in a rolling mill. A known method for estimating plate thickness during rolling. In the 0-piece method, which includes a dimeter estimation method, the rolling reaction force (rolling load) is applied to the needle side with a load needle built into the rolling mill, and the elongation in the plate thickness direction of the rolling mill that depends on this reaction force is estimated. It is basic.

このr−ジメータ推定方法では圧延機のロールに偏心が
有ると、推定結果の精度が低下する◆が知られている。
In this r-dimeter estimation method, it is known that if there is eccentricity in the roll of the rolling mill, the accuracy of the estimation result will decrease.

即ち、r−ノメータ推定板厚変動は圧地荷1変動と正の
相関を有するが、關−ルに偏心が有る場合は、これが保
鉦されない為である。
That is, the r-nometer estimated plate thickness variation has a positive correlation with the compaction load 1 variation, but if there is eccentricity in the lock, this is because it is not maintained.

そζで、このロール偏心を物理的に除去する・方法及び
電気信号的に除去する方法が提案されて−る。―看の例
として、ロール偏心の発生が鑓−ル軸受のキー#llK
依る事に注目して、キー溝O無いロール軸受とする方法
か有る。しかし、この方法は圧延機を新設する場合には
好適であるが既設設備に適用するには相当の費用七賛す
る間亀がある。又、後者の例として、フーリエ解析によ
り圧延荷重信号を各周波数成分に展開し、ロール回転数
に相当する周波数成分から、ロールの偏心量を推定し、
電気信号的に除去する方法がある。しかし本方法は高価
な制御装置を会費とする問題がある。
Therefore, a method of physically removing this roll eccentricity and a method of removing it electrically have been proposed. - As an example, the occurrence of roll eccentricity is caused by the key #llK of the ring bearing.
There is a way to pay attention to this and use a roll bearing without a keyway O. However, although this method is suitable for installing a new rolling mill, it is too expensive to apply to existing equipment. As an example of the latter, the rolling load signal is expanded into each frequency component by Fourier analysis, and the amount of eccentricity of the roll is estimated from the frequency component corresponding to the roll rotation speed.
There is a method of removing electrical signals. However, this method has the problem of requiring an expensive control device.

この発明は、上記のような実情にかんがみてなされたも
のであって、その目的は簡単な制御装置で圧延荷重から
ロール偏心に起因する圧蝙荷重変動を除去できるように
したロール偏心荷重除去方法を提供しようとするもので
あるゆとのロール偏心荷重除去方法は、圧延機の圧延荷
重信号を微分し、この信号をロール回転数を共振周波数
とする共振回路を介してロール偏心成分を抽出し、上記
圧延荷重信号からロール偏心成分を除去するものである
This invention has been made in view of the above-mentioned circumstances, and its purpose is to provide a method for removing roll eccentric load by which rolling load fluctuations caused by roll eccentricity can be removed from the rolling load using a simple control device. Yuto's roll eccentric load removal method differentiates the rolling load signal of the rolling mill and extracts the roll eccentric component from this signal through a resonant circuit whose resonant frequency is the roll rotation speed. , the roll eccentricity component is removed from the rolling load signal.

以下にこの発明方法の考え方をまず説明する・ロール偏
心荷重除去に必要な機能は、圧延荷重信号p (t)に
含まれる偏心成分ΔP (りをまず推定することである
・但し、tは時間変数である。
The concept of the method of this invention will be explained below. The function required to remove the roll eccentric load is to first estimate the eccentric component ΔP included in the rolling load signal p (t). However, t is the time It is a variable.

一般に、偏心成分の周゛波数ωは、ロール回転数・ から算出でき、偏心成分ΔP(t)は次式で代表される
Generally, the frequency ω of the eccentric component can be calculated from the roll rotation speed, and the eccentric component ΔP(t) is represented by the following equation.

Δp(t)=  ム−n(ω  t 十α)     
               (1ン但し、ここで人
は偏心荷重の振巾であり、αは基準時刻からの位相差で
ある。そこで、ロールリ 偏心荷重を除去する為には、(1)式の偏心成分を抽出
するに際して以下の4条件を充足することが必要となる
・ イ)実時間で抽出で龜る。
Δp(t) = mu-n(ω t +α)
(1) However, here, human is the amplitude of the eccentric load, and α is the phase difference from the reference time. Therefore, in order to remove the Rolly eccentric load, extract the eccentric component of equation (1). It is necessary to satisfy the following four conditions: (a) Extraction slows down in real time.

■)振巾を正しく抽出で龜る。■) Make sure to extract the shaker correctly.

ハ)位相がずれない・ 二)信号/ノイズ比が良い。c) No phase shift. 2) Good signal/noise ratio.

