JPS5819407A - Manufacture of porous sintered body - Google Patents

Manufacture of porous sintered body

Info

Publication number
JPS5819407A
JPS5819407A JP56117664A JP11766481A JPS5819407A JP S5819407 A JPS5819407 A JP S5819407A JP 56117664 A JP56117664 A JP 56117664A JP 11766481 A JP11766481 A JP 11766481A JP S5819407 A JPS5819407 A JP S5819407A
Authority
JP
Japan
Prior art keywords
powder
alloy
sintered body
porous
porous sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56117664A
Other languages
Japanese (ja)
Other versions
JPS6150121B2 (en
Inventor
Toru Morimoto
徹 森本
Masahito Fujita
正仁 藤田
Toshio Okawa
大川 敏夫
Kiyoshi Nakanishi
清 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NDC Co Ltd
Nippon Dia Clevite Co Ltd
Original Assignee
NDC Co Ltd
Nippon Dia Clevite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NDC Co Ltd, Nippon Dia Clevite Co Ltd filed Critical NDC Co Ltd
Priority to JP56117664A priority Critical patent/JPS5819407A/en
Publication of JPS5819407A publication Critical patent/JPS5819407A/en
Publication of JPS6150121B2 publication Critical patent/JPS6150121B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Filtering Materials (AREA)
  • Powder Metallurgy (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

PURPOSE:To obtain a porous sintered body with superior weather resistance and sufficient mechanical strength by mixing Al (alloy) powder with fine powder of Ni (alloy or compound) and sintering the mixture at a temp. close to the eutectic point of Al and Ni. CONSTITUTION:Al (alloy) powder is mixed with a small amount of fine powder of Ni (alloy or compound) and molded into a desired shape without applying pressure. The molded body is sintered at the eutectic point of Al and Ni or a temp. close to the eutectic point, e.g. at 660-640 deg.C in a nonoxidative atmosphere contg. H2. By this method the Ni component is melted and dispersed in the Al powder, an Al-Ni alloy is precipitated in the Al matrix, and a porous sintered body with superior mechanical strength, elongation and corrosion resistance is obtd.

Description

【発明の詳細な説明】 本発明は、多孔質焼結体の製造法であって。[Detailed description of the invention] The present invention is a method for manufacturing a porous sintered body.

畦しくに、アルtエウA若しくはその金倉(9下単に五
ζ若しくはム番合金という、)の粉末に対し、AJ若し
くはAI会金の粉末よ如融点Oa&<、Lかも、像粉末
状のNi若しくはその合金粉またはN1化合物の粉末を
混合し、#14蝕性に#!れかりII!械的!!1度に
優れるほか、加工性も有する多孔質焼結体のlll!遣
方法に関する。
Specifically, the melting point Oa &<, L of the powder of AJ or AI alloy is similar to the powder of Alt Eu A or its Kanakura (simply referred to as 5ζ or Mu alloy). Or mix the alloy powder or N1 compound powder to make #14 corrosive #! Rekari II! Mechanical! ! A porous sintered body that not only has excellent properties but also has good workability! Regarding the method of sending.

従来から、鋼lll0金属粉床を焼結して成る多孔1[
焼結体が釉々の用途ガえは、フィルタに用いられ、ll
1k近は構造的特長から吸音材としての用途411めら
れてiる。
Conventionally, porous metal powder made by sintering a bed of steel lll0 metal powder has been used.
The sintered body is glazed and is used for filters.
1k is considered for use as a sound absorbing material due to its structural features.

