JPS58189309A - Nozzle for producing metallic powder - Google Patents

Nozzle for producing metallic powder

Info

Publication number
JPS58189309A
JPS58189309A JP7227182A JP7227182A JPS58189309A JP S58189309 A JPS58189309 A JP S58189309A JP 7227182 A JP7227182 A JP 7227182A JP 7227182 A JP7227182 A JP 7227182A JP S58189309 A JPS58189309 A JP S58189309A
Authority
JP
Japan
Prior art keywords
nozzle
hole
molten metal
injection
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7227182A
Other languages
Japanese (ja)
Inventor
Itsuo Onaka
大中 逸雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP7227182A priority Critical patent/JPS58189309A/en
Publication of JPS58189309A publication Critical patent/JPS58189309A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying

Abstract

PURPOSE:To produce uniform and fine metallic powder efficiently, by arraying a required number of very small holes linearly on the injection surface of a nozzle which injects molten metal. CONSTITUTION:Many injection ports 20 of a very small circular shape are arrayed linearly on the injection surface of a nozzle to form a circular perforated nozzle 19 in a nozzle for injection of molten metal to produce metallic powder. Or a slit type perforated nozzle 21 arrayed linearly with a required number of longitudinal slit holes 22 apart from each other is formed. The hole diameter of the ports 20 is set at about 0.1-2.0mm., the width of the slit holes 22 at about 0.2-2.0mm., the length of the holes at about 1-10mm. and the ratio beween the width and length of the holes at least about 1:5. If such nozzle is used, the molten metal which is cooled and solidified in a rotating liquid layer contacts with the liquid layer on the inside surface of a drum over a wide range under the same conditions without mutual interference and the uniform and fine metallic powder having good quality is obtained.

Description

【発明の詳細な説明】 本発明は、回転冷却液体中に溶融金属を噴射して金属粉
末を製造するのに使用する溶融金属噴射用のノズルに関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a molten metal injection nozzle used to produce metal powder by injecting molten metal into a rotating cooling liquid.

従来、溶融金属から金属粉末を製造する方法として、(
1)溶融金属ジェットに水ジェツトを衝突させる方法、
(2)溶融金属ジェットにガスジェットを衝突させる方
法、(3)溶融金属ジェットを静止水中に噴射する方法
、(4)溶融金属ジェットを回転固体に衝突させる方法
、(5)溶融金属に超音波や振動を作用させる方法など
が知られているが、これらの方法は、例えば(1)の方
法では高速の水ジェツトを得る手段が高価となり、かつ
装置も大型化し、さらに粒度の揃った粉末を得るのが困
難であり、(2)の方法ではガスの熱伝導率、比熱の関
係で溶融金属の冷却速度が遅くなり、組織の細かい粉末
、さらに非晶質金属粉末を得ることが難しく、又、(3
)(4)の方法では微細な金属粉末が得られず、(5)
の方法では冷却速度が遅くなると共に生産性が悪いなど
、夫々一長一短があり、冷却速度を早くし、より微細で
酸化の少ない均一な球状の金属粉末を得ることは容易で
はなかった。
Conventionally, as a method for producing metal powder from molten metal, (
1) A method of colliding a water jet with a molten metal jet,
(2) A method of colliding a gas jet with a molten metal jet, (3) A method of injecting a molten metal jet into still water, (4) A method of colliding a molten metal jet with a rotating solid, (5) A method of colliding a molten metal with an ultrasonic wave. For example, in method (1), the means to obtain a high-speed water jet is expensive, the equipment is large, and it is difficult to produce powder with uniform particle size. In method (2), the cooling rate of the molten metal is slow due to the thermal conductivity and specific heat of the gas, making it difficult to obtain powder with a fine structure and even amorphous metal powder. ,(3
) (4) method does not yield fine metal powder, and (5)
Each method has its advantages and disadvantages, such as slow cooling rate and poor productivity, and it was not easy to increase the cooling rate and obtain finer, uniform, spherical metal powder with less oxidation.

