JPS58186006A - Measuring method of co-ordinate projection component of object - Google Patents

Measuring method of co-ordinate projection component of object

Info

Publication number
JPS58186006A
JPS58186006A JP6868982A JP6868982A JPS58186006A JP S58186006 A JPS58186006 A JP S58186006A JP 6868982 A JP6868982 A JP 6868982A JP 6868982 A JP6868982 A JP 6868982A JP S58186006 A JPS58186006 A JP S58186006A
Authority
JP
Japan
Prior art keywords
axis
point
ordinate
coordinate
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6868982A
Other languages
Japanese (ja)
Inventor
Tomohiko Akuta
芥田 友彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP6868982A priority Critical patent/JPS58186006A/en
Publication of JPS58186006A publication Critical patent/JPS58186006A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To measure a position, dimensions and a shape of an object with high accuracy, by focusing an optical image of the object in each co-ordinate axial direction by means of a cylindrical lens. CONSTITUTION:When an object point A moves in a measuring range B, an optical image of the point A of each moment is formed on an objective lens 6 of an X-axis co-ordinate component detector 1, but only the Y-axis direction is compressed by a cylindrical lens 7, and momentarily, the image is formed secondarily at a position corresponding to an X-axis co-ordinate projecting position X1 of the point A, secondary image formation of the point A is detected by a one-dimensional photoelectric element 8, and the X-axis co-ordinate projection component is detected as an electric signal (x). In the same way, an electric signal (y) corresponding to a Y-axis co-ordinate component of the point A is detected by a Y-axis co-ordinate detector 2 having the cylindrical lens 7. The signals (x), (y) are inputted to a signal processing device 4, respectively, are subjected to such processings as a correcting operation of compression of the lens 6, a scale factor correcting operation, averaging of a detecting value, etc., and are outputted. The output is inputted to an output device 5, the point A is displayed and recorded, and also an operation of recognition of a shape, etc. of a high level, and information processing are executed.

Description

【発明の詳細な説明】 本発明は、物体の位置・寸法または形状を正確に求める
ために物体の2次元または3次元の座標投影成分を高精
度に測定する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of measuring two-dimensional or three-dimensional coordinate projection components of an object with high precision in order to accurately determine the position, size, or shape of the object.

従来、物体の座標投影成分の測定は、工業用−1− テレビジョンにおけるビジコンなどを用いた撮像管か、
2次元光ダイオードアレイなどのディジタル光電撮像素
子、またはシリコン光電素子による半導体装置検出器な
どによって物体の2次元座標投影酸分を測定し、3次元
の場合はこれらを2組使用して測定していた。しかし、
これらの装置は、いづれも測定精度を上げ難い欠点があ
った。例えば、撮像管は変更歪みにより少ない場合でも
1%程度の誤差を生じ、半導体装置検出器は1.5%程
度の非直線誤差を、また2次元光ダイオードアレイも構
成素子数が制限されるために分解能が低く、同程度の誤
差を免かれない。
Conventionally, the coordinate projection components of an object have been measured using an image pickup tube such as a vidicon in an industrial television.
The two-dimensional coordinate projection acid content of an object is measured using a digital photoelectric image sensor such as a two-dimensional photodiode array, or a semiconductor device detector using a silicon photoelectric element, and in the case of three-dimensional measurement, two sets of these are used for measurement. Ta. but,
All of these devices had the drawback that it was difficult to improve measurement accuracy. For example, an image pickup tube has an error of about 1% at the least due to change distortion, a semiconductor device detector has a non-linear error of about 1.5%, and a two-dimensional photodiode array has a limited number of components. The resolution is low and the same degree of error is inevitable.

本発明は上記の事情に鑑みてなされたもので、各座標軸
に対応する物体の光学像を円筒レンズを使用して各座標
軸方向に対して集束することにより、各座標軸に高分解
能の1次元光電素子の使用を可能とし、各座標投影成分
の光電機出信号を出力して、これらを処理・演算するこ
とにより、物体の位置・寸法または形状を高精度−2− に非接触測定する方法を提供するものである。
The present invention has been made in view of the above circumstances, and by focusing an optical image of an object corresponding to each coordinate axis in the direction of each coordinate axis using a cylindrical lens, a high-resolution one-dimensional photoelectric A method for non-contact measurement of the position, dimensions, or shape of an object with high accuracy by outputting photoelectric output signals of each coordinate projection component and processing and calculating them. This is what we provide.

