JPS58192341A - Testing device for defect of pattern - Google Patents

Testing device for defect of pattern

Info

Publication number
JPS58192341A
JPS58192341A JP7524782A JP7524782A JPS58192341A JP S58192341 A JPS58192341 A JP S58192341A JP 7524782 A JP7524782 A JP 7524782A JP 7524782 A JP7524782 A JP 7524782A JP S58192341 A JPS58192341 A JP S58192341A
Authority
JP
Japan
Prior art keywords
defect
pattern
signal
beams
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7524782A
Other languages
Japanese (ja)
Inventor
Tadasuke Munakata
楝方 忠輔
Tadashi Suda
須田 匡
Shinobu Hase
長谷 忍
Kanji Koname
木滑 寛治
Hiroto Nagatomo
長友 宏人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7524782A priority Critical patent/JPS58192341A/en
Publication of JPS58192341A publication Critical patent/JPS58192341A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To display a defect image to a picture surface by modulating the brightness of a CRT by a detecting signal of reflection diffraction beams from the defect section of the pattern and synchronizing beams for a picture with scan light-beams. CONSTITUTION:A sample 4 is scanned by laser beams 1, and outputs from diffraction beam detectors 8, 8' arranged in the directions of (2n+1)X22.5 deg. are added 9, amplified 25 and recognized made correspond to a position on the sample as a defect signal in a signal processing system (an electronic calculator) 17. A positional information is decided by the information transfer for the processing system 17 and a drive control section. The defect signal is given to the CRT 23. Reflected beams 30 are detected 20 and used as a second signal in order to grasp the correlation of a normal pattern and the defect, and diffraction beams from the fringe of the normal pattern are detected by eight detectors 26, 26' arranged in the directions of nX45 deg., and outputs are added 27, amplified 28 and used as a scan brightness modulation signal. Second and third signals are selected 21 and used. According to said constitution, the signal by higher diffraction beams is added to the signal of lower diffraction beams (reflected) while being emphasized and a sharp picture is obtained, and the defect is easily extracted.

Description

【発明の詳細な説明】 本発明は、試料面上に形成さn’IC−パターン力・ら
の反射回折光會検知して行うパターン慌食装置に関し、
特に、パターン欠陥の位[1−確認する生膜の改良に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a pattern scanning device that detects reflected diffraction beams of n'IC patterns formed on a sample surface.
In particular, it concerns the improvement of biological membranes to identify pattern defects.

半導体ウェハ上に形成さnたパターンが正常であるか否
かを検査することは、半導体索子I!!mの参賀りt向
上させるためには必要不可欠である。
Inspecting whether the pattern formed on the semiconductor wafer is normal or not is the semiconductor tester I! ! It is essential to improve the success of m.

こ・の目的のために、レーザービームを用いた寸法針−
」、電子線を用いた寸法計測、レーザービーム音用いた
比軟ti測、回折光音用いた欠陥部償出、など各機の方
法が提来さnている。こnらの検査方法は、そnぞt′
L長所、短所があり、たとえば、寸法it測r行う方法
は平膜としては最も厳密ではめるが、検査時間が長過ぎ
る。七nに対し、回折光を利用して欠陥部のみt−憎出
する方法は、処理時間は短かいが、欠陥のサイズなどに
関し、定量性がない。
For this purpose, a sizing needle using a laser beam
Various methods have been proposed, including dimensional measurement using electron beams, specific softness measurement using laser beam sound, and defect compensation using diffracted light sound. These inspection methods are
There are advantages and disadvantages; for example, the method of measuring dimensions is the most accurate for flat membranes, but the inspection time is too long. In contrast, the method of extracting only the defective portion using diffracted light requires a short processing time, but is not quantitative regarding the size of the defect.

本発明は、短時間検査の利点に層目して敢後に述べた回
折光利用のパターン欠陥嶺出装置に関して、一つの改良
全行うものでめる。
The present invention is an improvement on the pattern defect extraction device using diffracted light, which has been described below with emphasis on the advantage of short-time inspection.

