JPS58191906A - Length measuring method using reference ruler - Google Patents

Length measuring method using reference ruler

Info

Publication number
JPS58191906A
JPS58191906A JP7480682A JP7480682A JPS58191906A JP S58191906 A JPS58191906 A JP S58191906A JP 7480682 A JP7480682 A JP 7480682A JP 7480682 A JP7480682 A JP 7480682A JP S58191906 A JPS58191906 A JP S58191906A
Authority
JP
Japan
Prior art keywords
measuring
standard
length
diffraction grating
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7480682A
Other languages
Japanese (ja)
Inventor
Tetsuo Sueda
末田 哲夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP7480682A priority Critical patent/JPS58191906A/en
Priority to DE19833316144 priority patent/DE3316144A1/en
Publication of JPS58191906A publication Critical patent/JPS58191906A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/36Forming the light into pulses
    • G01D5/38Forming the light into pulses by diffraction gratings

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To measure the extent of movement longer than the length of a reference ruler with a high precision, by measuring extents of movement of the reference ruler, which consists of a diffraction grating and has a finite length, and plural measuring head parts, which are moved relatively to this reference ruler, by separately provided position detectors. CONSTITUTION:Plural measuring head parts 3i-3k are arranged at equal intervals (l), and a diffraction grating 1 to be the reference ruler is provided so as to be movable through these head parts and is made slightly longer than the interval (l). A supporting member 4 is provided additionally on the diffraction grating 1 and is so constituted that the position of the supporting member 4 is detected by position detectors 6 which are arranged at the same intervals as measuring head parts 3i-3k. In case of measurement, one of measuring head parts 3i-3k to be applied is selected by position detectors 6, and the output with the reference quantity of measuring head parts 3i-3k as a unit is counted to measure the extent of relative movement of an object. Thus, the extent of movement longer than the length of the diffraction grating 1 is measured with a high precision.

Description

【発明の詳細な説明】 本発明は、有限長の基準尺を使用し、この基準尺の長さ
以上の移動量を計測するようにした基準尺を用いた測長
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a length measuring method using a finite-length standard, which measures a movement amount greater than the length of the standard.

長さや位置計測の分野では、従来から純機械的な物差し
、ノギス、マイクロメータ等を用いて人間の目による計
測は依然として行われているが、pLm単位を問題とす
る所謂精密計測の領域ではこれらの測定用具はその用を
なさない。近年、測定機器の電子化が進み、電子回路と
共に光Φ磁気等の技術を用いた測定装置が開発され、加
工・検査に多用されている。光を用いる測定装置の一例
としては、レーザー光の波長を基準とした光波干渉測長
器が知られている。この測長器の精度は、現在の工業水
準の要求に十分対応できるものであるが、むしろ過剰な
精度を有するとも云え価格的にも高価である。また、磁
気を用いた方式として、帯状又は棒状の磁性体に予め寸
法の基準としての磁気パターンを記録しておき、この磁
気パターンと磁気ヘッドとの相互の位置関係を求める一
磁−気スケールも知られている。この方式は磁性体に記
録できる基準パターンのピッチにより精度が決定され、
安定に記録し得るピッチは5Bm−101imのピッチ
であり、測定精度は光波干渉測長器と比較して実用上2
桁程度精度が低い、そこで、光波干渉測長器と磁気スケ
ールとの中間的な精度を有する測長器を工作機等に付設
することが要求され、このための基準として数#Lm程
度のピッチを持つ光学的回折格子を用いて、精度的及び
価格的に前記両者の中間的な測長装置の実用化が進んで
いる。この場合に基準となる回折格子lは、第1図に示
すように、ガラス又は金属板に機械的なルーリングエン
ジン、光学的リングラフィ、電子ビームリソグラフィ等
を用いて極細の格子線2が密集して並列するように造ら
れている。しかし、この回折格子1の製造可能な長さ寸
法は高々100〜200mm程度であり、光波干渉計又
は磁気的な測定装置が共に1mを超す測定範囲を有する
のに対して大きな弱点となっている。
In the field of length and position measurement, measurements are still performed by the human eye using purely mechanical rulers, calipers, micrometers, etc., but in the field of so-called precision measurement where pLm units are the issue, these methods are Measuring tools are of no use. In recent years, the digitization of measuring instruments has progressed, and measuring devices that use technologies such as optical Φ magnetism as well as electronic circuits have been developed and are often used for processing and inspection. As an example of a measuring device that uses light, a light wave interference length measuring device that uses the wavelength of laser light as a reference is known. Although the accuracy of this length measuring device is sufficient to meet the requirements of the current industrial level, it can be said that it has excessive accuracy and is expensive. In addition, as a method using magnetism, there is also a magnetic scale in which a magnetic pattern is recorded in advance on a band-shaped or rod-shaped magnetic material as a reference for dimensions, and the mutual positional relationship between this magnetic pattern and a magnetic head is determined. Are known. The accuracy of this method is determined by the pitch of the reference pattern that can be recorded on the magnetic material.
The pitch that can be stably recorded is 5Bm-101im, and the measurement accuracy is practically 2 times higher than that of a light wave interferometric length measuring device.
Therefore, it is required to attach a length measuring device with an accuracy intermediate between a light wave interferometric length measuring device and a magnetic scale to machine tools, and the standard for this is a pitch of several #Lm. Using optical diffraction gratings, length measuring devices that are intermediate between the two in terms of accuracy and cost are being put into practical use. In this case, the reference diffraction grating l is made by densely forming ultrafine grating lines 2 on a glass or metal plate using a mechanical ruling engine, optical phosphorography, electron beam lithography, etc., as shown in Figure 1. They are designed to be placed in parallel. However, the length dimension that can be manufactured for this diffraction grating 1 is about 100 to 200 mm at most, which is a major weakness since both optical interferometers and magnetic measurement devices have measurement ranges exceeding 1 m. .