ガえd、フィルタとして用いる場合は、それ自体が銅粉
末轡から成る焼結体であるため、egi1#!粉末関に
形IIt嘔れる通路が一般の金網等の目と相違してm−
して連続的につながっている・このため、通常の11勢
とちがって水、油勢のろ過効果率が向上する。また0通
路が、11曲して連続的につながっていることから、音
tILfIFの波動エネルギが吸収場れ、at@とじて
優れた特性が認められる。これに対し、  AJ′若し
くはA8合金中ステンレス蜘金等の如く1表11が難還
元性皮膜でおおわれている金属粉末の場合は、多孔質の
炉結体を製造する技術が確立嘔れていない・ すなわち、A−若しくはA8合金の金属粉末は6表向に
所蒙A40.から威る皮膜におおわれ。
When used as a filter, it is a sintered body made of copper powder, so egi1#! The shape IIt passage in the powder barrier is different from that of general wire mesh, etc.
The filters are connected continuously. Therefore, unlike the normal 11 filters, the filtration efficiency of water and oil improves. Furthermore, since the 0 path is connected continuously in 11 songs, the wave energy of the sound tILfIF is absorbed, and excellent characteristics are recognized as at@. On the other hand, in the case of metal powders covered with a non-reducible film, such as stainless steel in AJ' or A8 alloys, the technology for producing porous furnace bodies has not yet been established.・That is, the metal powder of A- or A8 alloy has 60% of A40. Covered with a protective film.

この皮膜の存在によってAJ若しくはAJ金合金粉末間
拡散が行なわれに〈〈、焼結体の孔簾皐を向上させるこ
とがむずかしい。っ1り、’A4j若しくはAg合金粉
末表面のA41,0.の融点は。
The presence of this film prevents diffusion between AJ or AJ gold alloy powders, making it difficult to improve the porosity of the sintered body. 1, 'A4j or A41,0. on the surface of Ag alloy powder. What is the melting point of ?

2000 C以上の、l!1i11であってA8若しく
はA8合金粉木t−焼結するKは1表向のA 8*o、
を機械的に破壊する必要がある。従って1通常は、成形
時KAJ若しくhhs合金粉床を例えば。
More than 2000 C, l! 1i11 and A8 or A8 alloy powder wood t-sintering K is 1 surface A 8*o,
must be mechanically destroyed. Therefore, 1 usually uses a KAJ or hhs alloy powder bed during molding, for example.

4Q QQ kglon”以上の圧力て加圧することが
必要で、この圧力によって!!i!面のAJtOs皮M
が破壊場れる。このことから、Ag若しくはAJ合金粉
末q〕焼結体は密実なものが多く、ある4!1iIkの
孔Ii率を有するものがオイルレス軸受勢としてつくら
れているが、相当多孔質な多孔″ii焼結体は全くとい
ってiいほど製造賂れていない。
It is necessary to apply a pressure of 4Q QQ kglon” or more, and with this pressure the AJtOs skin M
will be destroyed. From this, many sintered bodies of Ag or AJ alloy powder q] are dense, and those with a pore Ii ratio of 4!1iIk are produced as oil-less bearings, but they are quite porous. ``The manufacturing process of the sintered body is not that bad at all.

仁のため1本発明者等祉、A1若しくはlj合金粉禾か
ら成る多孔質体が製造できれば、他の金属粉床から成る
多孔質体に比べると、軽量てかつ経済的であるためKは
、A8若しくはA8合金粉末から成る多孔質体の焼結法
に’:)Vhて一部し、七の炉結法を確立した。この焼
l1li法は、A8若しく灯台金粉に対してAg−C−
合金粉末を混合してから、このAJ−Cu粉末が#1−
する温度で加熱m鮎し製造する方法である。この方法に
よって製造される多孔lii材はAg若しくはその合金
粉中KCuが侵入して基地の機械的強度が向上する一方
、IIB合部の機械的強度も向上する。しかし、多孔質
材が屋外中海辺IIpにさら嘔れて使用されるときは、
多孔質材の結合部KCuが析出しているため、析出il
l!に沿って腐食逼れる。従って、耐候性向上のためK
はなるべく Cuの添加室を少なくするか、若しくは全
く添加しない仁とが望まれるが、Cu1liの減少は極
度な傍徐的g1度を招来する。
If a porous body made of A1 or lj alloy powder can be produced, it will be lighter and more economical than porous bodies made of other metal powder beds, so K is Partially developed into a method for sintering porous bodies made of A8 or A8 alloy powder, seven furnace sintering methods were established. This firing method uses Ag-C- for A8 or lighthouse gold powder.
After mixing the alloy powder, this AJ-Cu powder becomes #1-
This is a method of manufacturing sweetfish by heating it at a temperature of In the porous LII material produced by this method, KCu in Ag or its alloy powder penetrates, and the mechanical strength of the base is improved, while the mechanical strength of the IIB joint is also improved. However, when porous materials are used outdoors and exposed to seaside IIp,
Since KCu is precipitated at the joint of the porous material, the precipitated il
l! Corrosion occurs along the line. Therefore, to improve weather resistance, K
It is desirable to reduce the number of Cu addition chambers as much as possible, or to add no Cu at all, but a decrease in Cu1li brings about an extremely gradual increase in G1 degree.

