JPS5819159B2 - Method for manufacturing multilayer printed wiring board - Google Patents

Method for manufacturing multilayer printed wiring board

Info

Publication number
JPS5819159B2
JPS5819159B2 JP71878A JP71878A JPS5819159B2 JP S5819159 B2 JPS5819159 B2 JP S5819159B2 JP 71878 A JP71878 A JP 71878A JP 71878 A JP71878 A JP 71878A JP S5819159 B2 JPS5819159 B2 JP S5819159B2
Authority
JP
Japan
Prior art keywords
printed wiring
inner layer
glass cloth
multilayer printed
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP71878A
Other languages
Japanese (ja)
Other versions
JPS5494668A (en
Inventor
高木清
黒沢啓治
川俣晴男
竹田勇吉
樋口徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Panasonic Electric Works Co Ltd
Original Assignee
Fujitsu Ltd
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd, Matsushita Electric Works Ltd filed Critical Fujitsu Ltd
Priority to JP71878A priority Critical patent/JPS5819159B2/en
Publication of JPS5494668A publication Critical patent/JPS5494668A/en
Publication of JPS5819159B2 publication Critical patent/JPS5819159B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

【発明の詳細な説明】 この発明は多層プリント配線板の製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a multilayer printed wiring board.

゛一般に多層プリント配線板は、硬化した銅張り積
層板の銅箔表面にプリント配線パターンを作成し、それ
らを未硬化材料(プリプレグ)を介して重ね、それぞれ
のパターンを正確に位置合わせをしながら積層板および
プリプレグを積層成形することによって製造される。
゛Generally, multilayer printed wiring boards are made by creating printed wiring patterns on the copper foil surface of a hardened copper-clad laminate, overlapping them with an unhardened material (prepreg), and aligning each pattern accurately. Manufactured by laminating and molding laminates and prepregs.

このような多層プリント配線板は、近年多層化のために
、多層プリント配線板の内層を構成する内層材料(両面
にそれぞれプリント配線パターンを形成した両面銅張り
積層板)が0.1〜0.2朋□と薄くなり、かつパター
ン密度が高くなって(1)る。
In recent years, such multilayer printed wiring boards have become multilayered, so that the inner layer material (a double-sided copper-clad laminate with printed wiring patterns formed on both sides) constituting the inner layer of the multilayer printed wiring board has a thickness of 0.1 to 0.0. The pattern becomes thinner (2 □) and the pattern density becomes higher (1).

そのため、このような多層プリント配線板の製造には、
高い寸法精度が要求される。
Therefore, in the production of such multilayer printed wiring boards,
High dimensional accuracy is required.

すなわち、積層成形後に、プリント配線パターン、特に
内層材料のパターンが積層成形前の元のパターンと変わ
っていないことが要求される。
That is, after lamination molding, the printed wiring pattern, especially the pattern of the inner layer material, is required to remain unchanged from the original pattern before lamination molding.

ところが、従来は、銅張り積層板およびプリプレグに用
いられるガラス布基材の織り縮みおよび強度が内層材料
の寸法変化に影響を及ぼすことが知られていなかった。
However, it has not been known in the past that the weave shrinkage and strength of the glass cloth base material used in copper-clad laminates and prepregs affect the dimensional changes of the inner layer material.

゛そのため、それらを考慮することなく峯膚→°リント
配線板を製造していた。
゛Therefore, Minehada→°lint wiring boards were manufactured without taking these into consideration.

その結果゛、製造された多層プリント配線板は寸法軸度
が悪かった。
As a result, the manufactured multilayer printed wiring board had poor dimensional accuracy.

したがって、°この発明の目的は、寸法精度あよい多層
プリント配線板の製造方法を提供することモある。
Therefore, an object of the present invention is to provide a method for manufacturing a multilayer printed wiring board with high dimensional accuracy.