そのため、本発明者は、上述の如き状況に鑑み、その難
点を打開し、より良い金属粉末を工業的有利に、かつ経
済的に得るべく鋭意研究を重ね、その結果、回転液体層
中への溶−金属の噴射を試み、さきに回転するドラム内
に遠心力により液体層を形成し、その液体層中に溶融金
属を噴射供給して溶融金属を粉末化する方法を提案した
Therefore, in view of the above-mentioned situation, the inventor of the present invention has conducted extensive research in order to overcome the difficulties and obtain better metal powder industrially and economically, and as a result, has found that In an attempt to inject molten metal, we first proposed a method in which a liquid layer is formed by centrifugal force within a rotating drum, and molten metal is injected into the liquid layer to pulverize the molten metal.

第1図、第2図はかかる方法を実施するための装置例を
示しており、モータ(6)の回転軸(7)に固着された
ベルト車(8)、ベルト(9)、他方のベルト車(5)
を通じてモータ(6)の回転をベルト車(5)に伝え、
このベルト車(5)の回転により軸受(4)に支承され
た前記ベルト車(5)と同軸の回転軸(3)を介してド
ラム(1)を回転する。そして、このドラムの回転数が
所定の回転数に達したとき、水等の液体をドラム(1)
内面に注入すると、この注入された液体は遠心力により
ドラム内壁面に液体層を形成すると共に、流出防止板(
2)によりドラム(1)からの液体の流出は阻止される
。そこで次に基部筒(11)に上下動自在に設けられた
支持軸(財)、該支持軸(ロ)に水平方向に移動可能に
設けられた支持杆α→を夫々上下用ハンドル03)及び
水平用ハンドル(ロ)の操作により作動し、支持杆下端
に支持した溶融金属噴射装置06)をドラム(1)内、
所定の位置にセットし、噴射装置06)の噴射ノズル(
16)を通じて溶融金属ジェット07)を適当な速度で
液体層<10)中に噴射して金属粉末(ホ)を製造する
のである。
FIGS. 1 and 2 show an example of a device for implementing such a method, in which a belt pulley (8) fixed to a rotating shaft (7) of a motor (6), a belt (9), and the other belt car (5)
transmits the rotation of the motor (6) to the belt pulley (5) through
The rotation of the belt pulley (5) rotates the drum (1) via a rotating shaft (3) coaxial with the belt pulley (5), which is supported by a bearing (4). When the rotation speed of this drum reaches a predetermined rotation speed, liquid such as water is transferred to the drum (1).
When injected into the inner surface of the drum, the injected liquid forms a liquid layer on the inner wall surface of the drum due to centrifugal force, and the outflow prevention plate (
2) prevents liquid from flowing out of the drum (1). Therefore, next, the support shaft (goods) provided on the base cylinder (11) so as to be movable up and down, and the support rod α→ provided on the support shaft (b) so as to be movable in the horizontal direction, are respectively connected to the up and down handle 03) and It is activated by operating the horizontal handle (B), and the molten metal injection device 06) supported at the lower end of the support rod is inserted into the drum (1).
Set it in the predetermined position and press the injection nozzle (
A molten metal jet 07) is injected through 16) into the liquid layer <10) at an appropriate speed to produce metal powder (e).

ところで、かかる方法において、噴射装置06)からの
溶融金属の流出量は、噴射装置06)のノズル(16)
の孔径、加圧用の〃大圧力などによって主に調整され、
又、一方、製造される金属粉末の粒度分布。
By the way, in this method, the amount of molten metal flowing out from the injection device 06) is
It is mainly adjusted by the pore size, large pressure for pressurization, etc.
On the other hand, the particle size distribution of the metal powder produced.