以上の条件を満たす偏心成分抽出方法を第1図に従って
説明する。
An eccentric component extraction method that satisfies the above conditions will be explained with reference to FIG.

入力は圧延荷重信号P(t)である。The input is the rolling load signal P(t).

プロ、り1は微分回路であり1次式で表わされる。但し
、ζこでは時間の関数を表わす(1)を表記上省略す。
Pro, Ri1 is a differential circuit and is expressed by a linear equation. However, (1) representing a function of time is omitted here for the sake of notation.

u = #        (2) ここで、・は時間微分を表わし、Uはブロック1の出力
である・ プロVり2は共振回路であシ、次式で表わされる。
u = # (2) Here, . represents time differentiation, U is the output of block 1, and 2 is a resonant circuit, which is expressed by the following equation.

”x +2ζω!十ωX=ωU   (3)・    
 OO Xはプロ、り2の出力である◎ ここで、ω をロール回転数(角速度)に採る。
”x +2ζω! 10ωX=ωU (3)・
OO

ζは減衰定数である。ζ is the damping constant.

ブロック3は247回路であり1次式で表わわされる 和尚する。Block 3 has 247 circuits and is expressed by a linear equation. Become a priest.

以上の第1図に示すブロック図で、初めに述べた4条件
を満たす理由を説明する。
The reason why the first four conditions are satisfied will be explained using the block diagram shown in FIG. 1 above.

一般に圧延荷重信号P(υは以下の様に各崗波数成分を
持っている。
Generally, the rolling load signal P(υ has each wave number component as shown below.

このうち、(1)式のロール偏心成分のみに*目して、
本成分が第1図のプロ、りに入力されたとすると、次式
が成立する。
Of these, focusing only on the roll eccentricity component of equation (1),
If this component is input to the program shown in FIG. 1, the following equation holds true.

U=ω AcoII(ωを十α)(6)0、    0 x  ez−’−Asi烏(ω を十α )     
         (7)2ζ   O y = As1a(ω。を十α)(8)即ち、(1)式
のロール偏心成分かyにて同振巾、同位相で上記の条件
口)、ノ9を充足して復元できた事を示す。
U=ω AcoII (ω is 10 α) (6) 0, 0 x ez-'-Asi Karasu (ω is 10 α)
(7) 2ζ O y = As1a (ω. is 10α) (8) That is, the roll eccentricity component of equation (1) is the same amplitude and the same phase in y (the above condition), and satisfies No.9. This indicates that the data was restored successfully.

次に、プロ、り2に於いての、出力の入力に対する振巾
比を#I2図に示す。ここでは偏心成分の周波数ω近辺
で、振巾比が最大となシ、他・ 周波数成分の出力が大龜く減衰していゐ事が判る・プa
yり1とプロ、り2を結合して4、同様の関係と&)、
ω→■ にて振巾比→0になる事も求壕る。即ち、第1
図に示す偏心成分の抽出は、信号/ノイズ比が良好であ
る事が判り、条件二)を充足する。以上の回路は実時間
用に実現で龜、条件イ)を充足する。
Next, the amplitude ratio of the output to the input in Pro-Ri2 is shown in Figure #I2. Here, it can be seen that the amplitude ratio is maximum near the frequency ω of the eccentric component, and the output of other frequency components is greatly attenuated.
Combine yri1 and pro, ri2 to create 4, similar relationship &),
It is also interesting that the amplitude ratio becomes 0 at ω→■. That is, the first
It is found that the extraction of the eccentric component shown in the figure has a good signal/noise ratio and satisfies condition 2). The above circuit can be realized for real-time use and satisfies condition (a).

第tllに示す各プロVりは線形であり、結合−序を変
えても良い・ 次に、本発明方法をディジタル計算機を用いた圧延機の
自動板厚制御装置ll (AGC)に適用した実施例を
1111811する。
Each process shown in section tll is linear, and the order of connections may be changed. An example is 1111811.

AGCでは一定すンプリング周期Δを毎に、圧延荷電信
号P (t)とロール圧下位置信号から圧延機山口にお
ける板厚を推定している。
In the AGC, the plate thickness at the Yamaguchi of the rolling mill is estimated from the rolling charge signal P (t) and the roll reduction position signal at every constant sampling period Δ.

以下に、サンプリング回数141目の処理を述べる。The processing for the 141st sampling will be described below.

まず、ロール偏心周波数ω。を圧延機のノ譬ツクア、f
ロール回転数から求める。
First, the roll eccentricity frequency ω. The parable of the rolling mill, f
Determined from the roll rotation speed.