本発明の目的は、基準尺よりも十分に長い所要の測定範
囲が得られ精度的、経済的に有利な基準尺を用いた測長
方法を提供することにあり、その要旨は、相対的に移動
する2物体の一方に基準量を有する有限長の基準尺を設
置し、他方に前記基準尺との相対的位置関係を前記基準
量を単位として求める測定ヘッド部を設け、前記2物体
の相対的移動方向に前記基準尺の有効長以内の間隔を鐙
いて複数個の前記測定ヘッド部を配置し、別に設けた位
置検知器により適用すべき測定ヘッド部を選択し、測定
へ−2ド部の基準量を単位とする出力を計数して、2物
体間の相対的移動量を測定することを特徴とする方法で
ある。
An object of the present invention is to provide a length measurement method using a standard that can obtain a required measurement range that is sufficiently longer than the standard and is advantageous in terms of accuracy and economy. A finite length standard having a reference amount is installed on one of the two moving objects, and a measuring head section is provided on the other side to determine the relative positional relationship with the standard using the reference amount as a unit. A plurality of measuring heads are arranged at intervals within the effective length of the reference standard in the direction of movement of the target, and a separately provided position detector selects the measuring head to be applied, and the process proceeds to measurement. This method is characterized in that the amount of relative movement between two objects is measured by counting the output in units of a reference amount.

第2図は本発明に係る方法の原理的説明図であり、複数
個の測定ヘッド部31.3j、3k、・・・が間隔りで
等間隔に固定的に配置されている。基準尺となる回折格
子lの有効長は、前記間隔夕よりも稍々長い寸法を有し
、回折格子1は測定ヘッド部31.3j、・拳Φの配列
方向に沿って測定ヘッド部31.3j、Φ・・内を通過
して、一点鎖線で示すように移動できるようになってい
る。回折格子1は光透過材より成り、更に支持部材4が
附設されていて、この支持部材4には例えばピンホール
5が設けられ、測定ヘッド部3と同様に間隔ρで配置さ
れた投受光器から成る複数個の位置検知器6により支持
部材4の位置を検知し得るようにされている。
FIG. 2 is a diagram illustrating the principle of the method according to the present invention, in which a plurality of measurement head sections 31.3j, 3k, . . . are fixedly arranged at equal intervals. The effective length of the diffraction grating l serving as a reference standard has a slightly longer dimension than the above-mentioned interval length, and the diffraction grating 1 is attached to the measuring head parts 31. 3j, Φ..., and can move as shown by the dashed line. The diffraction grating 1 is made of a light-transmitting material, and is further provided with a support member 4, which is provided with, for example, a pinhole 5, and has light emitters and receivers arranged at an interval ρ in the same way as the measurement head 3. The position of the support member 4 can be detected by a plurality of position detectors 6 consisting of.