本発明は、上記q】とCろKもって成立したものであっ
て、%に、先に成立さぜたhs若しくはA1合金粉に対
して多孔質焼結体の製造技術tいかしてNi若しく扛こ
の合隻あるいは化合物を混合して焼結し、耐候性Vζ優
れるとともに機械的強度その他において従来ガと変わる
ところのない多孔質焼結体の皺造法を提案する。
The present invention was realized using the above-mentioned q] and C and K, and the manufacturing technology of the porous sintered body is applied to the previously established hs or A1 alloy powder. We propose a method for creating a porous sintered body that is superior in weather resistance, Vζ, and is no different from conventional materials in terms of mechanical strength and other aspects, by sintering the mixture or mixing compounds.

すなわち1本発明法は、A4若しくはその曾釜の粉末K
Ni単昧若しくaNi合金または。
That is, 1. the method of the present invention uses powder K of A4 or its large pot.
Ni alone or aNi alloy or.

Ni化合物の像粒粉宋を混合し、その後、圧力t−加え
ることなく所要形状Ni型し1次KA41とNiの共晶
点若しくは近傍においてにを含む非酸化性雰囲気中て焼
結することtI#轍とする・なお1本明細書において、
AI粉末とは、不可避的に不純物は甘むが、実用上アル
ミニウムのみから成るものと一般に云われていLものを
示し、筐た。A1合金粉末とは、粉末冶金上人8合金粉
末として製造され市販されているもの、更に、@造でき
る鴨のは全て含まれる。
Mix the image grain powder of the Ni compound, then shape the Ni into the desired shape without applying pressure and sinter it in a non-oxidizing atmosphere containing Ni at or near the eutectic point of primary KA41 and Ni. #Rutsuru・In addition, in this specification,
AI powder is generally said to be composed only of aluminum for practical purposes, although it inevitably contains some impurities. A1 alloy powder includes all powders manufactured and commercially available as powder metallurgy Shonin 8 alloy powder, as well as those that can be manufactured at @.

以下1本発明法について説明する。One method of the present invention will be explained below.

ます、常法の通)、アトマイズ法等によって製造された
Ag e若しくは1合金![対して。
Ag e or 1 alloy manufactured by atomization method etc.) [for.

Ni若しくはその合金あるいはその化合物の粉床1添加
混合し、無加圧a″態で所要の形状に成型する。この場
合、混合粉自体に全く圧力をかけることなく所望形状に
成型するのであるから通常は、混合粉と反応しない容器
や板、ガえに黒鉛桜器若しくは、板等を用いてこの容器
中や。
A powder bed of Ni or its alloy or its compound is added and mixed and molded into the desired shape in the non-pressure a'' state.In this case, the mixed powder itself is molded into the desired shape without applying any pressure at all. Normally, a container or board that does not react with the mixed powder, or a graphite cherry container or a board, etc., is used for this container.

嶺尋の上に混合粉を散布すれば十分である。また、多孔
質体の孔ii*を上昇させるためKは。
It is sufficient to sprinkle the mixed powder on top of the ridge. Further, K is added to increase the pore ii* of the porous body.