第1図のブロック1に和尚する微分はオイラー差分で求
める・ J−(PIp、−、)/Δt(9) ζこで添字1はl番目サンプリングに於ける変数を示す
、第1図のプロ、り2はXIヨX。
The differential applied to block 1 in Figure 1 is obtained by Euler difference: J-(PIp, -,)/Δt(9) ζ where the subscript 1 indicates the variable in the l-th sampling, which is the process in Figure 1. , Ri2 is XIyoX.

ILIKmlB と定義すると、次式に変形で龜る。When ILIKmlB is defined, the following equation is transformed.

ζは0.05を用いている。00式を離散化する。0.05 is used for ζ. Discretize Equation 00.

即ち、 但し、P = 1+ AΔt+A”(Δt)2し2/十
・・惰Q=Δt’(I+A、dt/2/+ム2(Δt 
)2/′a/士・s8a、+であシ、実際には2次迄展
開している。0υ式を用いて、xIK即ちxlが求まる
。第1図のブロック3は次式で求めるン C y1″″”@ ”       C14AGC内で使用
する圧?A#重PI′は、生の圧蝙荷菖P1からp−ル
偏心成分相を引いて求めている。
That is, however, P = 1+AΔt+A”(Δt)22/10...inertiaQ=Δt'(I+A, dt/2/+mu2(Δt
)2/'a/shi・s8a, +adeshi, it actually expands to the second order. Using the 0υ formula, xIK, that is, xl is found. Block 3 in Figure 1 is the pressure used in the C14AGC, which is calculated using the following formula. A# weight PI' is obtained by subtracting the p-le eccentric component phase from the raw pressure weight P1.

Pi=PI  Fl         (6)夷−には
、圧延中は加減速に依シ、ωは変化する・そとで変化し
たω。を用いで、(3)、(4)式に適用することにょ
シ、実用土、ロール偏心には追従で龜る。′*丸、上下
パックア、fロール径差に依)、ロール偏心成分はうな
pを生じるが、減衰係数ζを適切に選ぶことにょシ、元
分追梃で−る。第3図にロール偏心#ム除去−σ後の圧
地荷厘チャートを示す。
Pi=PI Fl (6) During rolling, ω changes depending on acceleration and deceleration. When applying to equations (3) and (4), it is difficult to follow the roll eccentricity in practical soil. '*Depending on the circle, upper and lower packing, f roll diameter difference), the roll eccentricity component causes a nuisance p, but it is necessary to appropriately select the damping coefficient ζ, which can be used to compensate for the element. FIG. 3 shows a compaction load chart after roll eccentricity #mu removal-σ.

上記11施例は、一定すングリング周期Δを毎に計算す
る方式であったが、ロールに/9ルス妬傷器を般けて、
一定角度−1する毎に本方式で計算しても良い、まえ、
l′を鼻をrイジタル計算機で行なったが、第1図で示
すプロ、りはアナ關ダ回路でも実現できる。
In the above 11th embodiment, the method was to calculate the constant ringing period Δ every time, but by adding a /9 russian to the roll,
It is also possible to calculate using this method every time the fixed angle is -1.
Although I' was performed using a digital computer, the process shown in Figure 1 can also be realized using an analog circuit.

なお、上記実施例は、圧延中にロール偏心量を推定し、
圧延荷重信号から除去したものであるが、簡単な変形で
非圧延中にロール偏心量を推定することもできる。すな
わち、ロールに・9ルス発信器を設置し、ロール回転角
度を検出して、キスロール回転中の荷重信号に対して、
ロールが一定角度回転する毎に本方式を適用する・そし
て荷重のロール偏心量をミルバネ常数で除すことに依シ
、各回転角における偏心量を把握できる・従って圧延中
もロール回転角を用いて偏心荷重を推定できる。轟然、
偏心量だけロール圧下位置を動かして、偏心除去制御す
ることも可能である。
In addition, in the above embodiment, the amount of roll eccentricity is estimated during rolling,
Although it is removed from the rolling load signal, it is also possible to estimate the amount of roll eccentricity during non-rolling with a simple modification. In other words, a ・9 Lus transmitter is installed on the roll, the roll rotation angle is detected, and the load signal during kiss roll rotation is detected.
This method is applied every time the roll rotates at a certain angle. By dividing the roll eccentricity of the load by the mill spring constant, the eccentricity at each rotation angle can be determined. Therefore, the roll rotation angle is used even during rolling. The eccentric load can be estimated by roaring,
It is also possible to perform eccentricity removal control by moving the roll down position by the amount of eccentricity.