パターンにレーザ光音照射し7’C時、回折光がパター
ンエツジの方向に強く依存することは古くから広く知ら
nている。
It has been widely known for a long time that when a pattern is irradiated with a laser beam at 7'C, the diffracted light strongly depends on the direction of the pattern edge.

第1図によく知らγした現象金俣緘的に示す。同図(a
)は、レーザビーム(以下LBと略す)1が、半導体基
板4上にある、例えはレジストからなるパターン2tl
−照射している場@を示している。この図(a)は図1
(a)に示す。断面図であるが、四重(tlにLB側か
らlIMた平面図を示す。パターン2のエツジは図に示
すように45@の角1it−1r しているがLBIが
エツジを照射するとエツジにおいて回折光5,5′  
がエツジと直角な方向に放射さjLる。
Figure 1 shows a well-known phenomenon in Kanamata form. The same figure (a
), a laser beam (hereinafter abbreviated as LB) 1 is applied to a pattern 2tl made of resist, for example, on a semiconductor substrate 4.
- Shows the irradiated field @. This figure (a) is Figure 1
Shown in (a). Although this is a cross-sectional view, it shows a plan view taken from the LB side to the quadruple (tl).The edge of pattern 2 has a 45@ angle 1it-1r as shown in the figure, but when the LBI irradiates the edge, the edge Diffracted light 5,5'
is emitted in the direction perpendicular to the edge.

第1図(C)、 (dJには、違った方位を有するパタ
ーン3kLB1で照射した場合の回折光6.6′の放射
を示す。やはり、エツジに直間した方向に回折光が放射
さnている。
Figure 1 (C), (dJ) shows the emission of diffracted light 6.6' when irradiated with a pattern 3kLB1 having a different orientation. Again, the diffracted light is emitted in the direction directly facing the edge. ing.

さて、特別な場合を除き、現技術Rykでは、半導体工
業で用いるパターンのエツジU、OML(水平)、90
°(垂直)および45°(斜め)の3−類の角度に限定
できる。従って、パターンが正常でおる限り、LBt−
パターン上で任意に走査した場合は、全ての回折光は、
45°の贅数倍の方角即ち、0’、45°、90°、1
35″、27G’、315°、360゜にのみ放射さ扛
る。
Now, except for special cases, with the current Ryk technology, the pattern edge U, OML (horizontal), 90
It can be limited to angles of the type 3-degree (vertical) and 45° (oblique). Therefore, as long as the pattern remains normal, LBt-
When scanning arbitrarily on a pattern, all diffracted light is
Directions that are multiples of 45°, i.e. 0', 45°, 90°, 1
It radiates only to 35'', 27G', 315° and 360°.

もし、パターンエツジに方位の乱nがあると、乱nた方
位のパターンからの回折光は、上記角度以外の方向に放
射さ扛ることになる。例えは円形パターンは、正常なパ
ターンには含まCないが、例らかの理由でウェハ上に存
在すると、回折光は全方角(θ°〜360” )に放射
さnることになる。
If there is a disorder n in the orientation of the pattern edge, the diffracted light from the pattern with the disordered orientation will be emitted in a direction other than the above-mentioned angle. For example, a circular pattern is not included in normal patterns, but if it exists on a wafer for some reason, diffracted light will be emitted in all directions (θ° to 360″).

マタ、パターンエツジが22.5”の方位會有すルハタ
ーンが存在すると、エツジからの回折光は、22.5’
±90″の方向に選択的に放射さnることになる。
If there is a pattern edge with an orientation of 22.5'', the diffracted light from the edge will be 22.5'
It is selectively radiated in the direction of ±90''.

そこで、回折光の検出器ftn X 45°(nに優数
)Q)方角をさけて、(2rl+1)X22..5°(
nは螢数ンの方角に配置すると、正規パターン以外のパ
ターンエツジからの回折光を全て検出することになる。
Therefore, avoiding the direction of the diffracted light detector ftn x 45° (a predominant number to n) Q), (2rl+1)X22. .. 5° (
If n is placed in the direction of the firefly number, all diffracted light from pattern edges other than the regular pattern will be detected.