混合粉においてその中のhs苔しくにその合金粉が互い
に隣接し、表面の一部が接触する状態に保持するのが好
ましい。
In the mixed powder, it is preferable that the alloy powders in the mixed powder are kept adjacent to each other so that a part of their surfaces are in contact with each other.

なお、混合粉の中でNiはいずれの形式、飼えば、Ni
単体、Ni化合物で配合することもできるが、その粒度
は、 0.0201111以下、とくに。
In addition, Ni can be used in any form in the mixed powder.
Although it can be blended alone or as a Ni compound, its particle size is preferably 0.0201111 or less.

0004■程置が好ましい、従って、Niはカーボニー
ル化合物の形式として絵加するのが好ましい、この理由
は、カーボニール化合物の形式であると6粒度がα02
0−却下、とくに0.004m程度に調整できるからで
ある・ 次に、a金粉は黒鉛容器の光横状態若しくは板上の載置
状態で非酸化性雰囲気中、とくに。
Therefore, it is preferable to add Ni in the form of a carbonyl compound.The reason for this is that in the form of a carbonyl compound, the grain size of 6 is α02
0-rejected, especially because it can be adjusted to about 0.004 m.Next, the gold powder is placed in a non-oxidizing atmosphere in a graphite container horizontally or placed on a plate, especially in a non-oxidizing atmosphere.

少なくとも鳩t−宮む蓼囲気中で加熱して焼結する・こ
の際、焼MはAg若しくはそぐ)合金粉融点却下で、か
つAg−Ntの共晶点9上のI!度で行なうことが必要
で* ?!Iえば、Niが約69b以下のときは660
C〜640Cの範囲で焼結すれば十分である。また、使
M時間は60分程度で良く。
Sintering is carried out by heating at least in the surrounding air (at this time, sintering M is Ag or sintering), and I is below the alloy powder point and above the eutectic point 9 of Ag-Nt. Is it necessary to do it at a certain degree? ! For example, when Ni is about 69b or less, 660
It is sufficient to sinter within the range of C to 640C. Also, the usage time should be around 60 minutes.

これ9Fでも良好Km結できる・ なお、非鹸化性雰囲気とは、還元性雰囲気の#よかに、
mar含まない雰囲気であって、とくに好箇しくに、鶴
ガス率峠、Nにガス勢の還元性雰囲気が好’!L<、1
11点で一40C以下が好ましい。
Even at 9F, a good Km can be formed.In addition, a non-saponifiable atmosphere is similar to a reducing atmosphere.
It is an atmosphere that does not contain mar, especially the reducing atmosphere of Tsuru Gas Hakutoge, N and gas. L<, 1
It is preferable that the temperature is -40C or less at 11 points.

このように混合粉t−m結すると、各AI若しくは、そ
の合金粉に対しNi分が浴融拡散し。
When the mixed powder is combined in this way, the Ni component is bath melted and diffused into each AI or its alloy powder.

と(K、A#累地Khs−Ni合金カ析ffi L、 
IN株的強度や伸びに優れ、耐蝕汗を有する多孔質材が
得られる・ す゛なわち、  AJ若しく祉その合金粉の表面は。
and (K, A# accumulation Khs-Ni alloy analysis ffi L,
A porous material with excellent strength and elongation similar to IN stock and corrosion and sweat resistance can be obtained.In other words, the surface of AJ or its alloy powder is

硬いhero、反@litおおわれているが、加熱嘔れ
るとその内部とは、膨張係数において前者は後者よシ小
さいため1表面皮gK内部から応力がかかシ1表−皮膜
には、第1図に示す如く、破壊部分3が出現する(*だ
し、@1図で符号l扛A8若しくはその合*粉、2は表
面皮膜を示す、)、この埃象は、倒れの場合であっても
観察できるものでなく、肉えは雰囲気ガス中にある程度
のIl1票が存在すること、この[8が破壊部分に作用
して、速やかに酸化反応が進行して。
The hard hero is covered with anti-@lit, but when it is heated, the expansion coefficient of the former is smaller than the latter, so stress is applied from inside the skin. As shown in the figure, a broken part 3 appears (in the figure @1, the symbol 1 is A8 or its combination *powder, 2 indicates the surface film). It is not something that can be observed, but the fleshiness is due to the presence of a certain amount of Il1 in the atmospheric gas, and this [8] acts on the destroyed parts, causing the oxidation reaction to proceed rapidly.

