JPS58196014A - Method for liquid phase epitaxial growth - Google Patents

Method for liquid phase epitaxial growth

Info

Publication number
JPS58196014A
JPS58196014A JP7824382A JP7824382A JPS58196014A JP S58196014 A JPS58196014 A JP S58196014A JP 7824382 A JP7824382 A JP 7824382A JP 7824382 A JP7824382 A JP 7824382A JP S58196014 A JPS58196014 A JP S58196014A
Authority
JP
Japan
Prior art keywords
stripe
crystal
meniscus
liquid phase
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7824382A
Other languages
Japanese (ja)
Inventor
Yasutoshi Kashiwada
柏田 泰利
Takashi Kajimura
梶村 俊
Kunio Aiki
相木 国男
Noriyuki Shige
重 則幸
Masaaki Sawai
沢井 雅明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7824382A priority Critical patent/JPS58196014A/en
Publication of JPS58196014A publication Critical patent/JPS58196014A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To remove an element of bad life property caused by meniscus line at selecting test for a short time, by a method wherein stripe direction of a substrate single-crystal is made perpendicular to sliding direction of a growing solution. CONSTITUTION:To obtain epitaxial layer by contacting a growing solution with a substrate single-crystal 13, the crystal 13 is fixed and the growing solution is slided. The crystal 13 is installed to a board so that stripe direction 15 of the crystal 13 is perpendicular to sliding direction 16 of the growing solution. Since meniscus line produced at the liquid phase epitaxial growing is made approximately parallel to stripe direction of an element, any element of bad life property caused by the meniscus line can be removed at selecting test for a short time.

Description

【発明の詳細な説明】 本発明は化合物半導体レーザ用液相エピタキシャル成長
法に係り、時に成長中に活性層内に発生するメニスカス
ラインなる結晶欠陥の、レーザ素子中への導入される相
対的方位を制御し、素子の寿命特性向上に好適な成長方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a liquid phase epitaxial growth method for compound semiconductor lasers, and it is a method for controlling the relative orientation of crystal defects called meniscus lines, which sometimes occur in an active layer during growth, into a laser device. The present invention relates to a growth method suitable for controlling and improving the lifetime characteristics of devices.

スライド・ボート法による液相エピタキシャル成長にお
いて、基板単結晶をボートに設置するに際し、成長用溶
液まtは基板単結晶の摺動方向に対する、素子のストラ
イプ方向t−考慮し九基板単結晶の設置方位は従来定め
られていなかった。
In liquid-phase epitaxial growth using the slide boat method, when installing a substrate single crystal in a boat, the growth solution or t is the stripe direction of the element with respect to the sliding direction of the substrate single crystal. had not been previously determined.

また、基板単結晶に予め帯状凹溝を形成する必要がある
素子(例えば、K、 Aiki  et  al、。
Furthermore, devices that require band-shaped grooves to be formed in advance in a substrate single crystal (for example, K, Aiki et al.

IEEE J、Quantum Eleetron、、
 vol、 QE−14,89−94,1978)を作
製する目的の液相成長においては、該溝の方向(すなわ
ち素子のストライプ方向)に平行に成長用溶液または基
板結晶が摺動されていた。その理由は、該溝肩がメルト
・バックにより左右非対称形状となることを防ぐことで
あった。
IEEE J, Quantum Eleetron,
In liquid phase growth for the purpose of producing a semiconductor device (Vol. QE-14, 89-94, 1978), a growth solution or a substrate crystal is slid parallel to the direction of the grooves (ie, the stripe direction of the device). The reason for this was to prevent the groove shoulders from becoming left-right asymmetrical due to melt-back.