このことは、図2に示すように、8個の光検出器8a、
8b−=8bk (2n+1 )X22.5°の方角に
配置し、この出力信号tJl[l算器9で曾成し、j1
v幅      (器lOで増暢することで藺単になさ
Cる。第2図ru、正規パターンエツジの許さする方位
を正8角形パターン7で代表して示しであるが、LB(
第2図には示していない)を任意の方向に走査した場合
、明らかに、全ての回折光は、光検出器8a、8be’
−,8btさけて放射さn、;b。
As shown in FIG. 2, this means that eight photodetectors 8a,
8b−=8bk (2n+1)×22.5°, and the output signal tJl
v width (This can be easily done by increasing the width with the device lO. In Figure 2, the directions allowed by the regular pattern edges are shown as a representative of the regular octagonal pattern 7, but the LB (
(not shown in FIG. 2) in any direction, obviously all the diffracted light is transmitted to the photodetectors 8a, 8be'
-,8bt radiated n, ;b.

逆に、光検出器8a、8b、・・・8hで検出さnる信
号は正常パターンからはすnyc、−いわゆる欠陥パタ
ーン、もしくは、パターン欠陥部から放射さrt fc
 (gl回折光おることをt、休する。従って、瑠輻器
9′の出力信号は欠陥による信号と定義でき、以下、藺
単に欠陥信号Sdと呼ぶ。
Conversely, the signals detected by the photodetectors 8a, 8b, .
(The gl diffracted light is stopped for t.) Therefore, the output signal of the radiator 9' can be defined as a signal due to a defect, and will be simply referred to as a defect signal Sd hereinafter.

欠陥信号8d會用い、1子回玲的な雑音レベルを越えて
通商な臨界値以上のSd@号金検知することにより、パ
ターン欠tiitit−谷易に短時間で探し出すことが
できる。
By using the defect signal 8D and detecting Sd which exceeds the noise level of a single-child cycle and exceeds a commercial critical value, pattern defects can be easily found in a short time.

ところが、回折光を検知して行う欠陥検出においては、
すでに述べた工9に原理的に、その欠陥の大小、形状を
知ることはできない。fikは、正常パターンとは典な
る方位の形状を有する部分が存在する、というに適さな
い。
However, when detecting defects by detecting diffracted light,
In principle, it is impossible to know the size and shape of the defect as described above. fik is not suitable for saying that there is a portion having a shape with an orientation different from that of the normal pattern.

そのため、とんな欠陥でめる〃・は、人間か捗倣鏡を用
いて*祭する以外に、現状では方法はない。
Therefore, there is currently no other way than to use a human being or a mirror to imitate someone's flaws.

従って、従来の袈it龜、第3図に示すように、数10
0倍の倍率會有する光学順倣読を具備している。欠陥の
大きさii1μm程度であるから目の分険能を0.2 
n+mとすると200倍以上の倍率が要求さnる。
Therefore, as shown in FIG.
It is equipped with an optical scanning reader with 0x magnification. Since the size of the defect is about 1 μm, the visual acuity of the eye is 0.2
If n+m, a magnification of 200 times or more is required.

第3図(a)には、レーザビームIt試料4に照射して
、回折光検出器8,8′を用いて、欠陥伯号會検出して
いる状態を示す。試料4は移動可能な試料台lO上に設
置しである。欠陥信号は加算樹9で台成さtている。
FIG. 3(a) shows a state in which a laser beam is irradiated onto the sample 4 and defects are detected using the diffraction light detectors 8 and 8'. The sample 4 is placed on a movable sample stage IO. The defect signal is built up in the addition tree 9.

毎号処理系(第4図参照)で欠陥信号を処理すると、レ
ーザビーム1の走査位置と、試料台10の移動から、試
料4上でのパターン欠陥の位&を知ることができる。
When the defect signal is processed by the processing system (see FIG. 4), the position of the pattern defect on the sample 4 can be determined from the scanning position of the laser beam 1 and the movement of the sample stage 10.