AもO8皮膜が形成される・しかし1本発明法において
社、非酸化性雰−気、とくに、露点−40Cv下のH2
若しくはNH,ガス1#−気中で焼結し。
A also forms an O8 film. However, in the method of the present invention, H2 film is formed in a non-oxidizing atmosphere, especially at a dew point of -40 Cv.
Or sinter in NH, gas 1#-air.

絵素が実質的に存在しない状態のため、破壊部分3が生
成しても、その部分K Altosは生成しない。
Since there are substantially no picture elements, even if the destroyed portion 3 is generated, the portion K Altos is not generated.

更に詳しくa明すると、尾1図に示す如く。In more detail, as shown in Figure 1.

室自から焼結−紋筐で昇−中はへ8塔しくにその合金粉
lのIIe脹によって表面酸化皮膜2打各所で破壊され
、この破壊部分3は、温度の上昇とともに拡大かつ進行
し、随所にあられれる。
During the process of sintering from the room itself to the molded case, the surface oxide film was destroyed at two locations by IIe swelling of the alloy powder, and these fractured areas 3 expanded and progressed as the temperature rose. , can be found everywhere.

しかし、各破壊部分3はその巾はせま<、aミクロンか
らせいぜい数10ミクロン根度であり。
However, the width of each broken portion 3 is from a micron to several tens of microns at most.

Ni着しくにその合金あるいはNi化合物の粉(以下、
単にNi粉という、)60粒径が20#v下、なかでも
4μ程度であると、Ni粉6は破壊部分3の中VC入る
1M率が非常に多くなシ。
Ni-specifically its alloy or Ni compound powder (hereinafter referred to as
When the particle size of the Ni powder (simply referred to as Ni powder) is less than 20 #v, especially about 4 μ, the Ni powder 6 has a very high 1M ratio that enters the VC in the fractured part 3.

へ1粉6は、A#着しくにその合金粉1の露出面に振触
する。また、粉床が微粒になればなる6表面エネルギー
およびfj!面積は増大する傾向にあシ、これt化学的
活性の尺直としてNiKついてKelvinの式より計
算を行うとNiKついては表に示すごとく微粉になれば
表面エネルギーが増大する。すなわち。
The first powder 6 is shaken onto the exposed surface of the alloy powder 1 in an A# manner. Also, if the powder bed becomes fine particles, the 6 surface energy and fj! The area tends to increase, and when NiK is calculated using Kelvin's equation as a measure of chemical activity, as shown in the table, the surface energy of NiK increases when it becomes fine powder. Namely.

このように比表面積が増大すると、化学的活性はもとよ
り、焼結などの運動論的な過根にはより大きくその影響
が埃われる。この状lIにおいて、 AJ若しくはその
粉lの融点若しくはその近傍り下で、かつhe −N 
tの共晶点以上で加熱逼れると、内部のA8粉のところ
はNi粉との振触部分で耐融合金化し、A3−Ni合金
が内部に入り、第2図に示す如く、樹脂状を成す、従つ
て、この樹脂状部分の存在により、Ae若しくはその合
金粉lの結合部の強度が上昇し、更に、基地も強化され
て、Cu蝉の強化成分が配合石れな(とも優械的強度が
向上し、しかも。
When the specific surface area increases in this way, it has a greater influence not only on chemical activity but also on kinetic radicals such as sintering. In this state, at or below the melting point of AJ or its powder, and he -N
When heated above the eutectic point of t, the internal A8 powder becomes fusion-resistant at the part where it comes in contact with the Ni powder, and the A3-Ni alloy enters the interior, forming a resin-like state as shown in Figure 2. Therefore, due to the presence of this resinous part, the strength of the bonding part of Ae or its alloy powder increases, and the base is also strengthened, so that the reinforcing component of Cu cicada becomes stronger than the blended stone. Mechanical strength is improved, and moreover.