第3図は測定ヘッド部3の具体的な構成図を示し、回折
格子lの手前側に光源7.2個の検出器8a、8b、レ
ンズ系9、偏向鏡lOa、lOb、偏光ビームスプリッ
タ11が配置され、回折格子lの反対側にダハプリズム
12a、12b、位相差板13a、13bが配置されて
いる。光源7は発光ダイオードや半導体レーザー等の半
導体発光素子であり、レンズ系9は光源7から射出され
る光線りをほぼ平行光束にするためのものであって、偏
向鏡10a、10bは偏向鏡10aへの入射光と、偏向
鏡10bからの射出光とが平行になるように、これらの
相対角度は90度に設定されている。また、位相差板1
3a、13bは光源7からの直線偏光を回折格子lに再
入射するときに、右廻り及び左廻りの円偏光にする働き
をしている。
FIG. 3 shows a specific configuration diagram of the measurement head section 3, which includes a light source 7, two detectors 8a, 8b, a lens system 9, deflection mirrors lOa, lOb, and a polarizing beam splitter 11 in front of the diffraction grating l. are arranged, and roof prisms 12a, 12b and retardation plates 13a, 13b are arranged on the opposite side of the diffraction grating l. The light source 7 is a semiconductor light emitting element such as a light emitting diode or a semiconductor laser, the lens system 9 is for converting the light beam emitted from the light source 7 into a substantially parallel beam, and the deflecting mirrors 10a and 10b are the deflecting mirror 10a. The relative angle between these is set to 90 degrees so that the incident light and the emitted light from the deflection mirror 10b are parallel to each other. In addition, the retardation plate 1
3a and 13b serve to convert the linearly polarized light from the light source 7 into clockwise and counterclockwise circularly polarized light when it re-enters the diffraction grating l.

従って、光源7から発光された光線りはレンズ系9で平
行光束とされ、偏向鏡10aにより回折格子lの点Aに
入射する。そして、回折格子1により回折され、回折格
子lの位相δが回折波面に加算され、入射光の初期位相
をOとすると回折波の位相項はexp(i(ωt+mδ
))となる。ここでmは回折次数であり、例えば+1次
項と−1次項はそれぞれexp(i(ωを十δ))、 
exp(i(ωt−δ))となり、+1次項である光線
Ll、゛−1次項である光線L2はそれぞれ位相差板1
3a、13bを経由しコーナーキューブプリズム又は図
示のダハプリズム12a、12bに入射する。光線L1
. L2はダハプリズム12a、12bで入射方向と平
行方向に反射され、位相差板13a、13bにより右廻
り及び左廻りの円偏光にされ、回折格f1の点AとX方
向に異なる点Bにおいて再び回折され、更に偏向鏡fo
bを介して偏光ビームスプリッタ11に入射する。この
偏光ビームスプリッタ11に入射した右廻り及び左廻り
の円偏光特性を有する光線L1.L2は、偏光ビームス
プリッタ11を透過及び反射する。透過光及び反射光は
それぞれ直線偏光になり、Mいに干渉し合って検出器8
a及び8bに入射することになる。
Therefore, the light beam emitted from the light source 7 is made into a parallel beam by the lens system 9, and is incident on the point A of the diffraction grating l by the deflection mirror 10a. Then, it is diffracted by the diffraction grating 1, and the phase δ of the diffraction grating l is added to the diffraction wavefront. If the initial phase of the incident light is O, the phase term of the diffraction wave is exp(i(ωt+mδ
)) becomes. Here, m is the diffraction order, for example, the +1st order term and the -1st order term are respectively exp(i(ω = 10δ)),
exp(i(ωt-δ)), and the light ray Ll, which is the +1st order term, and the light ray L2, which is the -1st order term, are the retardation plate 1.
3a and 13b, the light enters the corner cube prism or the illustrated roof prism 12a and 12b. Ray L1
.. L2 is reflected by the roof prisms 12a and 12b in a direction parallel to the incident direction, converted into clockwise and counterclockwise circularly polarized light by the retardation plates 13a and 13b, and diffracted again at a point B on the diffraction grating f1 that is different from point A in the X direction. and further a deflecting mirror fo
The light enters the polarizing beam splitter 11 via the beam b. The light beam L1. which is incident on the polarizing beam splitter 11 and has clockwise and counterclockwise circular polarization characteristics. L2 transmits and reflects the polarizing beam splitter 11. The transmitted light and reflected light each become linearly polarized light, which interferes with each other and reaches the detector 8.
It will be incident on a and 8b.

