JPS5819614B2 - Manufacturing method of glass fiber for optical communication - Google Patents

Manufacturing method of glass fiber for optical communication

Info

Publication number
JPS5819614B2
JPS5819614B2 JP52092793A JP9279377A JPS5819614B2 JP S5819614 B2 JPS5819614 B2 JP S5819614B2 JP 52092793 A JP52092793 A JP 52092793A JP 9279377 A JP9279377 A JP 9279377A JP S5819614 B2 JPS5819614 B2 JP S5819614B2
Authority
JP
Japan
Prior art keywords
glass
glass fiber
optical communication
deterioration
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52092793A
Other languages
Japanese (ja)
Other versions
JPS5427447A (en
Inventor
沢村国英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP52092793A priority Critical patent/JPS5819614B2/en
Publication of JPS5427447A publication Critical patent/JPS5427447A/en
Publication of JPS5819614B2 publication Critical patent/JPS5819614B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はとくに耐候性を改善した光通信用ガラスファイ
バーの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention particularly relates to a method for producing glass fiber for optical communication with improved weather resistance.

従来の光通信用ガラスファイバーは外周囲にプラスチッ
クの保護層を設けた構造になっている。
Conventional glass fiber for optical communications has a structure with a protective layer of plastic around the outside.

しかしながら、このようなガラスファイバーは高温高湿
、或いは水中に長時間曝らすと劣化して機械的強度の低
下、光散乱損失の増大を招く欠点があった。
However, such glass fibers deteriorate when exposed to high temperature, high humidity, or water for a long time, resulting in a decrease in mechanical strength and an increase in light scattering loss.

特に、多成分系ガラスの場合にはその中に含まれるアル
カリイオンが溶出し、ファイバーとプラスチック保護層
との界面に一種の圧力差(浸透圧)が生じ、この圧力差
により劣化が進行すること、及びアルカリイオンの溶出
に伴ないファイバーの表面層と内部との間にアルカリイ
オン量の差が生じ、これにより表面層と内部との膨張係
数が変動してファイバーが劣化し易くなること、等によ
り劣化が顕著となる。
In particular, in the case of multi-component glass, the alkali ions contained therein are eluted, creating a type of pressure difference (osmotic pressure) at the interface between the fiber and the plastic protective layer, and this pressure difference accelerates deterioration. , and due to the elution of alkali ions, there is a difference in the amount of alkali ions between the surface layer and the inside of the fiber, which causes the coefficient of expansion between the surface layer and the inside to fluctuate, making the fiber susceptible to deterioration, etc. The deterioration becomes noticeable.

このようなことから、最近、三重ルツボを用いてガラス
ファイバーの紡糸と同時に、その外側に耐候性の高いガ
ラス層を被覆する方法(特開昭・53−7541号)が
提案されている。
For this reason, a method has recently been proposed in which a triple crucible is used to simultaneously spin glass fibers and coat the outside with a highly weather-resistant glass layer (Japanese Patent Laid-Open No. 53-7541).

しかしながら、この方法に用いる耐候性の高いガラスは
、内側のコア、クラッドのガラスに比して高温粘性が極
めて高いため、ファイバー化が困難となったり、外側の
ガラス層に対してファイバーが偏芯し易いなどの欠点が
ある。
However, the weather-resistant glass used in this method has an extremely high viscosity at high temperatures compared to the inner core and cladding glasses, making it difficult to form into fibers and making the fibers eccentric to the outer glass layer. There are disadvantages such as being easy to use.

不発明は上記欠点を解消するためになされたもので、フ
ァイバー化を阻害することなく、ガラスファイバー素材
と外界雰囲気との反応を遮断してファイバー劣化を防止
した光通信用ガラスファイ;バーの製造方法を提供しよ
うとするものである。
The invention was made in order to eliminate the above-mentioned drawbacks, and it is the manufacture of a glass fiber for optical communication that prevents fiber deterioration by blocking the reaction between the glass fiber material and the external atmosphere without inhibiting fiberization. It is intended to provide a method.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

まず、ガラス、例えば多成分系ガラスを二重ルツボによ
り紡糸してコア、クラッドからなるガラスファイバー素
材を形成する。
First, glass, for example multi-component glass, is spun in a double crucible to form a glass fiber material consisting of a core and a cladding.

