JPS58196954A - Method for detecting abnormality of tool - Google Patents

Method for detecting abnormality of tool

Info

Publication number
JPS58196954A
JPS58196954A JP7970982A JP7970982A JPS58196954A JP S58196954 A JPS58196954 A JP S58196954A JP 7970982 A JP7970982 A JP 7970982A JP 7970982 A JP7970982 A JP 7970982A JP S58196954 A JPS58196954 A JP S58196954A
Authority
JP
Japan
Prior art keywords
cutting
deviation
reference signal
tool
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7970982A
Other languages
Japanese (ja)
Inventor
Hiroaki Shimazutsu
島筒 博章
Takafumi Tomita
隆文 富田
Seiji Beppu
征二 別府
Yoshihiro Oota
太田 善博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP7970982A priority Critical patent/JPS58196954A/en
Publication of JPS58196954A publication Critical patent/JPS58196954A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • G05B19/4065Monitoring tool breakage, life or condition

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

PURPOSE:To enable an overall machining process to be monitored with the same level accuracy when successively comparing a standard signal during a normal cutting operation with a comparative signal during an actual cutting operation, by setting an allowable limit of deviation to the greater value either of the absolute value of load fluctuation or the relative value to the standard signal. CONSTITUTION:An overall process of cutting may be monitored with the same level accuracy by setting the allowable limit of deviation in case that a set point of absolute magnitude is 3 ampere (alpha=3) and a set of percentage is 30% (beta=30), for example. In other words, the overall cutting process may be flexibly monitored by adopting the values of alpha and beta suitable for the cutting process to be monitored with respect to abnormality of tools, wherein said allowable limit of deviation is in accordance with a percentage method in case of alpha=0, and it is in accordance with an absolute value method in case of beta=0.

Description

【発明の詳細な説明】 本発明は、工作機械による切削作業にJoけθ工具の異
常を検出する方法であ゛つ”C,4+に正常切削時に記
憶した経時的負荷変動(jA範信号]と実切削中の負荷
変動(比較信号)を逐次比較し、比較信号の規範信号に
対する偏移量が逸脱許容範囲内にあるか否かによって工
具異常の発生有無を検出する方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a method for detecting an abnormality in a Jo θ tool during cutting work by a machine tool. The present invention relates to an improvement in a method of successively comparing load fluctuations (comparison signals) during actual cutting and detecting whether a tool abnormality has occurred based on whether the deviation amount of the comparison signal with respect to a reference signal is within an allowable deviation range.

連続切削作業に先立って、正常時に主軸あるし・は送り
軸などの駆動による負荷の経時的変化をすべて記憶して
おき、これを規範信号として以後の作条に於ける対応す
る負荷を上記規範1に号と逐次比較することによって工
具の異常を恢り軸等を駆動することによる負荷 イ(た
とえば七−′)電流)を記憶装置2に記録可能な信号0
(たとえば電圧信号ンに変換する。6は比較装置であり
、実稼動中の負@検出による信号口と、すでに記憶した
規範信号ハな比較する。4は遅延装置であり、入力信号
ホが別途設定した遅延時間ト以上に継続して発生(ある
定められた条件を満だ)した時に一つの警報信号へを出
力する。即ち9図に示さなかったスタート信号によって
9図中実線で示した経路で負荷検出焚1111で検出し
た正常時の負荷の紅詩的変化を規範信号として記憶装置
2に記憶し9図には示さなかったスト、ツブ信号によっ
て記憶を終了する。
Prior to continuous cutting work, remember all changes over time in the load caused by driving the spindle, feed shaft, etc. under normal conditions, and use this as a reference signal to set the corresponding load in subsequent cutting operations as the above-mentioned standard. A signal 0 that can be recorded in the storage device 2 by comparing the abnormality of the tool with the number 1 and the load (for example, 7-' current) caused by driving the shaft, etc.
(For example, it is converted into a voltage signal. 6 is a comparison device, which compares the signal port detected by the negative @ detection during actual operation with the already memorized reference signal.) 4 is a delay device, and the input signal H is separately When the occurrence continues for more than the set delay time (a certain predetermined condition is met), a single alarm signal is output.In other words, a start signal not shown in Fig. 9 causes the route shown by the solid line in Fig. 9 to be output. The normal change in the load detected by the load detection firing 1111 is stored in the storage device 2 as a reference signal, and the storage is terminated by a strike signal (not shown in FIG. 9).