検出器8a及び8bは2つの円偏光の直交成分を干渉光
強度として検出するため、回折格子lが移動した場合の
検出器8a、8bの出力R,Sは、第4図(a) 、 
(b)に示すように90度の位相差を有する。この2つ
の信号R,Sを一定しヘルの基に(c) 、 (d)に
示すように図示しない回路によってそれぞれ二値化し、
その立上りと立下りのタイミングで(e)に示すように
パルスを発生させ、そのパルス数を計数することによっ
て回折格flの移動閂を計測できる。また、この計数時
には回折格子1の移動方向を考慮して、加算又は減算か
を決定すればよい。この場合は、回折格子1の1周期の
移動により干渉縞の出力は4N周期の移動となり、その
出力からパルスを計数すると16個のパルスを得ること
になる。
Since the detectors 8a and 8b detect orthogonal components of two circularly polarized lights as interference light intensity, the outputs R and S of the detectors 8a and 8b when the diffraction grating l moves are as shown in FIG. 4(a),
As shown in (b), there is a phase difference of 90 degrees. These two signals R and S are kept constant and are respectively binarized by circuits (not shown) as shown in (c) and (d) based on Hell.
The moving bar of the diffraction grating fl can be measured by generating pulses as shown in (e) at the rising and falling timings and counting the number of pulses. Further, during this counting, it is sufficient to decide whether to add or subtract by considering the moving direction of the diffraction grating 1. In this case, when the diffraction grating 1 moves by one period, the output of the interference fringes moves by 4N periods, and if the pulses are counted from the output, 16 pulses will be obtained.

第5図はその(a) 、 (b)に示す2つの信号R1
Sを、更に(c) 、 (d)に示すように加算及び減
算をして、45度ずつ位相の異なった信号R+S、R−
3を作成し、(e)〜(h)に示すように二値化して1
回折格子lの1周期の移動によって(1)に示すような
32個のパルスを発生するようにした場合の例を示して
いる。また、これらの信号を確実に処理するためには、
光量の変動及び回折効率の変動等を考慮する必要がある
ため、第3図に示すように、一方のダハプリズム12b
の頂点から回折光を取り出し、その光量をライトガイド
14を介して検出器15で検出し信号処理に利用しても
よい。
Figure 5 shows the two signals R1 shown in (a) and (b).
S is further added and subtracted as shown in (c) and (d) to obtain signals R+S and R- with phases different by 45 degrees.
3, and binarize it as shown in (e) to (h) to create 1.
An example is shown in which 32 pulses as shown in (1) are generated by one period of movement of the diffraction grating l. In addition, in order to reliably process these signals,
Since it is necessary to take into account variations in light amount and diffraction efficiency, one of the roof prisms 12b is
The diffracted light may be taken out from the vertex of the diffracted light, and the amount of light may be detected by the detector 15 via the light guide 14 and used for signal processing.

