JPS58191426A - Semiconductor substrate - Google Patents

Semiconductor substrate

Info

Publication number
JPS58191426A
JPS58191426A JP7488882A JP7488882A JPS58191426A JP S58191426 A JPS58191426 A JP S58191426A JP 7488882 A JP7488882 A JP 7488882A JP 7488882 A JP7488882 A JP 7488882A JP S58191426 A JPS58191426 A JP S58191426A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
epitaxial growth
slip
epitaxial
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7488882A
Other languages
Japanese (ja)
Inventor
Yukinobu Tanno
丹野 幸悦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP7488882A priority Critical patent/JPS58191426A/en
Publication of JPS58191426A publication Critical patent/JPS58191426A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/167Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table further characterised by the doping material

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)

Abstract

PURPOSE:To inhibit the generation of a slip in case of epitaxial growth, and to improve the yield of a device by introducing an element, an atomic radius thereof is smaller than atoms constituting a semiconductor substrate and which is electrically more inactive than them, to the back of the semiconductor substrate. CONSTITUTION:When the element, the atomic radius thereof is small and which is electrically inactive, is introduced to the back of the semiconductor substrate, the back side is normally subject to compressive stress and the upper side is convexed on the heating of epitaxial growth in the semiconductor substrate. The convex results in an excellent contact state of a susceptor and the semiconductor substrate, and relaxes the unevenness of the temperature of the semiconductor substrate. The selection of the electrically inert element is undesirable because an impurity is redistributed to the surface side from the back of the semiconductor substrate on epitaxial growth and the electrical characteristics of an epitaxial layer change, but such a thing is not generated in an inert element. When the quantity of a dose, in which carbon and nitrogen are injected to the back of the substrate, and s slip generation rate seen after epitaxial growth are plotted, the more ions are injected at high concentration, the less the slip generation rate reduces.

Description

【発明の詳細な説明】 本発明はエピタキシャル成長に用いる半導体基板に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor substrate used for epitaxial growth.

半導体基板上に形成したシリコンエピタキシャル−は主
にバイポーラデバイスに用いられる。デバイスとしては
、所望の一岸、不純物一度であることはもらろんのこと
、その膜の均一性や結晶欠陥のない一品質のエピタキシ
ャル験が望まれる。
Silicon epitaxial layers formed on semiconductor substrates are mainly used for bipolar devices. As a device, it is desired that the epitaxial process not only be free of impurities, but also have uniform film quality and a high quality epitaxial structure free from crystal defects.

又シリコンエピタキシャルの成長方法には常圧法や減圧
法があシ、加熱方式としては尚周波加熱法中赤外線加熱
法等がある。さらにエピタキシャル城の結晶欠陥として
は積層欠陥、転位、微小欠陥エピタキシャルスリップ、
エピタキシャルマウンド等があシ、楡々の低減方法が提
案されて込る。
Further, silicon epitaxial growth methods include a normal pressure method and a reduced pressure method, and heating methods include a high frequency heating method, a mid-infrared heating method, and the like. Furthermore, crystal defects in epitaxial castles include stacking faults, dislocations, micro defects epitaxial slip,
A number of methods have been proposed to reduce the occurrence of burrs and burrs in epitaxial mounds.

本発明はII!ll絢波加熱法ticおいて大口径ウェ
ハ(4″〜51φ)11t用いた場合にデバイスの歩留
シ向上を制限する一曽因であるエピタキシャル成長時の
スリップ発生の抑1方法に関するものである。
The present invention is II! This invention relates to a method for suppressing the occurrence of slip during epitaxial growth, which is one of the major causes of limiting improvement in device yield when large-diameter wafers (4'' to 51φ) 11t are used in the 11-wave heating method.

1IhJliiI波加熱方式扛カーボンサセプタを加熱
し、その上のウェハを間接的に加熱するためにウニへ内
の!!直分布か不均一となシ、反り易くなりスリップが
主にウェハの周辺部から発生する。このスリラフ付近に
はエピタキシャル後のデバイス形成Φ友めの熱処理によ
り転位が鋳起され、デバイスの歩留多低下をもたらす等
の不利な点がある。
1IhJliiI wave heating method to heat the carbon susceptor and indirectly heat the wafer above it! ! If the wafer has a direct distribution or is not uniform, it will warp easily and slip will occur mainly from the periphery of the wafer. Dislocations are generated in the vicinity of this srill rough due to heat treatment during device formation after epitaxial formation, which has disadvantages such as a decrease in device yield.