形状、冶金組織は溶融金属の種類、冷却液体の種類と温
度、溶融金属ジェットの速度、ドラムの大く さと回転数、冷却液体層の周速度などに依存する。
The shape and metallurgical structure depend on the type of molten metal, the type and temperature of the cooling liquid, the speed of the molten metal jet, the size and rotational speed of the drum, the circumferential speed of the cooling liquid layer, etc.

そこで、本発明者は更にこれらの各因子について検討を
行ない、前記方法により粒度分布にすぐれ、かつ均一な
金属粉末を得る要因を考察した結果、先ず、噴射装置の
噴射ノズルの孔構成がそれら粒度分布の均一性に1つの
関連があることを知見した。
Therefore, the present inventor further investigated each of these factors, and as a result of considering the factors for obtaining uniform metal powder with excellent particle size distribution by the above method, firstly, the hole configuration of the injection nozzle of the injection device We found that there is one relationship with the uniformity of the distribution.

即ち、本発明はかかる知見にもとづいて提案するもので
あり、通常、試みられる噴射装置のノズル06)が第3
図に図示するような単一円形断面孔をもつノズルである
ことから、前記金属粉末の粒度分布、形状などに関連す
る因子の変動による影響を受は易く均一な粒度分布を得
難いのに着目し、微小孔が直線的に多数配列されたノズ
ルの孔構成を提供することを特徴とするものである。
That is, the present invention is proposed based on such knowledge, and normally the nozzle 06) of the injection device to be tried is the third one.
Since the nozzle has a single circular cross-sectional hole as shown in the figure, it is easily affected by fluctuations in factors related to the particle size distribution and shape of the metal powder, making it difficult to obtain a uniform particle size distribution. , is characterized in that it provides a nozzle hole configuration in which a large number of microholes are linearly arranged.

ここで、微小孔の孔断面形状は円形でも、又、縦長スリ
ット状でもよく、殊に前者の場合には、孔径は○、1〜
2.0胴程度、後者の場合には孔中(d)が0.2〜2
.0IDI程度、孔長缶)がl 〜l Oa程度で、孔
中(d)と孔長(h)の比は可及的1:5又はそれ以上
であることが望ましく、かつ最も実用的である。
Here, the pore cross-sectional shape of the micropore may be circular or vertically slit-shaped, and especially in the former case, the pore diameter is ○, 1 to 1.
About 2.0 barrel, in the latter case, the hole (d) is 0.2 to 2
.. It is desirable and most practical that the hole diameter (d) and hole length (h) be about 1:5 or more, with the hole length (d) and hole length (h) being about 1 to 1 Oa.

もとより、生産性を上げるためには、ノズル断面積が大
きい必要があるが、単一円孔ノズルで断面積を大きくす
ると、製造された粉末粒度も大きくなって決して好まし
くない。
Of course, in order to increase productivity, it is necessary to have a large nozzle cross-sectional area, but increasing the cross-sectional area with a single circular hole nozzle also increases the particle size of the produced powder, which is not at all desirable.

そこで、多孔ノズルとし、個々の噴射孔断面積を小さく
すれば生産性は同一でも、より微細な粉末が得られる。
Therefore, by using a multi-hole nozzle and reducing the cross-sectional area of each injection hole, finer powder can be obtained even though the productivity is the same.

しかも回転する液体層の全面に溶融金属を噴射すること
になり回転液体層の運動エネルギーをより有効に利用す
ることができる。
Moreover, since the molten metal is sprayed over the entire surface of the rotating liquid layer, the kinetic energy of the rotating liquid layer can be used more effectively.

しかし、唯、多孔とするからとは云え、無定見に不規則
配列をしたのではノズルから噴出された溶融金属ジェッ
トと、ジェットにより乱された液体との干渉や、ノズル
から噴射される溶融金属ジェット相互の干渉が起り、粒
度分布の均一性が阻害されることになる。
However, even though the holes are porous, if they are arranged irregularly, there may be interference between the molten metal jet ejected from the nozzle and the liquid disturbed by the jet, or the molten metal jet ejected from the nozzle. Mutual interference will occur and the uniformity of particle size distribution will be disturbed.