この発明の特徴は、熱硬化性ポリイミド樹脂を含浸した
ガラス布基材の少なくとも片面に、プリント配線用の金
属箔を貼着した複数の金属箔張り積層板を、ガラス布基
材に熱硬化性ポリイミド樹脂を含浸しくこプ1.ノブレ
グを介して重ね、これを積層成形して多層プリント配線
板を製造する方法において、ガラス布基材として、織り
縮みが縦方向および横方向とも0.7〜1.5%であり
、初期引張リャフグ率が縦方向および横方向とも70〜
150ゆ/−であるガラス布を用いることにある。
A feature of the present invention is that a plurality of metal foil-covered laminates in which metal foil for printed wiring is adhered to at least one side of a glass cloth base material impregnated with a thermosetting polyimide resin are attached to the glass cloth base material. Polyimide resin-impregnated rope 1. In the method of manufacturing a multilayer printed wiring board by stacking the sheets through knob legs and laminating them, the glass cloth base material has a weave shrinkage of 0.7 to 1.5% in both the longitudinal and transverse directions, and the initial tensile Ryafugu ratio is 70~ in both vertical and horizontal directions
The purpose is to use glass cloth with a weight of 150 yu/-.

。すなわち、このようなガラス布基材を用いること
により、多層プリント配線板の寸法精度が著しく向上す
る。
. That is, by using such a glass cloth base material, the dimensional accuracy of the multilayer printed wiring board is significantly improved.

つぎに、この発明の詳細な説明する。Next, this invention will be explained in detail.

この発明者は、このような多層プリント配線板の寸法精
度を向上させるために鋭意研究した結果、銅張り積層板
およびプリプレグに世いられるガラス布基材の織り縮み
および強度が内層材料の寸法変化に影響を及ぼすことを
見いだした。
As a result of intensive research to improve the dimensional accuracy of such multilayer printed wiring boards, the inventor found that the weave shrinkage and strength of the glass cloth base material used in copper-clad laminates and prepregs are affected by dimensional changes in the inner layer material. was found to have an effect on

すなわち、複数の銅張り積層板をプリプレグを介して重
ね、これを積層成形する際、成形圧力、温度による樹脂
の膨張、収縮挙動とガラス布の織り縮みおよび強度との
間に相関があるため、それらを適正に保つことにより、
内層材料のプリント配線パターンを積層成形の前後を問
わずほぼ同じにして多層プリント配線板の寸法精度を向
上させうろことを見いだした。
In other words, when multiple copper-clad laminates are layered via prepreg and laminated and molded, there is a correlation between the expansion and contraction behavior of the resin due to molding pressure and temperature, and the weaving shrinkage and strength of the glass cloth. By keeping them properly,
We have found a way to improve the dimensional accuracy of multilayer printed wiring boards by making the printed wiring pattern of the inner layer material almost the same before and after lamination molding.

このような積層成形時の樹脂の膨張、収縮挙動とガラス
の織り縮みおよび強度との相関関係は、樹脂の種類によ
ってそれぞれその程度が異なる。
The degree of correlation between the expansion and contraction behavior of the resin during laminate molding and the weave shrinkage and strength of the glass differs depending on the type of resin.

ここでガラス布の織り縮みとは、 z’−z 織り縮みC= −X 100 (% )で示される。Here, what is the weave shrinkage of glass cloth? z’−z Weaving shrinkage C=-X100 (%).

“l:布の長さく通常20cIrL) l′:布の長さlの部分を分解して糸にして測定したと
きの長さく重し10g使用) 初期引張りヤング率とは、ガラス布を繊維方向。
"l: Length of the cloth, usually 20cIrL) l': Length when the length l of the cloth is disassembled and measured as a thread, using a weight of 10g) The initial tensile Young's modulus is the length of the glass cloth in the fiber direction. .

に引張って引張り試験を行なったときの応力−ひすみ曲
線A(第1図)における低応力部分aを示す。
A low stress portion a in the stress-strain curve A (Fig. 1) is shown when a tensile test was performed by pulling the specimen.

なお、第1図において1.高応力部分すは2次引張りヤ
ング率を示し、点Cは変曲点牽示す。
In addition, in FIG. 1, 1. The high stress area exhibits a second-order tensile Young's modulus, and point C represents the point of inflection.

つぎに、熱硬化性ポリイミド樹脂含浸ガラス布。Next, glass cloth impregnated with thermosetting polyimide resin.