この発明のロール偏心荷重除去方法は、上記のようなも
のであるから簡単な制御装置で、圧延荷重からロール偏
心に起因する圧延荷重変動を除去することができる。
Since the roll eccentric load removal method of the present invention is as described above, it is possible to remove rolling load fluctuations caused by roll eccentricity from the rolling load using a simple control device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法においてロール偏心成分を抽出する
制御回路の−実り例を示すブロック図、第2図は第1図
のブロック2における周波数と出力/入力の振巾比との
関係を示す説明は第3図はロール偏心荷重除去前後の圧
遮荷賑チャートでめる・ 1・・・微分回路、2・・・共振回船、3・・・ゲイン
回路・
Fig. 1 is a block diagram showing a practical example of a control circuit for extracting roll eccentricity components in the method of the present invention, and Fig. 2 shows the relationship between frequency and output/input amplitude ratio in block 2 of Fig. 1. The explanation can be found in Figure 3, which shows the pressure-blocking load flow chart before and after removal of roll eccentric load. 1... Differential circuit, 2... Resonant circuit, 3... Gain circuit.

Claims (1)

【特許請求の範囲】[Claims] 圧延機の圧延荷重信号を微分し、この信号をロール回転
数を共振周腋歓とする共振回路を介して冑−ル偏心成分
を抽出し、上記圧延荷重信号から一一ル偏心成分を除去
することを特徴とする圧延機のロール偏芯荷重除去方法
The rolling load signal of the rolling mill is differentiated, and this signal is passed through a resonant circuit that uses the roll rotation speed as a resonance circuit to extract the eccentric component of the roll, and the eccentric component of the roll is removed from the rolling load signal. A method for removing eccentric load on a rolling mill roll, characterized by
JP57082905A 1982-05-17 1982-05-17 Removing method of load due to roll eccentricity in rolling mill Pending JPS58199615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57082905A JPS58199615A (en) 1982-05-17 1982-05-17 Removing method of load due to roll eccentricity in rolling mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57082905A JPS58199615A (en) 1982-05-17 1982-05-17 Removing method of load due to roll eccentricity in rolling mill

Publications (1)

Publication Number Publication Date
JPS58199615A true JPS58199615A (en) 1983-11-21

Family

ID=13787270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57082905A Pending JPS58199615A (en) 1982-05-17 1982-05-17 Removing method of load due to roll eccentricity in rolling mill

Country Status (1)

Country Link
JP (1) JPS58199615A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4910985A (en) * 1986-07-09 1990-03-27 Alcan International Limited Method and apparatus for the detection and correction of roll eccentricity in rolling mills

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4910985A (en) * 1986-07-09 1990-03-27 Alcan International Limited Method and apparatus for the detection and correction of roll eccentricity in rolling mills

Similar Documents

Publication Publication Date Title
US4437163A (en) Method and apparatus for symptom diagnosis by monitoring vibration of shaft of rotary machine
Vold et al. High resolution order tracking at extreme slew rates, using Kalman tracking filters
EP0043565A1 (en) Vibration/noise reduction device for electrical apparatus
DE102014006525B4 (en) Motor control device for suppressing natural oscillations
EP0155301B1 (en) Rolling mill strip thickness controller
EP0969341A2 (en) Method and apparatus for dynamical system analysis
CN110389528B (en) Data-driven MEMS gyroscope driving control method based on disturbance observation
Vasile Active vibration control for viscoelastic damping systems under the action of inertial forces
CN104850759B (en) A kind of wind-tunnel forced vibration dynamic stability derivative Data Processing Method
FR2862392A1 (en) METHOD FOR TUNING A VIBRATION ABSORBER
Vold et al. High resolution order tracking at extreme slew rates using Kalman tracking filters
JPS58199615A (en) Removing method of load due to roll eccentricity in rolling mill
Tohyama et al. Pulse waveform recovery in a reverberant condition
US6145381A (en) Real-time adaptive control of rotationally-induced vibration
CN110389527B (en) Heterogeneous estimation-based MEMS gyroscope sliding mode control method
JPH11327658A (en) Phase shift-adaptive damping method in active damping system
EP0752124A1 (en) Time domain adaptive control system
EP0975094A3 (en) Synchronous control apparatus and method
CA2434064A1 (en) Mass flow measurement methods and apparatus using mode selective filtering
JP3823397B2 (en) Active vibration control method
JP3182205B2 (en) Magnetic bearing device
JPH0324341A (en) Control method for active system dynamic vibration reducer
Minamihara et al. A method of detection of the correlation function and frequency power spectrum for random noise or vibration with amplitude limitation
JPH10141953A (en) Pressure type wave height meter
Seki et al. Reaction force compensation with frequency identifier in shaking table systems