そのため、多孔ノズルの各微小孔は、その所要数が一直
線上にある如く、直線状配列とすることが肝要である。
Therefore, it is important that the micropores of the multi-hole nozzle are arranged in a linear manner so that the required number of micropores are aligned in a straight line.

そして、このように微小断面積の噴射孔を直線状に配列
することにより、このノズルによって微細な粉末をより
効率的に生産することができる。
By arranging the injection holes having a small cross-sectional area in a linear manner in this way, fine powder can be produced more efficiently using this nozzle.

なお、多孔ノズルにおける噴射孔の数はノズルの大きさ
を始め外部要因によって適宜選定され、殊に縦長スリッ
トの場合にはスリット孔中(d)の変化によっても粒度
分布が余り変化しない面があるので単一スリット孔でも
粒度分布面では影響は少ないがドラム内壁面に拡がる粒
度分布の均一化の面で問題があるので、縦長スリット孔
も、円形の噴射孔同様、僅かの間隔で直線状に配列する
Note that the number of injection holes in a multi-hole nozzle is appropriately selected depending on external factors including the size of the nozzle, and especially in the case of a vertical slit, the particle size distribution may not change much even if the inside of the slit hole (d) changes. Therefore, even a single slit hole has little effect on the particle size distribution, but there is a problem in making the particle size distribution uniform across the inner wall of the drum, so the vertical slit hole also has a straight line with small intervals, just like the circular injection hole. Arrange.

次に本発明ノズルの実施例を添付図面にもとづいて説明
する。
Next, embodiments of the nozzle of the present invention will be described based on the accompanying drawings.

第4図、第5図は、本発明ノズルの各実施例であり、第
4図0)←)には多数の微小円形の噴射孔(イ)を直線
状に配列した円形多孔ノズル09)が、又、第5図(イ
)(ロ)には、縦長スリット孔(22を間隔をおいてそ
の所要数を直線状に配列したスリット形多孔ノズルCυ
が夫々示されている。
Fig. 4 and Fig. 5 show respective embodiments of the nozzle of the present invention. 5(a) and 5(b) show a slit-type porous nozzle Cυ in which the required number of vertical slit holes (22) are arranged in a straight line at intervals.
are shown respectively.

この場合、円形噴射孔(ホ)をもつ円形多孔ノズル(1
9)と、スリット形多孔ノズル圓とはドラム内面の冷却
液体層に均一条件をもって噴射し易い点は同様であるが
、実験の結果、次の如きことが観察されている。
In this case, a circular multi-hole nozzle (1
9) and the slit-type porous nozzle ring are similar in that they can easily spray the cooling liquid onto the cooling liquid layer on the inner surface of the drum under uniform conditions, but the following has been observed as a result of experiments.

即ち、第6図は、直径0.22mの円形噴射孔を4個直
線状に配列したノズルと、直径0.5 fiの単一円孔
ノズルを用いて夫々噴射し、得られた各周速におけるF
θ−N1合金粉末の粒度分布を示したもので、前者則ち
本発明の場合を実線で、後者即ち単一円孔ノズル使用の
場合を一点鎖線で示す。
That is, Fig. 6 shows the circumferential speeds obtained by injecting using a nozzle with four circular injection holes each having a diameter of 0.22 m arranged in a straight line and a single circular hole nozzle having a diameter of 0.5 fi. F in
The particle size distribution of the θ-N1 alloy powder is shown with a solid line for the former case, that is, the case of the present invention, and a dashed line for the latter case, that is, the case where a single circular hole nozzle is used.