次いで紡糸直後の、ガラスファイバー素材にSi、Al
、P、B。
Next, Si and Al are applied to the glass fiber material immediately after spinning.
,P,B.

Ti、Geから選ばれる金属ガスを酸素含有ガス或いは
窒素系ガス(たとえばN2.NH2等)の存在下でCV
D法により反応させてSiO2,Al2O3゜S i3
N、、’rio2.硅リン酸ガラス、硅ホウ酸ガ;ラス
、アルミノ硅酸ガラス、及びアルミノホウ硅酸ガラス、
ゲルマノ硅酸ガラス、から選ばれる1種または2種以上
の絶縁膜を被着せしめて光通信用多成分系ガラスを造る
A metal gas selected from Ti and Ge is subjected to CVD in the presence of an oxygen-containing gas or a nitrogen-based gas (for example, N2, NH2, etc.).
React by method D to form SiO2, Al2O3゜S i3
N,,'rio2. Silicophosphate glass, silicoborate glass; lath, aluminosilicate glass, and aluminoborosilicate glass;
A multi-component glass for optical communication is produced by depositing one or more insulating films selected from germanosilicate glass.

本発明に使用するガラス、例えば多成分系ガラ;スはコ
ア用と1.クラッド用と異なり、コアの屈折率がクラッ
ドの屈折率より大きくなるようにコア用、クラッド用の
多成分系ガラスを選定することが必要である。
Glasses used in the present invention, such as multi-component glasses, are used for the core and 1. Unlike for the cladding, it is necessary to select multicomponent glasses for the core and cladding so that the refractive index of the core is greater than the refractive index of the cladding.

本発明に使用するガラス形成用金属ガスとしては、四水
素化硅素、ハロゲン化硅素(たとえば四塩化硅素)、ハ
ロゲン化アルミニウム(たとえば三塩化アルミニウム)
、水素化ニリン、ハロゲン。
Examples of the glass-forming metal gas used in the present invention include silicon tetrahydride, silicon halide (e.g. silicon tetrachloride), and aluminum halide (e.g. aluminum trichloride).
, hydrogenated niline, halogen.

化リン、ハロゲン化ホウ素、ハロゲン化チタン等を挙げ
ることができ、場合によっては5in2゜A 1203
.P2O5,B2O3,TiO2を加熱分解して得た金
属ガス単体を用いてもよい。
Examples include phosphorus chloride, boron halide, titanium halide, etc. In some cases, 5in2゜A 1203
.. A single metal gas obtained by thermally decomposing P2O5, B2O3, and TiO2 may be used.

本発明における絶縁膜の厚さは、通常100〜1100
000λ程度にすれば充分である。
The thickness of the insulating film in the present invention is usually 100 to 1100
A value of about 000λ is sufficient.

またこの絶縁膜として、とくに硅素ガス(例えばS i
H4。
In addition, as this insulating film, silicon gas (for example, Si
H4.

5iCP4)とアンモニア(N2)とをCVD法により
反応、生成されたS i3 N4 、及び硅素ガスとリ
ンガス(例えばPOCl2)と酸素含有ガス(例えば。
5iCP4) and ammonia (N2) by the CVD method, and silicon gas, phosphorus gas (for example, POCl2), and oxygen-containing gas (for example,

0□あるいは02+N2)とをCVD法により反応生成
された硅リン酸ガラスはガラスファイバーの劣化防止効
果が顕著なため有益である。
Silicophosphate glass produced by reacting with 0□ or 02+N2) by the CVD method is useful because it has a remarkable effect of preventing the deterioration of glass fibers.