Cu等が結合部の粒界に析出しないため耐候性が向上す
る。
Weather resistance is improved because Cu and the like do not precipitate at the grain boundaries of the joint.

なお、A4着しくにその合金粉1は、その融点以下であ
っても、S公的K 114えば、不純物含有部分や、偏
?1部分、更に、不規則形状のために、とがったところ
や突出部が#&鵬する。例えば、A#若しくはその合金
粉の不純物はw、1図に示す如く1表面部分4や粒界5
に偏析し、)!!に、とがったところや、突出部等に熱
が集中し。
In addition, even if the alloy powder 1 of A4 is below its melting point, it may contain impurity-containing portions or unbalanced parts. 1. Furthermore, due to the irregular shape, there are sharp points and protrusions. For example, impurities in A# or its alloy powder can be found in the surface area 4 and grain boundaries 5 as shown in Figure 1.
)! ! Heat is concentrated on sharp and protruding parts.

これらのところで、不純物は液相があられれ。At these points, impurities form a liquid phase.

他の部分は触触されることなく、固相が保持され、この
液相部分が破壊部分3のところにおいてNi粉末と合金
仕し、結合する。
The solid phase is maintained without being touched in other parts, and this liquid phase part is alloyed with the Ni powder at the broken part 3 and bonded.

賛するに1表面酸化皮膜の熱的破壊部分KNi粉を介入
させ、しかも、Ae若しくはその合金粉が不規則形状で
あるため、一部に、敵相が存在することを利用して焼結
する。
One advantage is to use KNi powder to intervene in the thermally destroyed part of the surface oxide film, and to sinter it by taking advantage of the presence of an enemy phase in a part of the Ae or its alloy powder, which has an irregular shape. .

また、結合部分は、h4−Nr合菫が樹脂状になってA
I若しく灯その合金粉の内部に入るため、Ia械的強度
が向上し、素地強化成分上してCu郷を配合する必要が
ないため、耐蝕性や耐狭注−向上する。
In addition, at the bonding part, the h4-Nr violet becomes resinous and A
Since it enters the inside of the alloy powder of Ia or lamps, the mechanical strength of Ia is improved, and since there is no need to incorporate Cu in addition to the base reinforcement components, corrosion resistance and narrowing resistance are improved.

次に、実′1/IA例について説明する。Next, a real '1/IA example will be explained.

!5i!施匈1 1す、ム尋99.50Wt96(W下車I/csで示す
)Sj O,07’lk、 Cu a0004 嘩、 
Fe 0.16%’l ラヒK &n O,0020%
から成るAJ粉(平均粒径100〜350 X 1 G
−”謔)99重量部に対し、カルボニールニッケル粉(
粒径4X10−”1m)tlltiG混合してから、黒
鉛y器の中に充積し、&状のものとして成型した。
! 5i! Service 1 1st, Mu 99.50Wt96 (shown by W get off I/cs) Sj O, 07'lk, Cu a0004,
Fe 0.16%'l Rahi K &n O, 0020%
AJ powder (average particle size 100-350 x 1 G
- 99 parts by weight of carbonyl nickel powder (
After mixing the mixture (particle size: 4×10-”1 m), the mixture was filled in a graphite container and molded into a shape of &.

次に、この黒鉛容器を露点−4Or附近に幽贅したN)
Imガス雰−気中和おいて、室温から順次に焼IW1編
度箇で列温し、該温度645cの条件で焼結した・この
場合、焼M龜嵐4CiJ、約ω分保って、 60分経過
後は、I[ち[fi結を終了嘔せたところ、多孔貴焼結
体が得られた。
Next, this graphite container was heated to a dew point of around -4OrN)
In a neutralized gas atmosphere, the sintered IW was heated one by one from room temperature and sintered at a temperature of 645°C. After a few minutes had elapsed, the sintering was completed and a porous noble sintered body was obtained.