素子の寿命特性に悪影響を及ぼすメニスカス・ラインの
実態は、成長用溶液が基板結晶またはその上にエピタキ
シャル成長した層の上を摺動すると時の微少な断続的な
動きにより生ずる線状の結晶表面の形状変化や結晶組成
の変化である。したがって該メニスカス・ラインは、結
晶表面と接する成長用溶液の外形に平行に入り、一般に
は成長用溶液は長刀形のボート部品中に収納さnている
ため、成長用溶液の摺動方向に対しはぼ垂直に成長結晶
中に発生していた。換言すれば、上記帯状凹溝2t−有
する基板単結晶1を用いる場合は、該メニスカス・ライ
ン3は素子のストライプ方向に対し第1図に示すように
ほぼ垂直に発生していた。
The reality of meniscus lines, which have a negative impact on the lifetime characteristics of devices, is that the linear crystal surface is caused by minute intermittent movements when a growth solution slides over a substrate crystal or a layer epitaxially grown on it. These are changes in shape and crystal composition. Therefore, the meniscus line is parallel to the outer shape of the growth solution in contact with the crystal surface, and since the growth solution is generally housed in a long sword-shaped boat part, the meniscus line is parallel to the sliding direction of the growth solution. The crystals grew almost vertically. In other words, when the substrate single crystal 1 having the band-shaped grooves 2t was used, the meniscus lines 3 were generated almost perpendicularly to the stripe direction of the device as shown in FIG.

半導体レーザ素子は、実用する罰段階で、その寿命特性
の可否を決定する目的の寿命特性選別(通常24〜10
0時間)を行なっている。しかし、前述の如く、メニス
カス・ラインがストライプにほぼ垂直に発生している場
合は、該メニスカス・ラインによる素子の劣化は200
〜300時間といった長時間の素子使用時に生じていた
ため、現状の寿命特性選別法では選別できない欠点があ
り、また選゛別誓るには、より長時間の選別時間を要す
る欠点があった。
Semiconductor laser devices undergo lifetime characteristic screening (usually 24 to 10
0 hours). However, as mentioned above, when the meniscus line occurs almost perpendicular to the stripe, the deterioration of the device due to the meniscus line is 200%.
Since this occurred when the device was used for a long period of time, such as 300 hours, there was a drawback that it could not be selected using the current life characteristics selection method, and it also had the drawback that a longer selection time was required to ensure selection.

素子の寿命特性に悪影響金属ぼすメニスカス・ラインの
、素子のストライプ方向に対する発生の方向をエピタキ
シャル成長時に制御し、メニスカス・ラインがストライ
プ内に皆無か、またはストライプ内にストライプと平□
行に存在する素子が得られるようにし、前者の素子では
高寿命特性を実現し、後者の素子は簡単なる寿命特性選
別法により除去できる液相エピタキシャル成長法を提供
することにある。
The direction of generation of meniscus lines with respect to the stripe direction of the device, which adversely affects the lifetime characteristics of the device, is controlled during epitaxial growth, and the meniscus line is either completely absent within the stripe or flat with the stripe within the stripe.
The object of the present invention is to provide a liquid phase epitaxial growth method in which devices existing in a row can be obtained, the former devices can achieve long lifetime characteristics, and the latter devices can be removed by a simple lifetime characteristics selection method.

従来の成長法では、半導体レーザ素子のストライプ方向
に対し、メニスカス・ラインがほぼ垂直に存在している
ため、必ずストライプ内を横切る。
In the conventional growth method, the meniscus line exists almost perpendicularly to the stripe direction of the semiconductor laser device, and therefore always crosses within the stripe.

また、該メニスカス・ライン1本のストライプ内での長
さはストライプ巾にほぼ等しく、従ってストライプ内で
の線密度は低いため、短時間の素子寿命特性選別では素
子の寿命特性の良否判定はできなかった。そこで、メニ
スカス・ラインがストライプに対して平行に導入される
ようにすれば、メニスカスラインはストライプ内に全く
存在しないか、あるいはストライプ内にストライプと平
行して相対的に高い線密度で存在する素子が得られるこ
とを見い出した。これを実現するために、エピタキシャ
ル成長時に、成長用ボートたは基板単結晶の摺動方向に
対し、素子のストライプ方向が垂直になるよう基板率“
結晶を位置させて成長すnばよいことを見い出した。
In addition, the length of one meniscus line within a stripe is approximately equal to the stripe width, and therefore the linear density within a stripe is low, so it is not possible to judge the quality of an element's lifespan characteristics by short-time element lifespan characteristic screening. There wasn't. Therefore, if the meniscus line is introduced parallel to the stripe, the meniscus line either does not exist within the stripe at all, or exists within the stripe parallel to the stripe with a relatively high linear density. was found to be obtained. To achieve this, during epitaxial growth, the stripe direction of the device is perpendicular to the sliding direction of the growth boat or single crystal substrate.
It was discovered that it is only necessary to position the crystal and grow it.