そこで、試料台1(l特定距離たけ移動させて、欠陥部
を顕微fR11の直下に配置することができる。このよ
うにして、欠陥部ケ顕微銑下に配置でさnは、人間が目
で欠陥部ケ探し出し、その形状を知ることができる。
Therefore, the defective part can be placed directly under the microscope fR11 by moving the sample stage 1 a certain distance. You can find defects and know their shape.

ところが、上に述べ友光学顕倣艷方式は、夷川上、次の
ような少なくとも二つの欠点倉石する。
However, the above-mentioned Yokogaku imitation method has at least two drawbacks as follows.

1)欠陥部ft顕微娩の視野に、試料台の移動によって
もちこむことは、実用的には非常にむすかしい。欠陥が
分る機成の高倍率では、よく知らnているように、数1
00μn1の仇野乾曲しかなく、w4値鋭の慨械的遊ひ
(ガタ)にエリ、欠陥部は度々視野からはみ出してし甘
う。低倍率では、勿論視野内に欠陥部ケもちこむことに
できるが、しかし、欠陥部を認識するのはむすかしく、
殊し出すのに時間がかかる。
1) It is practically difficult to bring the defect into the field of view of the microscope by moving the sample stage. At high magnifications where defects can be seen, as is well known, the equation 1
00μn1's Kenno Kenkyoku is the only one, and the mechanical play of W4 is sharp, and the defective parts often protrude from the field of view. At low magnification, it is possible to bring the defect into the field of view, but it is difficult to recognize the defect.
It takes time to develop.

2)光字嗣倣嚢は、よく知らfしているように、反射光
を利用するものでおるが、例えは、レジスト族のパター
ンの場合は、レジスト自体が半透明であるという理由で
、反射光ケ用いて人間の目でその形状會昭鐵するのは容
易ではない。すなわち、Ii1!祭省にとっては非常に
41!LlrLる作条でわる。
2) As is well known, optical jiji imitation bags utilize reflected light, but for example, in the case of resist-based patterns, because the resist itself is translucent, It is not easy to see the shape with the human eye using reflected light. That is, Ii1! Very 41 for the ministry! LlrL depends on the structure.

そのため、a)欠陥部の位tさ゛めが短時間で正確にで
きて、b)欠陥部4を強調できる方法が埴1nていた。
Therefore, a method has been developed that can a) accurately locate the defective part in a short time and b) highlight the defective part 4.

本発明は上に述べたような観点から、人間が/(ターン
欠陥を認識する場合、欠陥にアクセスする過程紫もつと
単純化する方法を提供することを目的としている。
In view of the above, the present invention aims to provide a method that simplifies the process of accessing defects when humans recognize turn defects.

そのため、本発明では、人間が光学顕微鏡tく前に、欠
陥部が慌査している試料4上のとの部分にあるか倉大略
決矩できる生膜r、光字!#I倣鋭以外に具備すべきこ
とを提案する。このとき、欠陥近傍にどのようなパター
ンが配置さnているかケ認識し、正冨パターンとの相対
位置関係會人間にWl、Hさせることt主目的とする。
Therefore, in the present invention, before a human being uses an optical microscope, it is possible to roughly determine the biomembrane located at the part of the sample 4 where the defect is being examined. #I Suggest what you should have in addition to copying and sharpening. At this time, the main purpose is to recognize what kind of pattern is placed in the vicinity of the defect and to make the relative positional relationship Wl, H with respect to the positive pattern.

正常パターン及びパターン欠陥部を効率工〈紹誠するた
めには、不装置自身が利用しているパターンエツジから
の回折光を用いることをその骨子とし、21−<して、
従来の欠点を除去し、前に述べ′fc袂電事項(a)及
び(b)倉満足させることをねらいとしている。
In order to efficiently process normal patterns and pattern defects, the main point is to use the diffracted light from the pattern edge that is used by the defective device itself, and as shown in 21-<.
The aim is to eliminate the drawbacks of the prior art and to satisfy the aforementioned requirements (a) and (b).