以後の作業に於ける過負荷の検知は9図中点線で示した
経絡で上記スタート信号からストップ信号の間、実施す
る。負荷検出による信号0の値を、その時刻に対応する
規範信号への埴と逐次比較し、規範信号に対する負荷信
号(比較信号)の偏移量が、別途設定した許谷範囲二か
ら逸脱した時に過負荷信号ホを出力する。そして。
Detection of overload in subsequent work is carried out between the start signal and the stop signal using the meridian indicated by the dotted line in Figure 9. The value of signal 0 due to load detection is successively compared with the value of the reference signal corresponding to that time, and when the amount of deviation of the load signal (comparison signal) with respect to the reference signal deviates from the separately set tolerance range 2. Outputs an overload signal. and.

過負荷信号ホが別途設定した遅延時間ト以上継続した時
に、一つの警報信号へを発生する。
When the overload signal continues for a separately set delay time or more, an alarm signal is generated.

ここで、許芥範囲二は、比較すべき時刻に対応する規範
信号値410.0%とする百分率あるいは、負荷の絶対
量(たとえばαアシペア)と1−て設定されている。
Here, the allowable range 2 is set as a percentage or an absolute amount of load (for example, α asipair) with respect to the reference signal value 410.0% corresponding to the time to be compared.

第1図に示した方法は、経時的にその負荷変動を規範信
号と比較している為、シーケシスの誤動作をも含めたき
め細か(・状態監視が可能であり、さらに、遅延回路を
設けて、異常状態が一定時間以上経過してはじめて警報
信号を発生するという点で、たとえばitsノイズの影
響を受けにくいと(・う利点を有して℃・る。
The method shown in Figure 1 compares the load fluctuation with the reference signal over time, so it is possible to monitor the condition in detail, including sequence malfunctions. It has the advantage of being less susceptible to noise, for example, in that it generates an alarm signal only after the abnormal condition has elapsed for a certain period of time.

しかし、この方法を3A廟での実切削作業に適用するに
あたっては、#!F容範囲二の設定方法に起因する2次
の様な問題点がある。
However, when applying this method to actual cutting work at the 3A temple, #! There is a secondary problem caused by the method of setting the F capacity range 2.

即ち、一つの連続した切削工程の中で負荷が太き(変化
する場合(低負荷切削から高負荷切削を含む場合)、全
工程を同程度の感度(緻密さ)で監視できないというこ
とである。
In other words, if the load is large (changes) during one continuous cutting process (including cutting from low load to high load), it is not possible to monitor all processes with the same level of sensitivity (precision). .

このことについて、第2図によって説明する。This will be explained with reference to FIG.

第2図1は、ある切削過程に於ける負荷変動をバターシ
化して示したものである。(実際の信号には細かい信号
のふらつきが重畳されていf る。)横軸は時間であり、縦軸は例え殻を流値である。
FIG. 2 1 shows load fluctuations in a certain cutting process in batarshi format. (Fine signal fluctuations are superimposed on the actual signal.) The horizontal axis is time, and the vertical axis is the flow value.

スタート信号からストップ信号までの区間が信号監視区
間である。切削の過程に於て。
The section from the start signal to the stop signal is the signal monitoring section. During the cutting process.

低負荷から高負荷に変動し、再度低負荷になって終了し
ている。
The load fluctuates from low to high, and then ends up being low again.

第2図2は、前記許容範囲の設定方法として百分率方式
による場合を示したものである。−例として規範信号か
ら±50チを許容範囲として9点線で示した。前dC比
較信号が点線の範囲(斜線で示したJを超えて変動し、
その状態が別途設定した遅延時間以上に継続した時、異
常発生と判定するものである。第2図2からもわかる様
に9区間11.b’、eによって信号監視の感度は太き
(異なってしまい、不都合が生じる。
FIG. 2 shows a case where the percentage method is used as the method for setting the permissible range. - As an example, the allowable range of ±50 inches from the standard signal is indicated by a 9-dotted line. If the previous dC comparison signal fluctuates beyond the range indicated by the dotted line (J indicated by the diagonal line),
When this condition continues for longer than a separately set delay time, it is determined that an abnormality has occurred. As can be seen from Figure 2, 9 sections 11. The sensitivity of signal monitoring becomes thicker (different) depending on b' and e, which causes inconvenience.