同図より明らかなように、本発明のノズルを使用すると
きは、周速20%において200μm以下の粒度分布を
もつ粉末が80%前後得られるのに対し、単一円孔ノズ
ル使用のものは24.97の周速でも60%程度しか得
られず、又、2001trn以内の粒度分布の粉末を9
0%以上得るのに本発明のノズルは31.71乙の周速
で充分であるが、単一円孔ノズルの場合には43.4−
の周速でも未だそれ以下しか得られないことが分る。
As is clear from the figure, when using the nozzle of the present invention, approximately 80% of the powder with a particle size distribution of 200 μm or less can be obtained at a circumferential speed of 20%, whereas the one using a single circular hole nozzle Even at a circumferential speed of 24.97, only about 60% was obtained, and powder with a particle size distribution within 2001 trn was
For the nozzle of the present invention, a circumferential speed of 31.71 is sufficient to obtain more than 0%, but in the case of a single circular hole nozzle, a circumferential speed of 43.4-
It can be seen that even at a circumferential speed of , it is still possible to obtain only less than that.

即ち、本発明のノズルは単一円孔ノズルに比較し、遥か
に粒度分布にすぐれた均一性良好な金属粉末を得ること
が理解される。
That is, it is understood that the nozzle of the present invention produces metal powder with a much better particle size distribution and better uniformity than a single circular hole nozzle.

次に第7図は縦長スリット形ノズルの孔中(第5図(d
))を種々変化(0,2B、0.44 、0.68+n
+++)させて溶融金属を噴射した場合の各周速におけ
る粒度分布に対する影響を図示したもので、スリット形
ノズルにあっては、スリット孔中の変化にょつても粒度
分布が余り変らないことが看取される。
Next, Figure 7 shows the inside of the vertical slit nozzle (Figure 5 (d)
)) with various changes (0,2B, 0.44, 0.68+n
This graph shows the effect on particle size distribution at each circumferential speed when molten metal is injected with taken.

しかし、第7図は単一のスリット孔であるため全般的に
粒度分布の均一性は周速との関係では前述の円孔による
本発明の場合より劣る。
However, since FIG. 7 shows a single slit hole, the uniformity of the particle size distribution is generally inferior to the case of the present invention using a circular hole described above in relation to the circumferential speed.

ところが前記円形多孔ノズルと同様、第5図のように間
隔をおいて微小スリット孔を配置した場合には、第6図
と同様な均一分布の良好な金属粉末が得られた。
However, similar to the circular porous nozzle, when the minute slit holes were arranged at intervals as shown in FIG. 5, metal powder with good uniform distribution as shown in FIG. 6 was obtained.

かくして、以上のような実験の結果から、次のようなこ
とも理解される。
Thus, from the results of the experiments described above, the following can be understood.

(1)  孔径とスリット巾の等しい円形噴射孔ノズル
と、スリット形ノズルでは、円形ノズルの方が微細な粉
末が得られる。
(1) Between a circular injection hole nozzle and a slit-shaped nozzle, both of which have the same hole diameter and slit width, the circular nozzle produces finer powder.

(2)  円形噴射孔ノズルでけ孔径が変化すると、得
られる粉末の粒度分布が変化するが、スリット形ノズル
ではスリットの孔中が多少変化しても粉末の粒度分布は
余り変化しない。
(2) When the hole diameter changes in a circular injection hole nozzle, the particle size distribution of the resulting powder changes, but with a slit-type nozzle, even if the inside of the slit changes somewhat, the particle size distribution of the powder does not change much.

(3)従ってノズルが操業中に浸食されない場合には、
円形噴射孔ノズルが有利であり、一方、浸食され易い場
合にはスリット形ノズルが有利である。
(3) Therefore, if the nozzle is not eroded during operation,
Circular orifice nozzles are advantageous, whereas slit-shaped nozzles are preferred in cases of easy erosion.