以下に本発明の一実施例を説明する。第2図に作製した
素子の断面形状を示す。この素子を作製するために、結
晶学的<011>方向に幅4士0.3μm、深さ1±0
.2μmの帯状凹溝を形成した(100)表面をもつn
型QaAs基板単結晶を用いた。この場合、最終的得る
素子のストライプ方向は該(011)方向に平行である
。本実施例における液相エピタキシャル成長では成長用
溶液と基板単結晶を接触してエピタキシャル層を得るた
めに、基板単結晶は固定し、成長用溶液の方を摺動した
。し友がって、第3図に示すように基板単結晶のボート
への設置は、本発明の方法により、成長用溶液の摺動方
向に対し、該基板単結晶の該<011>方向すなわちス
トライプ方向が垂直となるようにした。第2図に示す4
層のエピタキシャル層を得るための、各要用溶液は、各
々8gのQaに対し、n−クラッド層相溶液忙は9mg
のAtとn型不純物として0. l m gのTet加
え、活性層用溶液には1.9mgv)Att710え、
p−クラッド層用溶液には9mgのAtとp型不純物と
して8 m gのZnt−加え、キャップ層用溶液には
n型不純物として0.1mgのTCを加えた。さらに、
Asの原料としてGaAs単結晶単結8200咎 イト・ボートを用い、石英反応管中でH,を流しながら
、まず760Cで各層相の均−溶液全作った後、反応系
の温度’i 0. 5 C/−で降下しながら、756
Cになつ九時点で溶液を摺動し、n−クラッド用溶液か
ら順次基板単結晶に接触はせて、目的の4層を得た。尚
、上記帯状凹溝の両肩の、メルトバックによる左右非対
称性は、過冷却温度を3層以上、より好ましくは3〜5
Cの範囲、すなわち757〜755Cの範囲でn−クラ
ッド要港gt基板単結晶に接触すnば、上記帯状凹溝の
両肩のメルト・バックによる左右非対称性は生じないこ
とがわfi=つた。得られた成長ウェーハ中のメニスカ
スラインはホトルミネセンス装置による観察で第4図の
ように発生していた。該成長ウェーハは通常のウェーハ
プロセスにより、〈O1〒〉ストライプ方向の長さ30
0μm1この方向に垂直な(011>方向の長さ400
μmの大きさの素子を作製した。該素子の寿命特性試験
は、温度70Cで、素子の発光出力は5mWとし、この
時の動作電流値の変化管みる方法で行なった。測定結果
の1例を第5図に示す。図中21は素子のストライプ内
にメニスカス・ラインのない素子の寿命特性、22は該
ストライプ内に、ストライプにほぼ平行してメニスカス
・ラインのある素子の寿命特性、23は従来の方法で作
製した。メニスカス・ラインが素子のストライプにほぼ
垂直に入つ要素子の寿命特性を示す。この図から明らか
なように、寿命特性の悪い素子は、従来の200〜30
・0時間の特性検査が必要であったが、本発明の方法で
作製した素子の場合、寿命特性検査は100時間以内に
短縮することができた。
An embodiment of the present invention will be described below. FIG. 2 shows the cross-sectional shape of the manufactured device. In order to fabricate this device, the width was 4 x 0.3 μm in the crystallographic <011> direction, and the depth was 1 ± 0.
.. n with a (100) surface with 2 μm band-shaped grooves
A type QaAs single crystal substrate was used. In this case, the stripe direction of the final device is parallel to the (011) direction. In the liquid phase epitaxial growth in this example, in order to obtain an epitaxial layer by bringing the growth solution into contact with the substrate single crystal, the substrate single crystal was fixed and the growth solution was slid. Therefore, as shown in FIG. 3, by the method of the present invention, the substrate single crystal is placed in the boat in the <011> direction of the substrate single crystal with respect to the sliding direction of the growth solution. The stripe direction is now vertical. 4 shown in Figure 2
To obtain the epitaxial layer of each layer, each required solution is 8 g of Qa, and the n-cladding layer phase solution is 9 mg.
of At and 0.0 as an n-type impurity. lmg of Tet was added, and the active layer solution contained 1.9mgv) Att710.
9 mg of At and 8 mg of Znt as a p-type impurity were added to the solution for the p-clad layer, and 0.1 mg of TC was added as an n-type impurity to the solution for the cap layer. moreover,
Using a GaAs single-crystal 8200-metal boat as a raw material for As, a homogeneous solution of each phase was first prepared at 760C while flowing H in a quartz reaction tube, and then the temperature of the reaction system was reduced to 0. While descending at 5 C/-, 756
At the 9th point when C was reached, the solution was slid and brought into contact with the substrate single crystal in order from the n-cladding solution to obtain the desired four layers. In addition, the left-right asymmetry of both shoulders of the belt-shaped groove due to meltback is such that the supercooling temperature is set to 3 or more layers, more preferably 3 to 5 layers.
It can be seen that if contact is made with the n-clad gt substrate single crystal in the range of C, that is, in the range of 757 to 755C, no left-right asymmetry due to melt-back of both shoulders of the band-shaped groove will occur. . When observed using a photoluminescence device, meniscus lines in the grown wafer thus obtained were found to be generated as shown in FIG. The grown wafer is grown to a length of 30 mm in the stripe direction by a normal wafer process.
0 μm1 Length in (011> direction perpendicular to this direction 400
A device with a size of μm was fabricated. The life characteristic test of the device was carried out at a temperature of 70 C, with a light emitting output of the device of 5 mW, and by observing changes in the operating current value at this time. An example of the measurement results is shown in FIG. In the figure, 21 is the lifetime characteristic of an element without a meniscus line within the stripe of the element, 22 is the lifetime characteristic of an element with a meniscus line within the stripe almost parallel to the stripe, and 23 is the lifetime characteristic of an element fabricated by a conventional method. . This shows the lifetime characteristics of an element whose meniscus line is almost perpendicular to the stripe of the element. As is clear from this figure, elements with poor life characteristics have a lifespan of 200 to 300
- Although a 0-hour characteristic test was required, in the case of the device manufactured by the method of the present invention, the lifetime characteristic test could be shortened to within 100 hours.