基材を用いた多層プリント配線板め内層材料(厚さ0.
1 mm )におけるプリント配線パターンの装置ずれ
とガラス布基材の織り縮みおよび初期引張りヤング率と
の関係を第2図に示す。
Inner layer material of multilayer printed wiring board using base material (thickness 0.
FIG. 2 shows the relationship between the device deviation of the printed wiring pattern at 1 mm), the weave shrinkage of the glass cloth base material, and the initial tensile Young's modulus.

図において、曲線りは初期4悟りヤング率二内層パター
ン寸法・変化率曲線であり、曲線均ま織り縮み一内層バ
ターン寸法変化率曲線でやる。
In the figure, the curve is an initial 4 Young's modulus, 2 inner layer pattern size/change rate curves, and a uniform weave shrinkage 1 inner layer pattern dimensional change rate curve.

ここで内層パターン寸法変化率□とは、積層成形前の内
層材料のパターン寸法(パターンの長さ寸法)に対實る
積層成形後の内層材料のパターン寸法と積層成形前のパ
ターン寸法との産め百分率である。
Here, the inner layer pattern dimensional change rate □ is the difference between the pattern dimension of the inner layer material after lamination molding and the pattern dimension before lamination molding, which corresponds to the pattern dimension (pattern length dimension) of the inner layer material before lamination molding. It is a percentage.

第2図から明らかなように、熱硬化性ポリイミ、゛ド樹
脂含浸ガラス布基材を用いた多層プリント配線板では、
ガラス布基材として織り縮みが縦方向および横方向とも
0.7〜1.5%で、初期引張りヤング率が縦方向およ
び横方向とも70〜150に9/−のものを用いると、
内層パターン寸法変化率を0.02%以下に低減できる
ことがわかる。
As is clear from Fig. 2, in a multilayer printed wiring board using a glass fabric substrate impregnated with thermosetting polyimide and resin,
When a glass cloth base material with a weave shrinkage of 0.7 to 1.5% in both the longitudinal and transverse directions and an initial tensile Young's modulus of 70 to 150 in both the longitudinal and transverse directions of 9/- is used,
It can be seen that the inner layer pattern dimensional change rate can be reduced to 0.02% or less.

これは内層材料の厚さを問わない。This is regardless of the thickness of the inner layer material.

このように内層パターン寸法変化率を低減できるのはつ
ぎ、のような理由によると思われる。
It is believed that the reason why the inner layer pattern dimensional change rate can be reduced in this way is as follows.

すなわち、この発明では、比較的織り構造が粗なガラス
布を用い、るため、積層成形時の伸び力がガラス布の縦
方向および横方向に均等に伝わって均等に伸長し、ポス
トキュアで均等に収縮する。
In other words, since this invention uses glass cloth with a relatively coarse weave structure, the elongation force during laminated molding is transmitted evenly in the vertical and horizontal directions of the glass cloth, causing it to elongate evenly and evenly during post-curing. shrinks to

そのため、内層パターン寸法変化率が著しく低減される
と思われる。
Therefore, it is thought that the inner layer pattern dimensional change rate is significantly reduced.

ちなみに従来例に用いるガラス布は、その製造工程での
制約から、縦方向の織り縮みが小さく(0,4%)、初
期ヤング率が高い(200ky’mA)。
Incidentally, the glass cloth used in the conventional example has a small warp shrinkage (0.4%) and a high initial Young's modulus (200 ky'mA) due to constraints in its manufacturing process.

また、横方向アは織り縮みは太きく(1,5%)、初期
ヤング率が低い(70にシー)。
Further, in the transverse direction A, the weave shrinkage is large (1.5%) and the initial Young's modulus is low (70).

そのため、ポリイミド多層プリント配線板の0.1mr
rt内層材料では、積層成形で縦方向が0.1%収縮し
、横方向が0.02%膨張していた。
Therefore, 0.1mr of polyimide multilayer printed wiring board
The rt inner layer material contracted by 0.1% in the longitudinal direction and expanded by 0.02% in the transverse direction during laminated molding.

すなわち、従来例では、ガラス布そのものの機械的性質
の異方性によって多層プリント配線板の内層材料のパタ
ーンは寸法変化に異方性を生じていて内層パターン寸法
変化率が大きかった。
That is, in the conventional example, the pattern of the inner layer material of the multilayer printed wiring board had anisotropy in dimensional change due to the anisotropy of the mechanical properties of the glass cloth itself, and the rate of dimensional change of the inner layer pattern was large.