しかして本発明によれば、紡糸直後のガラスファイバー
素材にCVD法によりSiO2,Al2O3,!S i
3N4.T10□、硅リン酸ガラス、硅ホウ酸ガラス、
アルミノ硅酸ガラス、及びアルミノホウ硅酸ガラス、ゲ
ルマノ硅酸ガラスから選ばれる1種または2種以上の絶
縁膜を被着せしめることによって、ファイバー化の困難
性、ファイバー素材のシ偏芯化を招くことなく、ファイ
バー素材外周に均一厚の絶縁膜を設けることができ、ガ
ラスファイバー素材と外界雰囲気との反応を迅速に遮断
できるため、高温高湿、或いは水中に長時間曝しても、
絶縁膜内側のガラスファイバー素材が劣化するの;を防
止できる。
However, according to the present invention, SiO2, Al2O3,! Si
3N4. T10□, silicophosphate glass, silicoborate glass,
By depositing one or more types of insulating film selected from aluminosilicate glass, aluminoborosilicate glass, and germanosilicate glass, it becomes difficult to form fibers and the fiber material becomes eccentric. It is possible to provide an insulating film of uniform thickness around the outer periphery of the fiber material, quickly blocking the reaction between the glass fiber material and the outside atmosphere, so even if exposed to high temperature, high humidity, or water for a long time,
This prevents the glass fiber material inside the insulation film from deteriorating.

特に、多成分系ガラスファイバー素材の場合では、前記
均一厚の絶縁膜によって素材中のアルカリイオンと外界
雰囲気との反応を遮断できる。
In particular, in the case of a multi-component glass fiber material, the uniformly thick insulating film can block the reaction between alkali ions in the material and the external atmosphere.

したがって、ガラスファイバー素材の劣化防止により機
械的強度、光散乱損失を著しく;改善した光通信用ガラ
スファイバーを得ることができる。
Therefore, by preventing deterioration of the glass fiber material, it is possible to obtain a glass fiber for optical communication with significantly improved mechanical strength and light scattering loss.

なお、本発明に採用されるCVD法の中で、とくにプラ
ズマCVD法は低温での被着が可能であり、絶縁膜の膜
質が良好となるため有益である。
Note that among the CVD methods employed in the present invention, the plasma CVD method is particularly advantageous because it allows deposition at low temperatures and improves the quality of the insulating film.

次に、本発明の実施例を図面を参照して説明する。Next, embodiments of the present invention will be described with reference to the drawings.

まず、第1図に示す如く二重ルツボ1の内側ルツボ1a
にS iO270重量%、Na2O21,5重量%及び
CaO3,5重量%の組成割合のコア用多成分系ガラス
2を収容し、一方外側ルツボ1bに5iO274重量係
、Na2O23重量%及びCaO3重量係重量成割合の
クラッド用多成分系ガラス3を収容し、上記二重ルツボ
1の湿度を900°Cにせしめ、各多成分系ガラス2,
3を同時に紡糸してコア径60μ、クラツド径125μ
のガラスファイバー素材4を形成した。
First, as shown in FIG. 1, the inner crucible 1a of the double crucible 1
The core multi-component glass 2 containing 70% by weight of SiO2, 1.5% by weight of Na2O2 and 5% by weight of CaO3 is housed in the outer crucible 1b, while the multi-component glass 2 containing 70% by weight of SiO2, 1.5% by weight of Na2O2 and 5% by weight of CaO3 is housed in the outer crucible 1b. The humidity of the double crucible 1 is kept at 900°C, and each multi-component glass 2,
3 are spun simultaneously to obtain a core diameter of 60μ and a cladding diameter of 125μ.
A glass fiber material 4 was formed.

次いで、紡糸直後のガラスファイバー素材4を反応炉5
内に導入し、・該反応炉5に連結された導管6,7,8
.9からN2ガス(希釈ガス)02ガス、S IH4ガ
ス及びPH3ガスを夫々02 : S tH4: P
H3のモル比が10:10:1になるように供給し、か
つ反応炉5の温度を450℃に保持し、上記S IH4
,J P)(3を酸化せしめてガラスコアイノく一素材
4の外表面に厚さ10000人の硅リン酸ガラスの絶縁
膜を被着せしめた。
Next, the glass fiber material 4 immediately after spinning is placed in a reactor 5.
- conduits 6, 7, 8 connected to the reactor 5;
.. 9 to N2 gas (dilution gas) 02 gas, S IH4 gas and PH3 gas respectively 02: S tH4: P
H3 was supplied so that the molar ratio was 10:10:1, and the temperature of the reactor 5 was maintained at 450°C, and the above S IH4
, JP) (3) was oxidized and an insulating film of silicophosphate glass having a thickness of 10,000 wafers was applied to the outer surface of the glass core inopiece material 4.