本発明によれば、液相エピタキシャル成長時にできるメ
ニスカス・ラインを素子のストライプ方向に対し、はぼ
平行に発生させることができるので、該メニスカス・ラ
インに起因する寿命特性不良素子を短時間の選別試験で
除去できる効果がある。
According to the present invention, meniscus lines generated during liquid phase epitaxial growth can be generated approximately parallel to the stripe direction of the device, so devices with poor lifetime characteristics caused by the meniscus lines can be screened out in a short time. It has the effect of being removed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はストライプ方向に平行に成長用溶液ま九は基板
単結晶を摺動した時に入るメニスカス・ラインを示すウ
ェーハ平面図、第2図は作製した半導体レーザ素子の側
面図、第3図はストライプ方向と成長用溶液の摺動方向
を示す基板単結晶の平面図、第4図は第3図の状態で成
長したウェーハの平面図、第5図は素子の定出力寿命試
験結果を示す図である。
Figure 1 is a plan view of the wafer showing the meniscus line that appears when the growth solution slides across the substrate single crystal parallel to the stripe direction, Figure 2 is a side view of the fabricated semiconductor laser device, and Figure 3 is a side view of the fabricated semiconductor laser device. A plan view of the substrate single crystal showing the stripe direction and the sliding direction of the growth solution, Fig. 4 is a plan view of the wafer grown in the state shown in Fig. 3, and Fig. 5 is a diagram showing the results of a constant output life test of the device. It is.