このように、この発明の製造方法によれば、寸法精度の
高い多層プリント配線板を製造することができ、高密度
実装の要求に応することができる。
As described above, according to the manufacturing method of the present invention, a multilayer printed wiring board with high dimensional accuracy can be manufactured, and the demand for high-density packaging can be met.

つぎに実施例に?いて説明する。Next to the example? I will explain.

実施例 1 熱硬化性ポリイミド樹脂(東芝ケミカル社製TVF59
00A、TVF5900B)を、織り縮みが、縦1.0
0%、横1.05%、初期引張りヤング率が縦100
kg/nil、横91に9/−のプラス布(織りの形態
は116.) ?C1樹脂分が49%になる+うに含浸
し、樹脂蝉出率(レジンフロー、)25〜30%、硬化
時間(ストロークキュアータイム)200〜230秒に
なるように加熱乾燥した。
Example 1 Thermosetting polyimide resin (TVF59 manufactured by Toshiba Chemical Corporation)
00A, TVF5900B), the weave shrinkage is 1.0 in length.
0%, horizontal 1.05%, initial tensile Young's modulus is vertical 100
kg/nil, plus cloth with width 91 and 9/- (weave form is 116.)? It was impregnated with sea urchin so that the C1 resin content was 49%, and then heated and dried so that the resin release rate (resin flow) was 25 to 30% and the curing time (stroke cure time) was 200 to 230 seconds.

つぎに、このようにして得たレジンクロスを1枚づつ用
いて、厚さ18μm(79片面銅張り積層板および厚さ
35μmの両面銅張り積層板を作成し、両面銅張り積層
板の4隅にX印をつけ、その×印(マーク)間距離を測
定した後、第3図のように、マーク部分を残して他は全
面エツチングして内層材料1をつくった。
Next, a single-sided copper-clad laminate with a thickness of 18 μm (79) and a double-sided copper-clad laminate with a thickness of 35 μm were created using the resin cloth obtained in this way one by one. After making an X mark on the surface and measuring the distance between the X marks, the inner layer material 1 was produced by etching the entire surface leaving the mark part as shown in FIG.

つぎに第4図のように、この内層材料1の上下にそれぞ
れレジンクロス(プリプレグ)2を重ね、さらに片面銅
張り積層板3を重ねたのち、170°G 、 40kg
/cIIL、 60分の条件で積層成形した。
Next, as shown in Fig. 4, resin cloth (prepreg) 2 is layered on top and bottom of this inner layer material 1, and a single-sided copper-clad laminate 3 is layered, and then the inner layer material 1 is heated at 170°G and 40kg.
/cIIL, laminate molding was carried out under the conditions of 60 minutes.

ついで、これを200℃の熱風乾燥機中で3時間処理し
て硬化物を得た。
Then, this was treated in a hot air dryer at 200° C. for 3 hours to obtain a cured product.

つぎに、この硬化物をナイフでけずって内層材料1のマ
ーク部。
Next, mark the inner layer material 1 by cutting off this cured material with a knife.

分を露出させ、マーク間の距離を測定し、それと積層成
形前に測定したマーク間距離とから内層パターン変化率
、すなわち積層成形後の内層材料1のマーク位置間距離
とエツチング前の内層材料1のマーク位置間距離の差を
後者で割って100倍。
The distance between marks is measured, and the inner layer pattern change rate is determined from this and the distance between marks measured before lamination molding, that is, the distance between mark positions of inner layer material 1 after lamination molding and the distance between mark positions of inner layer material 1 before etching. Divide the difference in the distance between the mark positions by the latter and multiply by 100.

したものを求めた。I asked for what I wanted.

実施例 2 ガラス布として織り縮みが、縦0.7%、横0.71%
、初期引張りヤング率が縦150 kg/mA、横14
4kg/−のものを用いた他は実施例1と同様二にして
硬化物を得、その内層パターン変化率を求めた。
Example 2 Weaving shrinkage as glass cloth is 0.7% in length and 0.71% in width
, initial tensile Young's modulus is 150 kg/mA vertically, 14 horizontally
A cured product was obtained in the same manner as in Example 1, except that 4 kg/- was used, and the inner layer pattern change rate was determined.