しかるに、囲えば4−#φウェハの面方位の異な+−+ る(100)、(111)、(511)のそれぞれP 
 、P  、NN&板を遇び、岡バッチ処理のエピタキ
シャル成員を行い、エピタキシャルスリップの発生率ヲ
―ぺたところ、Pm&を用いた場合にのみO〜2x以内
0発生率で、他ノウエノs(P  、N  、N  )
の揚台にはその発生率i10〜20%であった。
However, if we enclose 4−
, P, NN& plates, Oka batch process epitaxial members were used, and the occurrence rate of epitaxial slip was found to be 0 within O~2x only when Pm& was used, and other Nouenos (P, N, N)
The incidence rate was 10-20% on the lifting platform.

又エピタキシャル成長前後のウェハの反シの変化を測定
したとζろP 基板(板厚〜500jJn)を用いたN
 エビ(〜10xm)の反夛は+5〜+l Oam+ 上に凸状になっていることが分9、一方NA板(板II
〜500Jm)t−用いたNzピ(〜10*m)の反9
は逆に一4°〜−8μm下に凸状になっていることが分
った。この場合P 基板のときにはb1原子よ1も原子
半IIO小さめボロンがドーピングされており、エピタ
キシャル成長後凸状になりウェハ内の温度の不均一を緩
和する方向に反)スリン+ プの発生を抑制できるものであろう。−万N 基板のと
きには、8点原子よりも原子半径の大きいアンチモンが
ドーパンFであシ、エピタキシャル成兼後反多が負に変
化し、ウェハ内の温健の不均一を増長する方向であり、
スリップが発生し易くなるものと考えられる。ちなみに
8ム原子の半径は1.321.ボロ□ンのそれは8.9
d、アンチモンOそれ紘1.591である。
We also measured the change in the wafer's surface resistance before and after epitaxial growth.
The repulsion of shrimp (~10xm) is +5~+l Oam+.
~500Jm) t-Nz pi (~10*m) anti-9
On the contrary, it was found that the shape was convex downward by -4° to -8 μm. In this case, the P substrate is doped with boron, which is one and a half atoms smaller than the b1 atom, and becomes convex after epitaxial growth, which can alleviate the temperature non-uniformity within the wafer and suppress the generation of slin+. It must be something. - 10,000 N In the case of a substrate, antimony with a larger atomic radius than the 8-point atom is doped with F, and after epitaxial formation, the antimony changes negatively, which tends to increase the thermal non-uniformity within the wafer.
It is thought that slips are more likely to occur. By the way, the radius of an 8m atom is 1.321. Boro□n's is 8.9
d, antimony O sorehiro 1.591.

本発明は上記の実験事実に基づいτなされえものである
The present invention has been made based on the above experimental facts.

+ P 基板を用いればスリップ発生の少ないクエ/1を慢
ることが上記の実験夢夾よ)+lJ明したが、しかるに
バイポーラデバイス用基鈑としてFiP  基板が用い
られている。上記の事実からもP 基板を用いたエピタ
キシャル成長した場合KFiスリップの発生が多いこと
も分った。
It was revealed in the above experiment that using a +P substrate results in Q/1 with less slippage, but FiP substrates are used as substrates for bipolar devices. From the above facts, it was also found that KFi slip occurs frequently when epitaxial growth is performed using a P substrate.

本発明では半導体基板の表面に半導体基板を構成する原
子よりその原子半径が小さく、かつ電気的に不活性な元
素を導入した半導体基板を用いエピタキシャル成長時の
スリップ発生【抑−しデバイスの歩留多向上を目的とす
るものである。
In the present invention, a semiconductor substrate having an atomic radius smaller than the atoms constituting the semiconductor substrate and an electrically inert element introduced into the surface of the semiconductor substrate is used to suppress the occurrence of slip during epitaxial growth. The purpose is to improve.

原子半径の小さい元素で且つ電気的に不活性表元素を半
導体基板の裏面に導入した場合、半導体基板は通常裏r
Ti糊が圧縮応力を受はエビタキシャこれはサセプタと
半導体基板との接触状態が良く&L半導体基板の温度の
不均一を緩和する。又電気的に活性なる元素を選べば、
エピタキシャル成長時に半導体基板の裏面から表IIK
不純物の再分布(オートドーピングという現象)が起L
エピタキシャル層の電気的特性が変化するため好ましく
ないが、不活性元素ではこのようなことは起きない。
When an element with a small atomic radius and an electrically inert surface element is introduced into the back surface of a semiconductor substrate, the semiconductor substrate is usually
The Ti glue receives the compressive stress due to the evitaxia, which provides good contact between the susceptor and the semiconductor substrate and alleviates non-uniformity in temperature of the semiconductor substrate. Also, if you choose an electrically active element,
From the back side of the semiconductor substrate to the front side IIK during epitaxial growth
Redistribution of impurities (a phenomenon called autodoping) occurs.
This is undesirable because it changes the electrical properties of the epitaxial layer, but this does not occur with inert elements.