即ち1区間a、eに於ては、わずかな1g号の変化(わ
ずかな加工条件の変化あるいはノイズ等1に対しても異
常発生と判定してしまう。これを避ける為には許容範囲
設定11M(百分率設定値)をある程度太き(すること
が考えられる。しかし、この場合には区間すでの許容範
囲が広くなり、この区間での異常検知感度が低下してし
まい、大きな異常(たとえば工具の破損)も検知できな
いという不具合が生じる。
In other words, in sections a and e, even a slight change of 1g (a slight change in processing conditions or noise etc.) is judged as an abnormal occurrence.To avoid this, the tolerance range setting is 11M. It is conceivable to increase the (percentage setting value) to a certain degree. However, in this case, the tolerance range for the section becomes wider, and the sensitivity for detecting abnormalities in this section decreases, resulting in large abnormalities (for example, tool A problem arises in that damage to the surface of the device cannot be detected.

第2図5は、許容範囲の設定方法とシ、−(絶対址方式
による場合を示したものである。−例として、規範信号
から±5アシヘアを許容範囲として1点線で示した。こ
の時には、第2図2とは逆に1区間b′に於てわずかな
切削条件の変化に対しても異常発生と判定しまし・、こ
れを避ける為に設定値?大きくすれば2区間&’、 e
’での異常検知が困峻となる。
Fig. 2 shows the method of setting the allowable range and the case of using the absolute method. - As an example, the allowable range of ±5 reeds from the reference signal is shown as a dotted line. In this case, ,Contrary to Fig. 2, even a slight change in the cutting conditions in 1 section b' is judged to be an abnormality.In order to avoid this, the set value?If the setting value is increased, 2 sections &', e
It becomes difficult to detect anomalies in '.

本発明は上述した従来の不J48tK鑑み、加工全“F
程番・4わたって同程度の感度で監視できるようにする
ことを目的とし、前dピ戊成許谷範囲を。
In view of the above-mentioned conventional non-J48tK, the present invention
The purpose is to be able to monitor with the same level of sensitivity over the entire range of 4 days.

負荷変動の絶対値と規範信号に対する相対1直の大さい
方のイ直として設定することを特徴とするものである。
It is characterized in that it is set as the larger one of the absolute value of the load fluctuation and the relative one to the reference signal.

以下9本発明による実m同を説明する。第6図は一例と
して、絶対量設定値3アシベア(α−5)、百分率設定
値50%(β=50)とした時の逸脱許容範囲を示した
ものである。前と示した第2図2.6で説明したものと
の比較によってわかる様に2本発明による逸脱許容範囲
の設定を行うことにより、切削の全工程に対して、同程
度の絨密さを保ちつつ監視することが可能となる。すな
わら、異常監視対象とする切削工程に適したα、βを採
用することによって。
Below, nine practical implementations according to the present invention will be explained. FIG. 6 shows, as an example, the allowable deviation range when the absolute amount setting value is 3 ash bears (α-5) and the percentage setting value is 50% (β=50). As can be seen from a comparison with that explained in Figure 2.2.6, by setting the deviation tolerance range according to the present invention, it is possible to maintain the same degree of density for the entire cutting process. This makes it possible to maintain and monitor the data. In other words, by adopting α and β suitable for the cutting process to be monitored for abnormalities.