まず、本発明を2次元的に適用した第1実施例について
説明する。例えば、陰極線管モニター上の輝点や、顕微
鏡・望遠鏡などの視野内対象物の位置や、車両・船舶・
航空機・ロケットなどの運輸機関や移動物の正確な位1
N評定もしくは移動軌跡の精密測定や、ざらには高分解
能の手書き文字・図形の自動読取りに適用される。
First, a first embodiment in which the present invention is applied two-dimensionally will be described. For example, bright spots on a cathode ray tube monitor, the position of objects within the field of view of a microscope or telescope, vehicles, ships, etc.
Accurate location of transportation facilities and moving objects such as aircraft and rockets1
It is applied to precision measurement of N ratings or movement trajectories, as well as automatic reading of high-resolution handwritten characters and figures.

第1図において、△は座標位置を測定すべき対象点を示
し、例えば、陰極線管モニター上の輝点や、顕微鏡・望
遠鏡などの視野内の対象物の光学像、あるいは車両・船
舶・航空機・「1ゲツトなどの移動物体どじ、輝点また
は暗点として背坦との輝度の差(以下コントラストと称
す)が大きいものとする。もしコントラストが小さい場
合には別途照明装置により対象点Δを照明するか、背光
照明により対象点Aを暗点の状態とするか、あるいは運
輸機関や移動物体は、赤外線フィルタヤ)赤外線領域光
電検出器のイフ1用によって熱源位置を対象点Aとして
捉える。Bは−3− 測定範囲たる2次元の測定範囲を示し、陰極線管モニタ
ーにあってはモニターの表示範囲を、顕微鏡・望遠鏡d
りるいは運輸機関や移動物体を対象どする場合は、その
観測光学系の視野範囲をカバーする範囲である。そして
1方向をX軸とし、これに直交する軸をY軸とする。対
象点Aは1個のみr複数個はないものとして対象点Aの
直交(X、Y)座標位置を測定する。1はX軸座標成分
検出器であり、第2図に示すように測定範囲Bを視野内
に包含する対物レンズ6と、円筒の軸がX軸に平行な円
筒レンズ7とによる結像の全範囲を光電検出面となるよ
うな位置に設置した、例えば光ダイオードアレイなどの
1次元光電素子8どから構成される。なお、10 は該
検出器のケース、8a、はリード線である。第1図にお
いて、2はY軸座標成分検出器であり、円筒レンズ7の
軸がY軸に平行に置かれている以外は、X軸座標成分検
出器1と全く同様に構成されている。4は信号処理装置
で各1次元光電素子8,8力目うの検出信号χ、yを−
4− 入力してこれらを処理・演算する。5は出力装置で、必
要に応じて信号処理装置4の出力を表示・記録し、また
は信号処理装置4よりもさらに高痕の計算・情報処理機
能を有づ。
In Figure 1, △ indicates a target point whose coordinate position is to be measured, such as a bright spot on a cathode ray tube monitor, an optical image of an object within the field of view of a microscope or telescope, or a vehicle, ship, aircraft, etc. A moving object, such as a bright spot or dark spot, is assumed to have a large difference in brightness from the dorsal surface (hereinafter referred to as contrast). If the contrast is small, a separate illumination device is used to illuminate the target point Δ. Alternatively, the target point A can be turned into a dark spot by backlighting, or in the case of transportation vehicles or moving objects, the heat source position can be captured as the target point A using an infrared filter (infrared filter) or an infrared region photoelectric detector. -3- Indicates the two-dimensional measurement range, which is the measurement range, and in the case of cathode ray tube monitors, the display range of the monitor is
When the target is a transportation vehicle or a moving object, the radius covers the field of view of the observation optical system. One direction is defined as the X axis, and the axis perpendicular to this is defined as the Y axis. The orthogonal (X, Y) coordinate position of the target point A is measured assuming that there is only one target point A and no multiple target points. Reference numeral 1 denotes an X-axis coordinate component detector, which detects the entire image formed by an objective lens 6 that includes the measurement range B in its field of view and a cylindrical lens 7 whose cylinder axis is parallel to the X-axis, as shown in FIG. It is composed of a one-dimensional photoelectric element 8 such as a photodiode array, etc., installed at a position where the range becomes a photoelectric detection surface. Note that 10 is a case of the detector, and 8a is a lead wire. In FIG. 1, 2 is a Y-axis coordinate component detector, which is constructed in exactly the same way as the X-axis coordinate component detector 1, except that the axis of the cylindrical lens 7 is placed parallel to the Y-axis. 4 is a signal processing device which converts the detection signals χ, y of each one-dimensional photoelectric element 8, 8-
4- Input and process/calculate these. Reference numeral 5 denotes an output device that displays and records the output of the signal processing device 4 as required, or has more sophisticated calculation and information processing functions than the signal processing device 4.