以下に本発明の実施f/4について述べる。Implementation f/4 of the present invention will be described below.

4インチの(111)方位のP 基板を選び、悪処通基
板、基板のm面にボロンをその不純物111Kが〜10
  /−熱拡散したもの、炭翼又は窒素をイオン注入(
200kv、 〜0.5mrnlさ、ドーxli:lX
1G/−)L、そのピークamを〜107cdとしたも
のを用意する0以上の半導体基板をベルジャml(高周
波加熱方式)エピタキシャル膜にセットシ、残流量を7
5J/分として、その基板温度を〜1150cK保ちH
C1ガスエッチ/グを〜3分行う、つづいて基板層fを
〜1050℃に下げ8ムH4(100N)を〜500c
c/分?、−15分ノ成長テ〜lO声mのエピタキシャ
ル膜が成長する。上記の成長後の半導体基板をジルトル
エツチングを〜5分行i、ウェハ内のエビスリップを干
渉頗黴鏡で一定する。その結果、5mmx5mmのチッ
プを想定し、スリップが横切るチップは不良とし、その
ウェハ内でのスリップの面積占有率を採ると、無#&境
基板でti〜2ONの発生が見られ、他の基板層11#
lcボロン、炭素、窒素を導入したものは0−2X以内
であった。しかしボロンの場合にはエピタキシャル成長
時Klk面からのボロンが表面(エピタキシャルM)K
再分布(オートドーピングトモiう)が起プ、問題とな
夛、裏面のシール等の方法を採る必要かあり繁雑で一般
的でな込、しかし炭素、i!素等は電気的に不活性でエ
ピタキシャル成長中に何ら不都合を生じないことが実験
により分りえ。
A 4-inch (111) oriented P substrate is selected, and the impurity 111K is ~10 by adding boron to the m-plane of the substrate.
/-Ion implantation of thermally diffused material, carbon blades or nitrogen (
200kv, ~0.5mrnl, doxli:lx
1G/-)L with a peak am of ~107 cd. Set a semiconductor substrate of 0 or more on a Bellja ml (high frequency heating method) epitaxial film, and set the residual amount to 7.
5J/min and maintain the substrate temperature at ~1150cK.
Perform C1 gas etching for ~3 minutes, then lower the substrate layer f to ~1050°C and apply 8mm H4 (100N) to ~500°C.
c/min? , -15 minutes, an epitaxial film of about 10 m is grown. After the above-described growth, the semiconductor substrate is subjected to dilt etching for ~5 minutes, and the shrimp slip within the wafer is fixed using an interference mirror. As a result, assuming a 5mm x 5mm chip, a chip with a slip across it is considered defective, and when calculating the area occupation rate of the slip within the wafer, the occurrence of ti~2ON was observed on the non-#& border board, and on other boards. Layer 11#
Those into which lc boron, carbon, and nitrogen were introduced were within 0-2X. However, in the case of boron, boron from the Klk plane during epitaxial growth is transferred to the surface (epitaxial M) K
Redistribution (autodoping) occurs, which is a problem, and methods such as sealing on the back are necessary, which is complicated and common, but carbon, i! Experiments have shown that the element is electrically inactive and does not cause any problems during epitaxial growth.

閣は基板裏面に炭素及び窒素を打ち込んだドース量とエ
ビタ中シャル成長WkK見られるスリ、プ発生率をプロ
ットしたものであシ、高濃度にイオン注入したものほど
スリップ発生率が小さいことが分った。不純物をイオン
注入しそのドース量がlXl0  /ai(ピークm度
〜10  /cd)のと自エピタキシャルスリップはほ
ぼ〜oxであった。
The figure is a plot of the dose of carbon and nitrogen implanted into the backside of the substrate and the rate of occurrence of slips and slips observed during the growth of Evita. It was. When impurity ions were implanted at a dose of 1X10 /ai (peak m degrees ~10 /cd), the self-epitaxial slip was approximately ~ox.