なお、第6図に示すAl11定ヘッド部3は、前述の第
3図の実施例では透過を応用した場合に対して1回折格
子1を反射型格子にした場合であり、第3図と同一の符
号は同一の部材を示している。
Note that the Al11 constant head section 3 shown in FIG. 6 is the same as that in FIG. The symbols indicate the same members.

回折格子1を反射型にした場合は、光学系の占めるスペ
ースを小さくすることが可能となり、各部材が回折格子
lに対して一方向に配置されるために取り扱いが容易と
なる利点がある。
When the diffraction grating 1 is of a reflective type, the space occupied by the optical system can be reduced, and each member is arranged in one direction with respect to the diffraction grating 1, which has the advantage of ease of handling.

ここで第2図において、回折格子1が移動すると、その
ときの回折格子lが位置する測定ヘッド部31.3j、
3k、・・番からは第77に示すようなパルスPi、 
Pj、 Pk、・・争が得られる。距離gの倍数距#g
、2ρ、3g、・・・イ・1近では、2個の測定ヘッド
部3により回折格子lの両端が計測されるために、パル
スが重複して発生される。この場合、これらのパルスが
例えば距#gにおけるように詩間的に重なり合っていれ
ば計数誤差は生しないが、距#29のようにパルスが若
干ずれて発生されると誤計数となり、測定誤差を招来す
ることになる。このように回折格子lを2個の測定ヘッ
ド部3が同時に検出する場合には、位置検知器6により
択一的に測定ヘッド部3を選択し、選択された測定ヘッ
ド部3のパルス数を計数するようにすればよい。この測
定ヘッド部3の切換えは、各位置検知器6及び測定ヘッ
ド部3の出力信号の組合わせによる論理回路により容易
に実現できるところである。従って、回折格子lの移動
距離は、測定ヘッド部3からの出力パルス数を回折格子
1の移動方向を検出した信号を基に、加算又は減算する
ことにより求められることになる。
Here, in FIG. 2, when the diffraction grating 1 moves, the measurement head section 31.3j, where the diffraction grating l is located at that time,
From numbers 3k, . . . , pulses Pi as shown in number 77,
Pj, Pk... dispute is obtained. Distance g multiple distance #g
, 2ρ, 3g, . In this case, if these pulses overlap each other, for example at distance #g, no counting error will occur, but if the pulses are generated with a slight deviation, as at distance #29, an erroneous count will occur and measurement error will occur. will be invited. In this way, when two measurement heads 3 simultaneously detect the diffraction grating l, the position detector 6 selectively selects the measurement head 3, and the number of pulses of the selected measurement head 3 is determined. Just count it. This switching of the measuring head section 3 can be easily realized by a logic circuit based on a combination of the output signals of each position detector 6 and the measuring head section 3. Therefore, the moving distance of the diffraction grating 1 is determined by adding or subtracting the number of output pulses from the measurement head section 3 based on the signal that detects the moving direction of the diffraction grating 1.

第8図は他の実施例であり、前述の実施例が1個の回折
格子lを複数個の測定ヘッド部31.3j、3に、Φ・
・に沿って移動させたのに対し、複数個の回折格子1i
、lj、lk、・・・を等間隔に配置し、回折格子1の
有効長よりも短い間隔に保持部16により保持した2個
の測定ヘッド部3u、3vを、回折格子11.1j、1
に、−・・に対して移動するようにしている。この場合
は、2個の測定ヘッド部3u、3vの少なくとも1個が
、何れかの回折格子1i、lj、lk、・拳・を検出で
きるので、位置検知器により測定ヘッド部3u、3vの
動きを検出し、測定ヘッド部3u、3vの何れかを選択
し、移動量は選択された測定へフド部3から得られる出
力パルスを計数すればよい。。
FIG. 8 shows another embodiment, in which one diffraction grating l is connected to a plurality of measurement heads 31.3j, 3, and Φ.
・In contrast, multiple diffraction gratings 1i
, lj, lk, .
, so that it moves relative to -... In this case, since at least one of the two measurement heads 3u, 3v can detect any of the diffraction gratings 1i, lj, lk, fist, the movement of the measurement heads 3u, 3v can be detected by the position detector. is detected, one of the measurement head parts 3u and 3v is selected, and the amount of movement can be determined by counting the output pulses obtained from the lid part 3 for the selected measurement. .