その後、これを400°Cに加熱した加熱炉10に挿通
して硅リン酸ガラスの絶縁膜を有する光通信用多成分系
ガラスファイバー;11を得た。
Thereafter, this was inserted into a heating furnace 10 heated to 400°C to obtain a multi-component glass fiber for optical communication; 11 having an insulating film of silicophosphate glass.

得られた光通信用多成分系ガラスファイバーを切断して
長さ10crrLの試料片200本を作成し、これら試
料片を湿度60°C1湿度90係の環境試験器に100
0時間、及び1. OO00時間放置し・た後取出し、
各条件毎の試験片の引張強度を測定して劣化度合を求め
た。
The obtained multi-component glass fiber for optical communication was cut to create 200 sample pieces with a length of 10 crrL, and these sample pieces were placed in an environmental tester at a humidity of 60°C and a humidity of 90%.
0 hours, and 1. Leave it for OO00 hours and then take it out.
The degree of deterioration was determined by measuring the tensile strength of the test piece under each condition.

その結果を第2図の如きワイブル分布として示した。The results are shown as a Weibull distribution as shown in FIG.

なお、図中のA。は上記実施例1により得たガラスファ
イバーの試験片゛における劣化試験前の引張強度分布、
A1は目状)駒片を環境試験器に1000時間放置した
後の引張強度分布、A2は同試験片を回状1験器に1o
oo。
In addition, A in the figure. is the tensile strength distribution of the glass fiber test piece obtained in Example 1 before the deterioration test,
A1 is the tensile strength distribution after leaving the piece in the environmental tester for 1000 hours, and A2 is the tensile strength distribution after leaving the same test piece in the circular tester for 1000 hours.
oo.

時間放置した後の引張強度分布、B1は硅リン酸ガラス
の絶縁膜を有さないガラスファイバーの試験片を同試験
器に1000時間放置した後の引張1強度分布、B2は
前記B1と同様な試、駒片を同試験器に10000時間
放置した後の引張強度分布、C1,C2は夫夫多成分系
ガラスファイバーにポリ弗化ビニリデンを直接被覆した
試料片を同試験器に1000時間、10000時間放置
した後の引張1度分布である。
B1 is the tensile strength distribution after leaving it for 1000 hours in the same tester, and B2 is the same as B1 above. Tensile strength distribution, C1 and C2, after leaving the piece in the same tester for 10,000 hours, is the tensile strength distribution, C1, C2. This is the tensile 1 degree distribution after being left for a period of time.

第2図から明らかな如く、本発明方法により得た光通信
用多成分系ガラスファイバーは絶縁膜を有さない従来の
ガラスファイバーに比して高温高湿下に長時間曝された
場合の劣化度合が著しく低いことがわかる。
As is clear from Fig. 2, the multi-component glass fiber for optical communication obtained by the method of the present invention deteriorates more easily when exposed to high temperature and high humidity for a long time than conventional glass fiber without an insulating film. It can be seen that the degree is extremely low.

実施例 2 前述した第1図の反応炉5の導管6,7からS iH4
ガス、NH3ガスをS t H4: N H3のモル比
が5:1となるように供給し、反応炉5の温度を400
℃に保持しガラスファイバー素材の外表面に500OA
のS i3N4の絶縁膜を被着した以外、前記実施例1
と同様な方法により光通信用多成分系ガラスファイバー
を得た。
Example 2 SiH4 from the conduits 6 and 7 of the reactor 5 in FIG.
Gas, NH3 gas was supplied so that the molar ratio of S t H4: NH3 was 5:1, and the temperature of the reactor 5 was set to 400 °C.
500OA on the outer surface of the glass fiber material kept at ℃
Example 1 except that an insulating film of Si3N4 was deposited.
A multi-component glass fiber for optical communication was obtained using the same method.