実施例 3 ガラス布として織り縮みが、縦1.30%、横1.40
%、初期引張りヤング率が、縦70”117m4*・横
73ky/−のものを用いた他は実施例1と同様にして
硬化物を得、その内層パターン変化率を求めた。
Example 3 As a glass cloth, the weaving shrinkage is 1.30% in length and 1.40% in width.
%, and the initial tensile Young's modulus was 70 inches in length and 73 ky/- in width.A cured product was obtained in the same manner as in Example 1, and its inner layer pattern change rate was determined.

従来例 1 ガラス布として織り縮みが、縦0,40%、横1.50
%、初期引張りヤング率が、縦205に9/−1横64
kg/mr7tのものを用いた他は実施例1と同様に
して硬化物を得、その内層パターン変化率を求めた。
Conventional example 1 Weaving shrinkage as glass cloth is 0.40% in length and 1.50% in width.
%, initial tensile Young's modulus is 205 vertically and 9/-1 horizontally 64
A cured product was obtained in the same manner as in Example 1 except that a material having a weight of 7 kg/mr was used, and the inner layer pattern change rate was determined.

比較例 1 ガラス布として織り縮みが、縦1.81%、横1.80
%、初期引張りヤング率が、縦37 kg/mus横3
5ゆ/−のものを用いた他は実施例1と同様にして硬化
物を得、その内層パターン変化率を求めた。
Comparative Example 1 As a glass cloth, the weaving shrinkage was 1.81% in length and 1.80% in width.
%, the initial tensile Young's modulus is 37 kg/mus vertically and 3 horizontally.
A cured product was obtained in the same manner as in Example 1, except that a material with a thickness of 5 Y/- was used, and the inner layer pattern change rate was determined.

比較例 2 ガラス布として織り縮みが、縦0.51%、横0.60
%、初期引張りヤング率が、縦180kg/mA、横1
63 kg/m4のものを扇いた他は実施例1と同様に
して硬化物を得、その内層パターン変化率を求めた。
Comparative Example 2 As a glass cloth, the weaving shrinkage was 0.51% in the vertical direction and 0.60% in the horizontal direction.
%, initial tensile Young's modulus is 180 kg/mA vertically, 1 horizontally
A cured product was obtained in the same manner as in Example 1, except that a 63 kg/m4 product was fanned, and the inner layer pattern change rate was determined.

以上の実施例、従来例および比較例におけるガラス布の
織り縮み(%)、初期引張りヤング率(kg/mi)と
内層パターン寸法変化率(%)を次表に示した。
The following table shows the weaving shrinkage (%), initial tensile Young's modulus (kg/mi), and inner layer pattern dimensional change rate (%) of the glass cloths in the above Examples, Conventional Examples, and Comparative Examples.

表から明らかなように、実施例の内層寸法変化率はいず
れも±0.02%の範囲内にあり、極めて良好であるこ
とがわかる。
As is clear from the table, the inner layer dimensional change rates of the Examples are all within the range of ±0.02%, which is extremely good.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はガラス布の応力−ひずみ曲線図、第2図は内層
パターン寸法変化率とガラス布の織り縮みおよび初期引
張りヤング率の関係を説明する説明図、第3図および第
4図はこの発明の一実施例の製造説明図である。 1・・・・・・内層材料、2・・・・・・レジンクロス
、3・・・・・・片面銅張り積層板。
Figure 1 is a stress-strain curve diagram of the glass cloth, Figure 2 is an explanatory diagram explaining the relationship between the inner layer pattern dimensional change rate, the weave shrinkage of the glass cloth, and the initial tensile Young's modulus, and Figures 3 and 4 are this diagram. FIG. 3 is a manufacturing explanatory diagram of an embodiment of the invention. 1: Inner layer material, 2: Resin cloth, 3: Single-sided copper-clad laminate.