上述の幾つかの実施例においては、測定ヘッド部3を回
折格子lによる回折光の干渉を利用し、回折光は回折格
子lを2回に捗り通過又は反射し、高精度の測定値が得
られるようになっているが、回折格子lの通過又は反射
は1回のみとしても本発明の方法は十分実現が可能であ
る。また、本発明の方法では基準尺として回折格子を用
いることが理想的ではあるが、角度の測定に対しては回
転角を検出するロータリーエンコーダを用いてもよく、
更には他の光学的機構、磁気的機構により検出される基
準尺を利用しても同様に測定が可能である。
In some of the embodiments described above, the measurement head section 3 utilizes the interference of diffracted light by the diffraction grating l, and the diffracted light passes through or reflects the diffraction grating l twice, so that highly accurate measurement values can be obtained. However, the method of the present invention can be fully realized even if the light passes through the diffraction grating l only once or is reflected only once. Furthermore, although it is ideal to use a diffraction grating as a reference standard in the method of the present invention, a rotary encoder that detects the rotation angle may also be used to measure angles.
Furthermore, measurements can be made in the same way using standard standards detected by other optical or magnetic mechanisms.

また、実施例では使用する測定ヘッド部3を択一的に選
択するために、回折格子1の支持部材4にピンホール5
を設けるようにしたが、この検出は他の方式でもよいこ
とは勿論であり、ピンホール5に相当するようなマーク
を回折格子1に蒸着、塗布、添付等で耐着させることも
できる。
In addition, in the embodiment, in order to selectively select the measuring head section 3 to be used, a pinhole 5 is provided in the support member 4 of the diffraction grating 1.
However, it goes without saying that this detection may be performed using other methods, and a mark corresponding to the pinhole 5 may be permanently attached to the diffraction grating 1 by vapor deposition, coating, attachment, or the like.

以−ヒ説明したように本発明に係る基準尺を用いた測長
方法は、高価な基準尺を全長にわたり配置することなく
、1個又は間欠的に配置された基準尺を用いて、高精度
の長さ測定を実現できる。
As explained below, the length measurement method using the standard according to the present invention can achieve high accuracy by using one standard or intermittently placed standards without arranging expensive standards over the entire length. It is possible to measure the length of

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は回折格子の正面図、第2図は本発明の測定原理
の説明図、第3図は測定ヘッド部の構成図、第4図、第
5図は測定ヘッド部から得られる信号のタイムチャート
図、第6図は他の実施例の測定ヘッド部の構成図、第7
図は測定ヘッド部から得られるパルス波形図、第8図は
測定の変形例の説明図である。 符号lは回折格子、2は格子線、3は測定ヘッド部、4
は支持部材、5はピンホール、6は位置検知器、8a、
8bは検出器、10 a、  l Obl±偏向鏡、1
1はビームスプリッタ、12a、12bはダハプリズム
、13a、13bは位相差板である。 特許出願人  キャノン株式会社 112図 第3図 箇4図 纂5図 1611 117図
Fig. 1 is a front view of the diffraction grating, Fig. 2 is an explanatory diagram of the measurement principle of the present invention, Fig. 3 is a configuration diagram of the measurement head, and Figs. 4 and 5 show the signal obtained from the measurement head. A time chart diagram, FIG. 6 is a configuration diagram of the measuring head section of another embodiment, and FIG.
The figure is a pulse waveform diagram obtained from the measurement head, and FIG. 8 is an explanatory diagram of a modification of measurement. Symbol l is the diffraction grating, 2 is the grating line, 3 is the measurement head, 4
is a support member, 5 is a pinhole, 6 is a position detector, 8a,
8b is a detector, 10a, l Obl± deflection mirror, 1
1 is a beam splitter, 12a and 12b are roof prisms, and 13a and 13b are phase difference plates. Patent applicant: Canon Co., Ltd. 112 Figure 3 Section 4 Figure 5 Collection 1611 Figure 117