以上より明らかなように、本発明ノズルは、直線状に微
小孔を配列したことにより各噴射孔より噴射され、回転
液体層で冷却凝固される溶融金属は互いに干渉すること
がなく、夫々ドラム内面の液体層に広汎にわたり同条件
で接触し、単一孔ノズルに起り勝ちな変動が少なく、シ
かも、同時に複数の噴射孔より噴射されて生産量も増大
し、均一で微細な良品質の金属粉末を効率良く製造する
ことができる効果を奏する。
As is clear from the above, in the nozzle of the present invention, the fine holes are arranged in a straight line, so that the molten metal jetted from each injection hole and cooled and solidified in the rotating liquid layer does not interfere with each other, and the molten metal is It makes contact with the liquid layer over a wide area under the same conditions, reduces the fluctuations that tend to occur with single-hole nozzles, and can also be injected from multiple injection holes at the same time, increasing production yields and producing uniform, fine, high-quality metal. This has the effect of efficiently producing powder.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明ノズルを使用する金属粉末製造装置の概
観図、第2図は第1図A−A′線矢視断面図、第3図(
イ)(ロ)は通常の単一孔ノズル構成例の要部を示す断
面図及び正面図、第4図(イ)(ロ)及び第5図(1′
)(ロ)は何れも本発明ノズルの昔実施例を示し、前者
は円形多孔ノズル要部の断面図及び正面図、後者はスリ
ット形多孔ノズル要部の断面図及び正面図、第6図は本
発明円形多孔ノズルと単一円孔ノズルにおける周速の粒
度分布への影響を表わす図表、第7図は各種スリット形
ノズルにおける周速の粒度分布への影響を表わす図表で
ある。 (1)・・・・・・・回転ドラム。 (10)・・・・・・・液体層。 06)・・・・・・・噴射装置。 Qa5・・・・−・・噴射ノズル。 θ′7)・・・・・・・溶融金属。 09)・・・・・・・円形多孔ノズル。 (財)・・・・・・・円形噴射孔。 (2υ・・・・・・・スリット形多孔ノズル。 (2湯・・・・・・・縦長スリット孔。
Fig. 1 is a general view of a metal powder manufacturing apparatus using the nozzle of the present invention, Fig. 2 is a sectional view taken along the line A-A' in Fig. 1, and Fig. 3 (
A) (B) is a cross-sectional view and a front view showing the main parts of a typical single-hole nozzle configuration example, Fig. 4 (A) (B) and Fig. 5 (1'
) and (b) all show old examples of the nozzle of the present invention, the former is a sectional view and front view of the main part of a circular porous nozzle, the latter is a sectional view and front view of the main part of a slit-type porous nozzle, and FIG. FIG. 7 is a chart showing the effect of circumferential speed on particle size distribution in the circular multi-hole nozzle and single circular hole nozzle of the present invention, and FIG. 7 is a chart showing the effect of circumferential speed on particle size distribution in various slit-type nozzles. (1)・・・・・・Rotating drum. (10)...Liquid layer. 06)...Injection device. Qa5・・・・・・・Injection nozzle. θ'7)...... Molten metal. 09)・・・・・・Circular porous nozzle. (Foundation)......Circular injection hole. (2υ・・・・・・Slit-type multi-hole nozzle. (2υ・・・・・・Vertical slit hole.

Claims (1)