第4図に本発明の実施例ケ示す。レーザ光弾12から放
射さ3たレーザビーム1は、再製[13a      
  tで偏向を覚けなから、半透鏡29ヶ通過してレン
ズ18で収束さn1試料4上を走査する。可動鏡13g
は駆動制御s16からの偏向6号會受けた駆動部13b
によって動かされている。試料4は試料台10上に設直
さn1試料台駆動部14(r駆動側@1916からの信
号で駆動することにエリ、レーザビーム1の移動と直交
する方向に移動さぜらnる。試料台駆動部14は、除震
さ′t′した架台15上に固定さnている。光学顕微鏡
11もPI泳に架台15上に固定さnている。
FIG. 4 shows an embodiment of the present invention. The laser beam 1 emitted from the laser beam bullet 12 is remanufactured [13a
Since the beam is deflected at t, it passes through 29 semi-transparent mirrors, is converged by lens 18, and scans over n1 sample 4. Movable mirror 13g
is the drive unit 13b which received the deflection No. 6 from the drive control s16.
is driven by. The sample 4 is reinstalled on the sample stage 10 and moved in a direction perpendicular to the movement of the laser beam 1, driven by a signal from the sample stage drive unit 14 (r drive side @1916). The table driving unit 14 is fixed on a pedestal 15 which has been subjected to vibration isolation.The optical microscope 11 is also fixed on the pedestal 15 in a PI manner.

欠陥信号は、(2n+1)x22.s°の方角に配置し
た回折光検出器8,8′の出力音加算器9で合成してえ
らnる。この信号は、増幅器25で適当なレベルに増幅
し、信号処理系(マイクロコンピュータ)17に尋人さ
t、欠陥信号として処理さ扛、試料4上の%にの位置と
対応づけらnて、パターン欠陥として認識さ【る。位置
情報は、信号処理系17が駆1gJ制帥部16と悄獄會
投受することにエリ決定さnる。
The defect signal is (2n+1)x22. The output sound adder 9 of the diffracted light detectors 8, 8' arranged in the direction of s° synthesizes the output sound and selects n. This signal is amplified to an appropriate level by an amplifier 25, processed by a signal processing system (microcomputer) 17 as a defect signal, and correlated with a position on the sample 4. Recognized as a pattern defect. It is determined that the signal processing system 17 will exchange the position information with the control unit 16.

以上に述べた動作は従来の装置の機能範囲會祝明し友も
のである。本発明では、走査電子顔倣鋭などで広く知ら
nている走査像ケえるための陰極kli23とその走査
像信号源として新たに、1g街九九検出器26.26i
J偏している点が、従来装置と本質的に異なる点である
。以下にこの%像点について詳細に述べる。
The operations described above are consistent with the functional scope of conventional devices. In the present invention, a cathode kli 23 for capturing a scanning image, which is widely known in scanning electronic facial scanners, etc., and a new 1g street multiplication detector 26, 26i as its scanning image signal source are used.
The J-biased point is essentially different from the conventional device. This percentage image point will be described in detail below.

走査像をえるためには、陰惨i管23の奄子初倉X、Y
方向に走食し、〜定の信号源で電子線の強度を叢調して
なさ扛る。本発明においては、駆動側#部16から、可
li!]鋭13a駆動伯号と試相台駆wJfMS14駆
動伯号ゲそnそfし分割して、陰極&Th 23の偏向
コイル24a、24bに供#することでなさnる。
In order to obtain a scanned image, it is necessary to
It runs in the direction of the electron beam and uses a constant signal source to modulate the intensity of the electron beam. In the present invention, from the drive side # section 16, the li! ] This is done by dividing the sharp 13a drive number and the test stage driver wJfMS14 drive number and supplying them to the deflection coils 24a and 24b of the cathode & Th 23.