Claims (1)

【特許請求の範囲】 1、相対的に移動する2物体の一方に基$1を有する有
限長の基準尺を設置し、他方に前記基準尺との相対的位
置関係を前記基準量を単位として求める測定ヘッド部を
設け、前記2物体の相対的移動方向に前記基準尺の有効
長以内の間隔を置いて複数個の前記測定ヘッド部を配置
し、別に設けた位置検知器により適用すべき測定ヘッド
部を選択し、測定ヘッド部の基準量を単位とする出力を
計数して、2物体間の相対的移動量を測定することを特
徴とする基準尺を用いた測長方法。 2、 前記基準尺を回折格子とした特許請求の範囲第1
項記載の基準尺を用いた測長方法。 3、前記測定ヘッド部は回折光の干渉により移動量を測
定するようにした特許請求の範囲第2項記載の基準尺を
用いた測長方法。 4、前記測定ヘッド部を等間隔に固定的に配置し、前記
間隔よりも長い有効長を有する1個の基準尺を移動する
ようにした特許請求の範囲第1項記載の基準尺を用いた
測長方法。 5、複数個の基準尺を等間隔に固定的に配置し、2個の
測定ヘッド部を前記間隔よりも狭い間隔で保持し、これ
ら測定ヘッド部を移動するようにした特許請求の範囲第
1項記載の基準尺を用いた測長方法。
[Claims] 1. A finite-length reference standard having a base of $1 is installed on one of two objects that move relatively, and the relative positional relationship with the reference standard is determined in units of the reference amount on the other. A measurement head to be sought is provided, a plurality of the measurement heads are arranged at intervals within the effective length of the standard in the direction of relative movement of the two objects, and a position sensor provided separately determines the measurement to be applied. 1. A length measuring method using a measuring standard, which comprises selecting a head, counting the output of the measuring head in units of a reference amount, and measuring the amount of relative movement between two objects. 2. Claim 1 in which the standard is a diffraction grating
Length measurement method using the standard listed in section. 3. A length measuring method using a measuring standard according to claim 2, wherein the measuring head measures the amount of movement by interference of diffracted light. 4. Using the measuring standard according to claim 1, in which the measuring heads are fixedly arranged at equal intervals, and one measuring standard having an effective length longer than the intervals is moved. Length measurement method. 5. A plurality of standard standards are fixedly arranged at equal intervals, two measuring heads are held at an interval narrower than the above-mentioned interval, and these measuring heads are movable. Length measurement method using the standard listed in section.
JP7480682A 1982-05-04 1982-05-04 Length measuring method using reference ruler Pending JPS58191906A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP7480682A JPS58191906A (en) 1982-05-04 1982-05-04 Length measuring method using reference ruler
DE19833316144 DE3316144A1 (en) 1982-05-04 1983-05-03 Method and device for measuring the extent of a movement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7480682A JPS58191906A (en) 1982-05-04 1982-05-04 Length measuring method using reference ruler

Publications (1)

Publication Number Publication Date
JPS58191906A true JPS58191906A (en) 1983-11-09

Family

ID=13557917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7480682A Pending JPS58191906A (en) 1982-05-04 1982-05-04 Length measuring method using reference ruler

Country Status (1)