【特許請求の範囲】 1、 回転するドラム内壁面に層形成され、ドラムの回
転に伴なって回転する冷却液体層中に溶融金属を噴射し
、該溶融金属を粉末化するための前記溶融金属噴射用の
ノズルであって、その噴射面に所要数の噴射孔が直線状
に配列されて設けられていることを特徴とする金属粉末
製造用ノズル。 2、 噴射孔が円形孔である特許請求の範囲第1項記載
の金属粉末製造用ノズル。 8、 孔径が0.1〜2.0聾である特許請求の範囲第
2項記載の金属粉末製造用ノズル。 4、 噴射孔が縦長のスリット孔である特許請求の範囲
第1項記載の金属粉末製造用ノズル。 5、 スリット孔の孔中が0.2〜2.0101であり
、孔長が1〜101111で、孔中と孔長との比が少く
ともl:5である特許請求の範囲第4項記載の金属粉末
製造用ノズル。
[Claims] 1. The molten metal for injecting the molten metal into a cooling liquid layer formed on the inner wall surface of a rotating drum and rotating as the drum rotates, and for pulverizing the molten metal. 1. A nozzle for producing metal powder, which is a nozzle for producing metal powder, and is characterized in that a required number of injection holes are arranged in a straight line on its injection surface. 2. The nozzle for producing metal powder according to claim 1, wherein the injection hole is a circular hole. 8. The nozzle for producing metal powder according to claim 2, having a hole diameter of 0.1 to 2.0 mm. 4. The nozzle for producing metal powder according to claim 1, wherein the injection hole is a vertically elongated slit hole. 5. The slit hole has a hole diameter of 0.2 to 2.0101 mm, a hole length of 1 to 101111 mm, and a ratio of the hole diameter to the hole length of at least 1:5. Nozzle for manufacturing metal powder.
JP7227182A 1982-04-28 1982-04-28 Nozzle for producing metallic powder Pending JPS58189309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7227182A JPS58189309A (en) 1982-04-28 1982-04-28 Nozzle for producing metallic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7227182A JPS58189309A (en) 1982-04-28 1982-04-28 Nozzle for producing metallic powder

Publications (1)

Publication Number Publication Date
JPS58189309A true JPS58189309A (en) 1983-11-05

Family

ID=13484445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7227182A Pending JPS58189309A (en) 1982-04-28 1982-04-28 Nozzle for producing metallic powder

Country Status (1)

Country Link
JP (1) JPS58189309A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5547082A (en) * 1978-09-27 1980-04-02 Nippon Steel Corp Steel pipe joint
JPS5729505A (en) * 1980-06-27 1982-02-17 Battelle Dev Corp Preparation of solid particulate material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5547082A (en) * 1978-09-27 1980-04-02 Nippon Steel Corp Steel pipe joint
JPS5729505A (en) * 1980-06-27 1982-02-17 Battelle Dev Corp Preparation of solid particulate material

Similar Documents

Publication Publication Date Title
US3713479A (en) Direct chill casting of ingots
JPS6046845A (en) Manufacture of continuous strip of amorphous metal
GB1592256A (en) Continuously cast amorphous metal strip
US3881542A (en) Method of continuous casting metal filament on interior groove of chill roll
KR20180025260A (en) Apparatus and Method for Producing Alloy Powder by the Gas and Water Hybrid Process
JPH0436772B2 (en)
JPH0478391B2 (en)
JPS58189309A (en) Nozzle for producing metallic powder
JPH07102307A (en) Production of flaky powder material
JP2672036B2 (en) Method and apparatus for producing metal powder
US4719964A (en) Method for producing a metal wire
US11691195B2 (en) System, apparatus, and method for a direct chill casting cooling water spray pattern
JPS5947619B2 (en) Method for producing rapidly solidified material with irregular cross-sectional shape
JPH0713245B2 (en) Method and apparatus for producing acicular amorphous metal powder
JP2599177B2 (en) Metal wire manufacturing equipment
JPH06179070A (en) Method and device for jet molding of metal
JPS6038224B2 (en) Method and apparatus for producing wide thin strips directly from molten metal
JPH0462825B2 (en)
JPH11269510A (en) Metal powder manufacturing device
JPS63192803A (en) Apparatus and method for producing spherical metallic particle
RU2251471C1 (en) Installation for making metallic shots
JPH02247304A (en) Nozzle for pouring molten nd alloy
JPS6315055B2 (en)
KR20020052746A (en) Multi-layer Structure Spray Casting Device
JPS6360053A (en) Production of super rapidly cooled metal strip