次に、この多孔質材について、孔−率會求めたところ、
約40俤であって、十分に通気性を保有するものが得ら
れ、その機械的強度は90kj/d、耐候性は塩水噴攬
霧試験で350時間以上で憎械的強度および一↑蝕性に
おいても異常に献められなかった。
Next, when we calculated the porosity of this porous material, we found that
About 40 yen, it has sufficient air permeability, its mechanical strength is 90 kj/d, and its weather resistance is mechanical strength and corrosion resistance after 350 hours or more in the salt spray test. It was unusually not offered.

実1Mガ2 まず、実施的と同様な組成のhs粉(粒度100〜35
0 X 10−” wa)と平均ltM、径4 X I
Q” amカルボニールニッケルe(Ni 99.8%
、 CO,2% 3211kt部と粒径44X10″″
3■のCu初末とを最終焼結時の成分比がNi (0,
75s )−(’u(0,2% )−Asの如く混合し
て、実施しjJlと同様な条件で焼結したところ、容積
で空隙が4516の多孔質体が得られた。
Fruit 1M Ga2 First, hs powder (particle size 100-35
0 x 10-” wa) and average ltM, diameter 4 x I
Q” am carbonyl nickel e (Ni 99.8%
, CO, 2% 3211kt part and particle size 44X10''''
The component ratio at the time of final sintering of the Cu initial powder of 3■ is Ni (0,
75s)-('u(0.2%)-As) and sintered under the same conditions as jJl, a porous body with a volume of 4516 voids was obtained.

この多孔質体の機械的強tは、引張11で100k1.
15+2テあシ、耐候tih塩水霧試験テ350時間以
上でも機械的強度および耐蝕性IfC4h14常は認め
られなかった。
The mechanical strength t of this porous body is 100k1.
Mechanical strength and corrosion resistance IfC4h14 were not observed even after 350 hours of weathering and salt water fog testing at 15+2 temperature.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ならびに第2図は本発明法によって焼結する場合
の各過程の説明図である。 符 号1・・・・・・、II若しくは合金粉2・・・・
・・表面酸化皮膜  3・・・・・・破壊部分4・−・
・・へ8着しくにその合金粉の表面部分5・・・・・・
粒界   6・・・・・・Ni粉特許出願人 H本ダイ
アクレバイト株式公社代理人弁理士松下在膀 弁理土鈴木 均 第1図 第2図
FIGS. 1 and 2 are explanatory diagrams of each process in sintering according to the method of the present invention. Code 1..., II or alloy powder 2...
...Surface oxide film 3...Destroyed part 4...
...8 Finally, the surface portion of the alloy powder 5...
Grain boundary 6...Ni powder Patent applicant H Hon Diacrevite Co., Ltd. Representative Patent Attorney Matsushita Patent Attorney Hitoshi Suzuki Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] lj若しくはその合金011末KNi単昧着しくにNi
金金倉たはN1化合物の微粒粉末を混合し、その後、圧
力taBえることなく所要形状K[li L、次に、A
JとN1の共晶点若しくは近傍においてHat−含む非
酸化性雰−気中で快結する仁とt−特徴とする多孔質焼
結体の製造法。
lj or its alloy 011 powder KNi or Ni
Fine powder of Kanakanakura or N1 compound is mixed, and then the required shape K [li L, then A
A method for producing a porous sintered body having the characteristics of nitride and t, which readily solidifies in a non-oxidizing atmosphere containing nitride at or near the eutectic point of J and N1.
JP56117664A 1981-07-29 1981-07-29 Manufacture of porous sintered body Granted JPS5819407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56117664A JPS5819407A (en) 1981-07-29 1981-07-29 Manufacture of porous sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56117664A JPS5819407A (en) 1981-07-29 1981-07-29 Manufacture of porous sintered body

Publications (2)