Claims (1)

【特許請求の範囲】[Claims] 1 熱硬化性ポリイミド樹脂を含浸したガラス布基材の
少なくとも片面に、プリント配線用の金属箔を貼着した
複数の金属箔張り積層板を、ガラス布基材に熱硬化性ポ
リイミド樹脂を含浸したプリプレグを介して重ね、これ
を積層成形して多層プリント配線板を製造する方法にお
いて、ガラス布基材として、織り縮みが縦方向および横
方向とも0.7〜1.5%であり、初期引張りヤング率
が縦方向および横方向とも70〜150kg/1ntl
であるガラス布を用(、>ることを特徴とする多層プリ
ント配線板の製造方法。
1 A plurality of metal foil-covered laminates are prepared by adhering metal foil for printed wiring to at least one side of a glass cloth base material impregnated with a thermosetting polyimide resin, and a glass cloth base material is impregnated with a thermosetting polyimide resin. In the method of manufacturing a multilayer printed wiring board by stacking prepregs and laminating them, the glass cloth base material has a weave shrinkage of 0.7 to 1.5% in both the longitudinal and transverse directions, and the initial tensile Young's modulus is 70 to 150 kg/1ntl in both longitudinal and lateral directions
A method for manufacturing a multilayer printed wiring board, characterized by using a glass cloth having the following properties.
JP71878A 1978-01-07 1978-01-07 Method for manufacturing multilayer printed wiring board Expired JPS5819159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP71878A JPS5819159B2 (en) 1978-01-07 1978-01-07 Method for manufacturing multilayer printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP71878A JPS5819159B2 (en) 1978-01-07 1978-01-07 Method for manufacturing multilayer printed wiring board

Publications (2)

Publication Number Publication Date
JPS5494668A JPS5494668A (en) 1979-07-26
JPS5819159B2 true JPS5819159B2 (en) 1983-04-16

Family

ID=11481522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP71878A Expired JPS5819159B2 (en) 1978-01-07 1978-01-07 Method for manufacturing multilayer printed wiring board

Country Status (1)

Country Link
JP (1) JPS5819159B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4654248A (en) * 1985-12-16 1987-03-31 Gte Communication Systems Corporation Printed wiring board with zones of controlled thermal coefficient of expansion

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5769800A (en) * 1980-10-17 1982-04-28 Matsushita Electric Works Ltd Method of producing multilayer printed circuit board
JPS5970396U (en) * 1982-10-30 1984-05-12 日立コンデンサ株式会社 printed wiring board
JPS5970365U (en) * 1982-10-30 1984-05-12 日立コンデンサ株式会社 printed wiring board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4654248A (en) * 1985-12-16 1987-03-31 Gte Communication Systems Corporation Printed wiring board with zones of controlled thermal coefficient of expansion

Also Published As

Publication number Publication date
JPS5494668A (en) 1979-07-26

Similar Documents

Publication Publication Date Title
TWI715794B (en) Multilayer printed wiring board and manufacturing method of multilayer printed wiring board
JPS5819159B2 (en) Method for manufacturing multilayer printed wiring board
JPS5846078B2 (en) Method for manufacturing multilayer printed wiring board
JPS59109349A (en) Laminated board
JPS63318196A (en) Glass fiber fabric reinforced printed wiring board
JP2996026B2 (en) Manufacturing method of copper clad laminate
JP4296680B2 (en) Laminate production method
JPH10272733A (en) Manufacture of metal-clad laminate
JPH0290592A (en) Multilayer printed wiring board
JPH0564857A (en) Manufacture of laminate
JP2713024B2 (en) Manufacturing method of multilayer metal foil-clad laminate
JPH04180688A (en) Manufacture of metal-clad laminated board whose dimensional stability is excellent
JP3402392B2 (en) Multilayer printed wiring board
JPH0470991B2 (en)
JPH04223113A (en) Manufacture of laminated sheet
JPH07290633A (en) Single-sided copper clad laminated sheet
JP2001179877A (en) Method for manufacturing laminated sheet
JP2001047587A (en) Manufacture of laminate
JPH0771839B2 (en) Laminated board manufacturing method
JP2001252923A (en) Method for manufacturing prepreg mold and prepreg mold
JPH05169582A (en) Production of laminated sheet
JPH04246883A (en) Printed wiring board
JPS63145006A (en) Manufacture of laminated board
JPH04352495A (en) Manufacture of multilayer printed wiring board
JPH11157009A (en) Manufacture of metal foil-clad laminated sheet