走査像の第一の信号源としては、欠陥信号を増幅器22
ケ介して陰極線23に供給する。この11では、欠陥と
正常パターンの相対関係が分らないので、正冨パターン
信号として、レーザビーム1による反射光30會レンズ
19で来光し、光検出器20で′亀気食侠して第二の信
号源として用いる。しかし、既に触1したように、反射
光はバタ〜ンエッジ絡繊の目的には不適当なことが多い
がら本発明では、正X パメーンエツシからの圓折九ケ
検知する目的で、n×45°(n二〇、1.・・・7)
の方角に会計8箇の光検出器26.26’((直ぐ。こ
nらの光検出器26.26’の出力を加$527で合成
し、稙S器28でレベルgMl贅して、こrtt第三の
走査111輝度変調信号源とする。第二と第二の信号は
、スイッチ21で辿択して用いる。このようにすれは、
との欠陥が、紙料上のどこに位lt″jるかが、正常パ
ターンとの相対@静から、正確に紹臓できる。欠陥部、
正常パターン二ツシについては、回折光を用いているρ
・ら、人間が光字M倣鋺で欠陥を探すのに比べて、Fi
ゐかに強調さnた走査像がえらnることになる。すなわ
ち、低次回折光(反射光)による信号に、制次回折光に
よる信号を強調して付加することにエリ、画像に含まn
る^い窒闇崗&数成分が強調さIL、鮮鋭な一律を得る
ことができる。
As the first signal source of the scanned image, the defect signal is transmitted to the amplifier 22.
It is supplied to the cathode ray 23 through the channel. In this 11, since the relative relationship between a defect and a normal pattern is not known, the reflected light 30 from the laser beam 1 enters the lens 19 as a positive pattern signal, and is detected by the photodetector 20. Used as a second signal source. However, as mentioned above, the reflected light is often unsuitable for the purpose of batten edge entangling, but in the present invention, for the purpose of detecting nine round folds from the normal (n20, 1...7)
In the direction of 8 photodetectors 26.26' (((immediately), combine the outputs of these photodetectors 26.26' with an addition of $527, and add the level gMl in the base S unit 28, This is the third scanning 111 brightness modulation signal source.The second and second signals are selected and used by the switch 21.In this way, the
The location of the defect on the stock can be accurately determined from the relative position with the normal pattern.The defective part,
For two normal patterns, ρ using diffracted light
・Compared to humans looking for defects with a light M copying tool, Fi
A highly emphasized scanned image will be selected. In other words, it is a good idea to emphasize and add the signal due to the constrained order diffraction light to the signal due to the low order diffraction light (reflected light).
By emphasizing IL and several components, you can obtain sharp uniformity.

さらに、第4図において、駆動制御s16からの信号の
直流成分の大きさ及び交流成分の伽幅會変化させ、レー
ザビーム1の試料4上での走査範とは、上記の先走食型
顕微鏡系の倍率及び視野中心の位tiii任意に変化さ
せうろことt意味し、欠陥音像し出すことを容易にしか
つ欠陥位置検出の梢[ti%めることにつながる。
Furthermore, in FIG. 4, the magnitude of the DC component and the width of the AC component of the signal from the drive control s16 are changed, and the scanning range of the laser beam 1 on the sample 4 is determined by the pre-scanning microscope described above. The magnification of the system and the position of the center of the field of view can be arbitrarily changed to make it easier to image the defect and to improve the accuracy of defect location detection.

上記のような手法により、欠陥の位置きめができると、
光学顕微鏡で欠陥音像し出すことは非常に容易になるこ
とは明らかで、例えは、パターン欠陥の与真撮In光学
顕微鏡で行う場合に賛するq闇、労力が者しく短縮でき
る。
Once the location of the defect is determined using the method described above,
It is clear that it is very easy to image a defect using an optical microscope, and for example, the amount of effort and effort required to image a pattern defect using an optical microscope can be significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は反射回折光音用いるパターン欠陥検査法の原理
説明図、第2図はパターン欠陥部からの反射回折光を検
出するための慣用語の配置例を示す図、第3図はパター
ン欠#@部の位置および形状等倉確紹するための従来技
術の一例1に説明する図、第4図は本発明の一実施例に
なるパターン欠陥部、tWiIt(D部峠ヶオ、。、・
よイ、        i¥ 1 口 (の                       
(Cン5152  図 ′VJ 3 図 ((J、) 第 4 図 15
Figure 1 is a diagram explaining the principle of a pattern defect inspection method using reflected diffraction optical sound, Figure 2 is a diagram showing an example of the arrangement of common words for detecting reflected diffraction light from a pattern defect, and Figure 3 is a diagram showing the arrangement of pattern defects. The figure explained in Example 1 of the prior art to clearly introduce the position and shape of the #@ part, and Fig. 4 shows the pattern defect part, tWiIt (D part Togegao), which is an embodiment of the present invention.・
Yoi, i¥ 1 mouth (of
(Cn5152 Figure 'VJ 3 Figure ((J,) 4 Figure 15