α=0とした時は百分率法に一致し、  /コニ0とし
た時は絶対値法に一致する。即ち9本発明による方法は
、r分率法と絶対値法の特徴を兼ね備えた柔軟な方法で
あり、実切削作業に適用して非常に有効な方法である。
When α=0, it matches the percentage method, and when /koni 0, it matches the absolute value method. That is, the method according to the present invention is a flexible method that combines the features of the r-fraction method and the absolute value method, and is a very effective method when applied to actual cutting work.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は工具異常検出装置を示すづO・ツク図。 第2図は従来方法による負荷変動と許容範囲設定値を示
す線図、第6図は本発明による負荷変動と許容範囲設定
値を示す線図である。
FIG. 1 is a diagram showing the tool abnormality detection device. FIG. 2 is a diagram showing load fluctuations and allowable range setting values according to the conventional method, and FIG. 6 is a diagram showing load fluctuations and allowable range setting values according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 被切削物と工具種類と切削条件とを含む自動切削プログ
ラムに従って切削作業を行なう工作機械の駆動系にかか
る負荷の経時的な変化を予め規範信号として記憶し、さ
らに該規範信号にもとづく逸脱許容範囲を設定し、以後
性なわ7Lる同一条件での切削作業に於ける対応する負
荷の規範信号に対する偏移が前記逸脱許容範囲内である
か否かによって工具異常発生の巾〜無w t1定する方
法において、前記逸脱許容範囲を、負荷変動の絶対値と
前6己規範信号に対すθ相iJ値の大きい方の値として
設定することを特徴とした工具異常検出方法。
Changes over time in the load applied to the drive system of a machine tool that performs cutting operations according to an automatic cutting program that includes the workpiece, tool type, and cutting conditions are stored in advance as a reference signal, and a deviation tolerance range is determined based on the reference signal. The width of occurrence of tool abnormality wt1 is then determined depending on whether the deviation of the corresponding load from the reference signal during cutting work under the same conditions as the cutting rope is within the deviation tolerance range. A tool abnormality detection method, characterized in that the deviation tolerance range is set as the larger value of the absolute value of load fluctuation and the θ-phase iJ value with respect to the previous 6-axis reference signal.
JP7970982A 1982-05-12 1982-05-12 Method for detecting abnormality of tool Pending JPS58196954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7970982A JPS58196954A (en) 1982-05-12 1982-05-12 Method for detecting abnormality of tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7970982A JPS58196954A (en) 1982-05-12 1982-05-12 Method for detecting abnormality of tool

Publications (1)

Publication Number Publication Date
JPS58196954A true JPS58196954A (en) 1983-11-16

Family

ID=13697728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7970982A Pending JPS58196954A (en) 1982-05-12 1982-05-12 Method for detecting abnormality of tool

Country Status (1)

Country Link
JP (1) JPS58196954A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6156856A (en) * 1984-08-27 1986-03-22 Advanced Syst:Kk Detecting device of breakage in cutting tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6156856A (en) * 1984-08-27 1986-03-22 Advanced Syst:Kk Detecting device of breakage in cutting tool

Similar Documents

Publication Publication Date Title
US4748554A (en) Machine monitoring system using motion detection for synchronization
US3836834A (en) Machine protection system
JPS58196954A (en) Method for detecting abnormality of tool
JPS6059108B2 (en) Machine tool abnormality monitoring device
JPS59142048A (en) Abnormality detector for tool
JPS58206367A (en) Method of detecting abnormality of tool
JPS6121787B2 (en)
JPS59166448A (en) Machine tool under adaptive numerical control
CN110412940B (en) Machine state monitoring device
JPS6322938B2 (en)
JPH08323585A (en) Abnormal load detecting system
JPH0215954A (en) Tool abnormality monitoring method
JPS6044254A (en) Diagnostic device of cutting abnormality
SU1414566A1 (en) Apparatus for automatic readjustment and checking of wear of cutting tool
JPS6124146B2 (en)
JPS5827056B2 (en) Machine tool feed control device
JPH06270034A (en) Cutting anomaly monitoring system
JPS58120451A (en) Numerically controlled machining system
JPS5830107B2 (en) Abnormality detection device for turning tools
JPH091444A (en) Method and apparatus for monitoring cutting load condition in machine tool
JPS61252053A (en) Device for detecting abnormality of perforating tool
JPS59118380A (en) Automatic control method for screw clamping
JPS6116581B2 (en)
JPS59146739A (en) Damage detection of cutting tool
JPH04158405A (en) Numerical controller