Claims (1)

【特許請求の範囲】[Claims] 1、ストライプ構造を有する半導体レーザ素子を作製す
る目的の、スライド・ボート法による液相エピタキシャ
ル成長において、成長用溶液または基板単結晶の摺動方
向に対し、素子の該ストライプ方向が垂直方向となるよ
うに基板単結晶を位置させること¥1−%徴とする液相
エピタキシャル成長方法。
1. In liquid phase epitaxial growth using the slide boat method for the purpose of producing a semiconductor laser device having a striped structure, the stripe direction of the device is perpendicular to the sliding direction of the growth solution or substrate single crystal. A liquid phase epitaxial growth method in which the substrate single crystal is positioned at 1%.
JP7824382A 1982-05-12 1982-05-12 Method for liquid phase epitaxial growth Pending JPS58196014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7824382A JPS58196014A (en) 1982-05-12 1982-05-12 Method for liquid phase epitaxial growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7824382A JPS58196014A (en) 1982-05-12 1982-05-12 Method for liquid phase epitaxial growth

Publications (1)

Publication Number Publication Date
JPS58196014A true JPS58196014A (en) 1983-11-15

Family

ID=13656572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7824382A Pending JPS58196014A (en) 1982-05-12 1982-05-12 Method for liquid phase epitaxial growth

Country Status (1)

Country Link
JP (1) JPS58196014A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10898959B2 (en) 2006-04-10 2021-01-26 Franz Haimer Maschinenbau Kg Means for preventing tools from being pulled out from tool holders with a tool holding fixture
US11192194B2 (en) 2007-04-05 2021-12-07 Franz Haimer Maschinenbau Kg Tool holder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10898959B2 (en) 2006-04-10 2021-01-26 Franz Haimer Maschinenbau Kg Means for preventing tools from being pulled out from tool holders with a tool holding fixture
US10933473B2 (en) 2006-04-10 2021-03-02 Franz Haimer Maschinenbau Kg Means for preventing tools from being pulled out from tool holders with a tool holding fixture
US11192194B2 (en) 2007-04-05 2021-12-07 Franz Haimer Maschinenbau Kg Tool holder

Similar Documents

Publication Publication Date Title
US6380051B1 (en) Layered structure including a nitride compound semiconductor film and method for making the same
US7255742B2 (en) Method of manufacturing Group III nitride crystals, method of manufacturing semiconductor substrate, Group III nitride crystals, semiconductor substrate, and electronic device
JP3855347B2 (en) Method for manufacturing group 3-5 compound semiconductor device
Fujikura et al. Fabrication of InP-based InGaAs ridge quantum wires utilizing selective molecular beam epitaxial growth on (311) A facets
JP3756831B2 (en) GaN-based semiconductor light emitting device
US20060175620A1 (en) Epitaxial wafer for light emitting diode
JPS58196014A (en) Method for liquid phase epitaxial growth
US6639926B1 (en) Semiconductor light-emitting device
JP2005039248A (en) Method for manufacturing group iii nitride, method for manufacturing semiconductor substrate, group iii nitride crystal, semiconductor substrate, and electron device
JP4282305B2 (en) Nitride semiconductor laser device, method for manufacturing the same, and semiconductor optical device including the same
JP2953236B2 (en) InP single crystal substrate material
KR20000056002A (en) Method for growing GaN crystalline using lateral epitaxy growth
US4609411A (en) Liquid-phase epitaxial growth method of a IIIb-Vb group compound
EP0093569A1 (en) A method of liquid phase epitaxial growth
JPS6381887A (en) Semiconductor laser device and manufacture of the same
JP3164482B2 (en) Crystal growth method and semiconductor device manufacturing method using the crystal growth method
JP2007305635A (en) Nitride semiconductor light-emitting element
Anthony et al. Effects of Ga (As, Sb) active layers and substrate dislocation density on the reliability of 0.87‐μm (Al, Ga) As lasers
JPH04278522A (en) Semiconductor material having si-doped gainp cap layer
JPH0730150A (en) Light-emitting diode and its manufacture
JPH0712093B2 (en) Light emitting semiconductor device substrate and manufacturing method thereof
JPH07232999A (en) Znse single crystal and its production
JP2765120B2 (en) Liquid phase epitaxial growth method
JPH07193331A (en) Gaas substrate for light-emitting element
JPH03227586A (en) Semiconductor laser