Publication Number Publication Date
JPS5819407A true JPS5819407A (en) 1983-02-04
JPS6150121B2 JPS6150121B2 (en) 1986-11-01

Family

ID=14717225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56117664A Granted JPS5819407A (en) 1981-07-29 1981-07-29 Manufacture of porous sintered body

Country Status (1)

Country Link
JP (1) JPS5819407A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138699U (en) * 1984-08-10 1986-03-11 エヌデ−シ−株式会社 sound absorbing structure
JPS61178120A (en) * 1985-02-04 1986-08-09 Mitsubishi Electric Corp Wire cut electric discharge machine
JPS62140720A (en) * 1985-12-17 1987-06-24 Mitsubishi Electric Corp Wire-cut electric discharge machine
EP0388026A1 (en) * 1989-03-14 1990-09-19 Corning Incorporated Aluminide structures
JPH06297250A (en) * 1993-04-15 1994-10-25 Mitsubishi Electric Corp Electric discharge machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5292808A (en) * 1975-12-29 1977-08-04 Commissariat Energie Atomique Process for production of permable metallic material and product made by this process
JPS5524937A (en) * 1978-08-10 1980-02-22 N D C Kk Manufacture of porous sintered body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5292808A (en) * 1975-12-29 1977-08-04 Commissariat Energie Atomique Process for production of permable metallic material and product made by this process
JPS5524937A (en) * 1978-08-10 1980-02-22 N D C Kk Manufacture of porous sintered body

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138699U (en) * 1984-08-10 1986-03-11 エヌデ−シ−株式会社 sound absorbing structure
JPS61178120A (en) * 1985-02-04 1986-08-09 Mitsubishi Electric Corp Wire cut electric discharge machine
JPS62140720A (en) * 1985-12-17 1987-06-24 Mitsubishi Electric Corp Wire-cut electric discharge machine
EP0388026A1 (en) * 1989-03-14 1990-09-19 Corning Incorporated Aluminide structures
JPH06297250A (en) * 1993-04-15 1994-10-25 Mitsubishi Electric Corp Electric discharge machine
JP2998486B2 (en) * 1993-04-15 2000-01-11 三菱電機株式会社 Electric discharge machine

Also Published As

Publication number Publication date
JPS6150121B2 (en) 1986-11-01

Similar Documents

Publication Publication Date Title
US8012598B2 (en) Metal foam body having an open-porous structure as well as a method for the production thereof
CN100510130C (en) Open porous metallic foam body and method for manufacturing
US4064914A (en) Porous metallic layer and formation
US3821018A (en) Porous metallic layer formation
JP3567488B2 (en) Method for producing porous metal body with high corrosion resistance
JPS5817817B2 (en) Method for manufacturing large surface area metal bodies
CA2039509C (en) Heat-resistant metal monolith and manufacturing method therefor
JPS5819407A (en) Manufacture of porous sintered body
DE3316807A1 (en) HARD SOLDER ALLOY FOR JOINING OXIDE CERAMICS UNDER OR WITH METALS
JPS6148566B2 (en)
JPH07185351A (en) Method of producing catalytic layer composed of palladium or platinum alloy having high degree of porocity
JPH08325661A (en) Porous aluminum sintered material
JPS6142761B2 (en)
JPS6047322B2 (en) Manufacturing method of porous sintered body
JPH0820831A (en) Production of metallic porous body
US5871139A (en) Debrazing of structures with a powdered wicking agent
JPH01194915A (en) Metallic filter and manufacture thereof
US20080118385A1 (en) Method for manufacturing open cell microporous metal
JPH08325660A (en) Porous aluminum sintered material
KR100831827B1 (en) A metal foam body having an open-porous structure as well as a method for the production thereof
JP2001329380A5 (en)
JPS5884973A (en) Production of composite material consisting basically of stainless steel plate or the like
WO1994025206A1 (en) Corrosion resistant porous body and production process
JPH1046209A (en) Production of porous aluminum green compact
JPS5884905A (en) Production of porous sintered body of stainless steel powder