得られた光通信用多成分系ガラスファイバーを切断して
長さ10crrLの試験片200本を用意し、これら試
験片を上記実施例1と同様な環境試験器に1000時間
、及び10000時間放置した後取出し、各条件毎の試
験片の引張強度を測定して劣化度合を求めた。
The obtained multi-component glass fiber for optical communication was cut to prepare 200 test pieces with a length of 10 crrL, and these test pieces were left in the same environmental test chamber as in Example 1 for 1000 hours and 10000 hours. After taking it out, the tensile strength of the test piece under each condition was measured to determine the degree of deterioration.

その結果を第3図の如きワイブル分布として示した。The results are shown as a Weibull distribution as shown in FIG.

なお、図中のA。′は上記試験片における劣化試験前の
引張強度分布、A1は同試験片を環境試験器に1000
時間放置した後の引張強度分布、A2’は同試験片を同
試験器に10000時間放置した後の引張強度分布であ
る。
In addition, A in the figure. ' is the tensile strength distribution of the above test piece before the deterioration test, and A1 is the tensile strength distribution of the above test piece in the environmental tester.
Tensile strength distribution after standing for a time, A2' is the tensile strength distribution after leaving the same test piece in the same tester for 10,000 hours.

第3図から明らかな如く、Si3N4の絶縁膜を有する
光通信用多成分系ガラスファイバーは実施例1の硅リン
酸ガラス絶縁膜を有するガラスファイバーに比して、さ
らに高温高湿下に長時間曝された場合の劣化度合が改善
されることがわかる。
As is clear from FIG. 3, the multi-component glass fiber for optical communication having an Si3N4 insulating film can be exposed to higher temperatures and humidity for a longer period of time than the glass fiber having a silicophosphate glass insulating film of Example 1. It can be seen that the degree of deterioration when exposed to heat is improved.

以上詳述した如く、′本発明によればファイバー化を阻
害することなくガラスファイバー素材と外界雰囲気との
反応を遮断してファイバー劣化を防止し、特に、多成分
系ガラスファイバー素材の場合ではその中のアルガリイ
オンと外界雰囲気との反応によるファイバー劣化を防止
し、長期間安定した機械的強度、低い光伝送損失を保有
する光通信用ガラスファイバーを提供できるものである
As detailed above, according to the present invention, it is possible to prevent fiber deterioration by blocking the reaction between the glass fiber material and the external atmosphere without inhibiting fiberization, especially in the case of multi-component glass fiber materials. It is possible to provide a glass fiber for optical communications that prevents fiber deterioration due to the reaction between the Argali ions inside and the external atmosphere, and has stable mechanical strength over a long period of time and low optical transmission loss.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法に使用される製造装置の一形態を示
す概略図、第2図は本発明の実施例1で得た光通信用多
成分系ガラスファイバーの劣化試験結果を示すワイブル
分布図、第3図は本発明の実施例2で得た光通信用多成
分系ガラスファイバーの劣化試験結果を示すワイブル分
布図である。 1・・・二重ルツボ、4・・・ガラスファイバー素材、
5・・・反応炉、11・・・光通信用多成分系ガラスフ
ァイバー。
Fig. 1 is a schematic diagram showing one form of manufacturing equipment used in the method of the present invention, and Fig. 2 is a Weibull distribution showing the results of a deterioration test of the multicomponent glass fiber for optical communication obtained in Example 1 of the present invention. 3 are Weibull distribution diagrams showing the results of a deterioration test of the multi-component glass fiber for optical communication obtained in Example 2 of the present invention. 1...Double crucible, 4...Glass fiber material,
5...Reaction furnace, 11...Multi-component glass fiber for optical communication.