本夷總鉤ではその基板方位が(111) jiKついて
説明したが、他のmTj、titsえば(Zoo)、(
511) [ついても同効果が得られることは紀すまて
もない。
In the case of Honyi Sohaku, we have explained that the substrate orientation is (111) jiK, but for other mTj, tits, (Zoo), (
511) [It is a shame that the same effect can be obtained even if it is attached.

以上Oように大口径ウェハを用いてエピタキシャル成長
を行なう場合に、温1分布の不均一による応力で発生す
るスリップを基板裏面に8に原子よりもその原子半径が
小さく、シかも電気的不活性な炭素、窒素等を高1)[
[導入すること虻よ〕抑制できるもので、バイポーラデ
バイスの高歩留〕を達成できる。
When epitaxial growth is performed using a large-diameter wafer as described above, slips caused by stress due to non-uniform temperature distribution may occur on the back surface of the substrate because the atomic radius is smaller than that of the atoms and there may be electrically inactive wafers. High carbon, nitrogen, etc. 1) [
By suppressing the introduction of flies, a high yield of bipolar devices can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

図は基板層aiにイオン注入した不純物のドース量ト、
エピタキシャル成長後のウェハのスリップ弛生率の関係
を示したもので、横軸は不純物のドース量、縦軸紘スリ
ップ発生率である。ムは不純物が炭素、8社窒素の場合
である。 本身(物のドースt  Ccm−2)
The figure shows the dose of impurities ion-implanted into the substrate layer ai.
This figure shows the relationship between the slip relaxation rate of a wafer after epitaxial growth, where the horizontal axis is the impurity dose and the vertical axis is the slip occurrence rate. Figure 8 shows the case where the impurities are carbon and nitrogen. Main body (mono dosu t Ccm-2)

Claims (1)

【特許請求の範囲】[Claims] シリコンエピタキシャル成長において、半導体In silicon epitaxial growth, semiconductor
JP7488882A 1982-05-04 1982-05-04 Semiconductor substrate Pending JPS58191426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7488882A JPS58191426A (en) 1982-05-04 1982-05-04 Semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7488882A JPS58191426A (en) 1982-05-04 1982-05-04 Semiconductor substrate

Publications (1)

Publication Number Publication Date
JPS58191426A true JPS58191426A (en) 1983-11-08

Family

ID=13560354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7488882A Pending JPS58191426A (en) 1982-05-04 1982-05-04 Semiconductor substrate

Country Status (1)

Country Link
JP (1) JPS58191426A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5617730A (en) * 1995-01-30 1997-04-08 Nippondenso Co., Ltd. Compressor control device for car air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5617730A (en) * 1995-01-30 1997-04-08 Nippondenso Co., Ltd. Compressor control device for car air conditioner

Similar Documents

Publication Publication Date Title
US4617066A (en) Process of making semiconductors having shallow, hyperabrupt doped regions by implantation and two step annealing
JP4117914B2 (en) Process for controlling dopant diffusion in a semiconductor layer and semiconductor layer formed thereby
EP0125260A1 (en) Solid phase epitaxy and regrowth process with controlled defect density profiling for heteroepitaxial semiconductor on insulator composite substrates.
WO1985002940A1 (en) Method for making a conductive silicon substrate and a semiconductor device formed therein
Kasahara et al. Capless anneal of ion‐implanted GaAs in controlled arsenic vapor
JPS588128B2 (en) Semiconductor device manufacturing method
US3208888A (en) Process of producing an electronic semiconductor device
EP0111085B1 (en) Ion implantation process for compound semiconductor
US20190221481A1 (en) Methods for Splitting Semiconductor Devices and Semiconductor Device
EP0750058B1 (en) Doping of crystalline substrates
JPS58191426A (en) Semiconductor substrate
KR102129190B1 (en) Method for manufacturing epitaxial wafer and epitaxial wafer
EP0431444A2 (en) Method of producing MIS transistor having gate electrode of matched conductivity type
JPH0658893B2 (en) Heat treatment method
JPH05251378A (en) Manufacture of semiconductor device
JPS63158836A (en) Manufacture of semiconductor element
JPH0367998B2 (en)
JPH0143454B2 (en)
JPS63116420A (en) Semiconductor substrate
JP2586625B2 (en) (III) —Method of manufacturing Group V compound semiconductor device
JPS607715A (en) Manufacture of compound semiconductor device
JPH01283919A (en) Plasma doping method
Moll et al. The effect of co-implantation on the electrical activity of implanted carbon in GaAs
JPH04357840A (en) Manufacture of semiconductor device
JPH0396223A (en) Forming method for soi structure