Country Link
JP (1) JPS58191906A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01210803A (en) * 1988-02-19 1989-08-24 Kitamura Mach Co Ltd Laser length measuring method
US4868385A (en) * 1985-07-10 1989-09-19 Canon Kabushiki Kaisha Rotating state detection apparatus using a plurality of light beams
US4930895A (en) * 1987-06-15 1990-06-05 Canon Kabushiki Kaisha Encoder for forming interference fringes by re-diffracted lights from an optical type scale and photoelectrically converting the interference fringes to thereby detect the displacement of the scale
US4967072A (en) * 1984-09-05 1990-10-30 Canon Kabushiki Kaisha Interferometric rotating condition detection apparatus
US4998798A (en) * 1988-05-10 1991-03-12 Canon Kabushiki Kaisha Encoder having long length measuring stroke
US5000572A (en) * 1987-05-11 1991-03-19 Canon Kabushiki Kaisha Distance measuring system
US5036192A (en) * 1986-01-14 1991-07-30 Canon Kabushiki Kaisha Rotary encoder using reflected light
US5101102A (en) * 1986-02-28 1992-03-31 Canon Kabushiki Kaisha Rotary encoder having a plurality of beams emitted by a diffraction grating
US5122660A (en) * 1987-05-11 1992-06-16 Canon Kabushiki Kaisha Distance measuring system utilizing an object with at least one inclined surface
KR101117241B1 (en) 2004-04-22 2012-03-15 가부시키가이샤 마그네스케일 Displacement detection apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4967072A (en) * 1984-09-05 1990-10-30 Canon Kabushiki Kaisha Interferometric rotating condition detection apparatus
US4868385A (en) * 1985-07-10 1989-09-19 Canon Kabushiki Kaisha Rotating state detection apparatus using a plurality of light beams
US5036192A (en) * 1986-01-14 1991-07-30 Canon Kabushiki Kaisha Rotary encoder using reflected light
US5101102A (en) * 1986-02-28 1992-03-31 Canon Kabushiki Kaisha Rotary encoder having a plurality of beams emitted by a diffraction grating
US5000572A (en) * 1987-05-11 1991-03-19 Canon Kabushiki Kaisha Distance measuring system
US5122660A (en) * 1987-05-11 1992-06-16 Canon Kabushiki Kaisha Distance measuring system utilizing an object with at least one inclined surface
US4930895A (en) * 1987-06-15 1990-06-05 Canon Kabushiki Kaisha Encoder for forming interference fringes by re-diffracted lights from an optical type scale and photoelectrically converting the interference fringes to thereby detect the displacement of the scale
JPH01210803A (en) * 1988-02-19 1989-08-24 Kitamura Mach Co Ltd Laser length measuring method
JPH0585001B2 (en) * 1988-02-19 1993-12-06 Kitamura Machinery Co Ltd
US4998798A (en) * 1988-05-10 1991-03-12 Canon Kabushiki Kaisha Encoder having long length measuring stroke
KR101117241B1 (en) 2004-04-22 2012-03-15 가부시키가이샤 마그네스케일 Displacement detection apparatus

Similar Documents

Publication Publication Date Title
JP5142502B2 (en) Position measuring device
US5120132A (en) Position measuring apparatus utilizing two-beam interferences to create phase displaced signals
US4969744A (en) Optical angle-measuring device
JPH0285715A (en) Encoder
CA1163094A (en) Interferometer
JPH06258102A (en) Measuring device
US4025197A (en) Novel technique for spot position measurement
JP2004144581A (en) Displacement detecting apparatus
JPS58191906A (en) Length measuring method using reference ruler
GB2239088A (en) Optical movement measurement
JPS58191907A (en) Method for measuring extent of movement
EP0179935A1 (en) Interferometric thickness analyzer and measuring method
US5142146A (en) High-accuracy position comparator using 2 dimensional grating
EP0484104A1 (en) Opto-electronic scale reading apparatus
JP4404184B2 (en) Displacement detector
US5471302A (en) Interferometric probe for distance measurement utilizing a diffraction reflecting element as a reference surface
JP2675317B2 (en) Moving amount measuring method and moving amount measuring device
JP4404185B2 (en) Displacement detector
JPH0799325B2 (en) Minute displacement measuring method and minute displacement measuring device
JPS6097215A (en) Length measuring device
JPH03115809A (en) Encoder
JP2517027B2 (en) Moving amount measuring method and moving amount measuring device
JPH03115920A (en) Zero-point position detector
Cosijns et al. 1ASML, Veldhoven, The Netherlands; 2Mitutoyo Research Center Europe, Best, The Netherlands
JPS62200223A (en) Encoder