Claims (1)

【特許請求の範囲】[Claims] 1 ガラスを紡糸した直後のガラスファイバー素材にS
iO□、Al2O3,Si3N4.TiO2,硅リン酸
ガラス、硅ホウ酸ガラス、アルミノ硅酸ガラス、ゲルマ
ノ硅酸ガラス、及びアルミノホウ硅酸ガラスのうちの1
種または2種以上からなる絶縁膜をCVD法により金属
ガスを反応させて被着せしめることを特徴とする光通信
用ガラスファイバーの製造方法。
1 S on the glass fiber material immediately after spinning the glass.
iO□, Al2O3, Si3N4. One of TiO2, silicophosphate glass, silicoborate glass, aluminosilicate glass, germanosilicate glass, and aluminoborosilicate glass
1. A method for producing glass fiber for optical communications, characterized in that an insulating film made of one or more kinds is deposited by reacting a metal gas with a CVD method.
JP52092793A 1977-08-02 1977-08-02 Manufacturing method of glass fiber for optical communication Expired JPS5819614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52092793A JPS5819614B2 (en) 1977-08-02 1977-08-02 Manufacturing method of glass fiber for optical communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52092793A JPS5819614B2 (en) 1977-08-02 1977-08-02 Manufacturing method of glass fiber for optical communication

Publications (2)

Publication Number Publication Date
JPS5427447A JPS5427447A (en) 1979-03-01
JPS5819614B2 true JPS5819614B2 (en) 1983-04-19

Family

ID=14064291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52092793A Expired JPS5819614B2 (en) 1977-08-02 1977-08-02 Manufacturing method of glass fiber for optical communication

Country Status (1)

Country Link
JP (1) JPS5819614B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57209844A (en) * 1981-06-18 1982-12-23 Nippon Telegr & Teleph Corp <Ntt> Manufacture of optical fiber
US4504113A (en) * 1981-11-02 1985-03-12 Schlumberger Technology Corporation Reinforced and chemically resistant optical filament
JPS58110031U (en) * 1982-10-12 1983-07-27 株式会社フジクラ Optical fiber reinforcement device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5164935A (en) * 1974-11-30 1976-06-04 Fujikura Ltd Rowaboshisoo jusuru hikarifuaibano seizohoho
JPS51136996A (en) * 1975-05-20 1976-11-26 Matsushita Electric Works Ltd Production of inorganic fiber strengthening material
JPS51147330A (en) * 1975-06-13 1976-12-17 Furukawa Electric Co Ltd:The Production method of optical fibre

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5164935A (en) * 1974-11-30 1976-06-04 Fujikura Ltd Rowaboshisoo jusuru hikarifuaibano seizohoho
JPS51136996A (en) * 1975-05-20 1976-11-26 Matsushita Electric Works Ltd Production of inorganic fiber strengthening material
JPS51147330A (en) * 1975-06-13 1976-12-17 Furukawa Electric Co Ltd:The Production method of optical fibre

Also Published As

Publication number Publication date
JPS5427447A (en) 1979-03-01

Similar Documents

Publication Publication Date Title
US4874222A (en) Hermetic coatings for non-silica based optical fibers
US4118211A (en) Method of maintaining the strength of optical fibers
JP2002518288A (en) Optical fiber preform having OH blocking layer and method of manufacturing the same
US4206968A (en) Optical fiber and method for producing the same
JPS59174541A (en) Optical fiber maintaining plane of polarization
JPS5819614B2 (en) Manufacturing method of glass fiber for optical communication
JPS6186435A (en) Optical fiber manufacture
US5246746A (en) Method for forming hermetic coatings for optical fibers
Yamane et al. Preparation of gradient-index glass rods by the sol-gel process
CA1084534A (en) Method of producing glass compositions for optical wave guides
JPS635334B2 (en)
US4883339A (en) Oxide coatings for fluoride glass
JPS6228101B2 (en)
JPH0332503Y2 (en)
JPH0225853B2 (en)
JPS5848001A (en) Glass fiber
Maurer Glass research for optical waveguides
US3984602A (en) Vitreous and glass ceramic bodies
JPS60145926A (en) Production of base material for optical fiber
JP3406034B2 (en) Carbon coated optical fiber
JPS5837259B2 (en) Manufacturing method of glass fiber for optical communication
Bruce Glasses
JPH0343215Y2 (en)
JPS596258B2 (en) Method for manufacturing optical transmission fiber
JPS6051630A (en) Preparation of optical fiber