Claims (1)

【特許請求の範囲】[Claims] 1、試料面上に光ビームを走査しながら照射し、試料面
上に形成さrtxパターンからの反射回折光を検出する
ことによって、上記パターンの欠陥を検出するようにし
たパターン欠陥検車装置において、パターンの欠陥部か
らの反射回折光音検出する友めの検出器の出力信号會陰
惚#宮宍示装重の輝度im信号として用い、該陰惨―管
表示装置の映像用電子ビーム會上記光ビームの走査と同
期して走査させることにより、駁陰極線を表示装置の映
揮幽面上にパターン欠陥部の像を表示せしめるようにし
たことを%徴とするパターン欠陥検査装置。
1. In a pattern defect inspection device that detects defects in the pattern by scanning and irradiating a light beam onto the sample surface and detecting reflected diffraction light from the RTX pattern formed on the sample surface, The output signal of the detector that detects the reflected and diffracted light sound from the defective part of the pattern is used as the brightness im signal of the display device, and the electron beam for the image of the gloomy tube display device is used as the light beam. A pattern defect inspection device characterized in that an image of a pattern defect is displayed on the display surface of a display device using a cathode ray by scanning in synchronization with the scanning of the pattern defect inspection device.
JP7524782A 1982-05-07 1982-05-07 Testing device for defect of pattern Pending JPS58192341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7524782A JPS58192341A (en) 1982-05-07 1982-05-07 Testing device for defect of pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7524782A JPS58192341A (en) 1982-05-07 1982-05-07 Testing device for defect of pattern

Publications (1)

Publication Number Publication Date
JPS58192341A true JPS58192341A (en) 1983-11-09

Family

ID=13570700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7524782A Pending JPS58192341A (en) 1982-05-07 1982-05-07 Testing device for defect of pattern

Country Status (1)

Country Link
JP (1) JPS58192341A (en)

Similar Documents

Publication Publication Date Title
JP3258385B2 (en) Optical board inspection system
TW402686B (en) Optical inspection method and apparatus
JP5997039B2 (en) Defect inspection method and defect inspection apparatus
CN102818528B (en) Apparatus and method for inspecting an object with increased depth of field
CN105758834B (en) A kind of biochip test method of induced with laser and CCD acquisition
US20140347664A1 (en) Apparatus and method for identifying defects within the volume of a transparent sheet and use of the apparatus
JPH03267745A (en) Surface property detecting method
JP2014137229A (en) Inspection system and defect inspection method
KR970000781B1 (en) Foreign matter detection device
TW200409912A (en) Optical measuring method and device therefor
CN207832690U (en) A kind of defect of lens detection device
CN112666166A (en) Silicon carbide micro-tube detection device and method
JPS58192341A (en) Testing device for defect of pattern
US4283147A (en) Electro-optical scanning system
JPH01120749A (en) Automatic focusing device for electron microscope
JPH07218234A (en) Size measuring method for fine pattern
JP2000193434A (en) Foreign substance inspecting device
JPH07190735A (en) Optical measuring device and its measuring method
JPH01272973A (en) Method and apparatus for laser magnetic immunoassay
JPH1073542A (en) Detector and detecting method
JP2006189390A (en) Optical displacement measuring method and device
JPH06124866A (en) Pattern recognizer
JPH02110306A (en) Detection of observation position and device therefor
JPH023447B2 (en)
JPS5918655B2 (en) Surface inspection method