つぎに、本実施例の作用を説明する。第1図において、
対象点Aが測定範囲B内を移動すると、X軸座標成分検
出器1の対物レンズ6は測定範囲Bをその視野内にカバ
ーするので、各瞬間におりる対象点Aの光学像が対物レ
ンズ6にて結像されるが、該光学像は、X軸にその軸が
平行な円筒レンズ7によってX軸ど直角なY軸方向のみ
極めて圧縮されるので、瞬間的には対象点AのX軸座標
投影位置×1に相当する位置に2次的に結像され、該2
次結像位置に設置された1次元光電素子8によって輝点
または暗点として対象点△の2次結像が検出され、対象
点AのX軸座標投影成分OX1が電気信号χとして検出
される。全く同様にしてY軸にその軸が平行な円筒レン
ズ7を有するY軸座標成分検出器2によって対象点Aの
Y軸座標成分OY、に−5− 相当する電気信@yが検出される。よって、上記電気信
号χおよびyをそれぞれ信号処理装置4に入力して、そ
れぞれの対物レンズ6による圧縮の補正演算や、ディジ
タル検出の場合は必要に応じて1ビット当りの単位長を
定めるスケールファクタ補正演算や、信頼度向上のため
に多測定回数に対する検出値の平均化などの信号処理を
行なって出ノ〕する。信号処理装置4からの出力は出力
装置5に入力されて、対象点Aの測定目的に応じて表示
・記録またはさらに高度の例えば形状認識などの演算・
情報処理を施こされて有効利用される。以上の作用は各
瞬間について連続的に行なわれるので、対象点Aが静止
点である場合は勿論、移動点である場合には特定の瞬間
値のみならず移動軌跡としても測定が行なわれる。
Next, the operation of this embodiment will be explained. In Figure 1,
When the target point A moves within the measurement range B, the objective lens 6 of the X-axis coordinate component detector 1 covers the measurement range B within its field of view, so that the optical image of the target point A falling at each moment is reflected by the objective lens. 6, but the optical image is extremely compressed only in the Y-axis direction, which is perpendicular to the X-axis, by the cylindrical lens 7 whose axis is parallel to the X-axis. A second image is formed at a position corresponding to the axial coordinate projection position x 1, and the 2
A secondary image of the target point Δ is detected as a bright spot or a dark spot by the one-dimensional photoelectric element 8 installed at the next imaging position, and the X-axis coordinate projection component OX1 of the target point A is detected as an electrical signal χ . In exactly the same way, the electric signal @y corresponding to -5- is detected by the Y-axis coordinate component detector 2 having the cylindrical lens 7 whose axis is parallel to the Y-axis. Therefore, the electric signals χ and y are input to the signal processing device 4, and correction calculations for compression by the respective objective lenses 6 are performed, and in the case of digital detection, a scale factor is used to determine the unit length per bit as necessary. It performs signal processing such as correction calculations and averaging of detected values over multiple measurements to improve reliability. The output from the signal processing device 4 is input to the output device 5, and depending on the purpose of measuring the target point A, it can be displayed, recorded, or used for more sophisticated calculations such as shape recognition.
Information is processed and used effectively. Since the above-mentioned actions are performed continuously for each instant, when the object point A is a stationary point, of course, and when it is a moving point, the measurement is performed not only as a specific instantaneous value but also as a moving trajectory.

次に、文字や図形を画く際に自動的にその2次元座標成
分を読取る第1実施例の応用例について第3図に基づい
て説明する。同符号は同部品を示し、1はX軸座標成分
検出器、2はY軸−6− 範囲を示す。9はボールペンその他の筆記具、10は筆
圧を検知する感圧スイッチ、11は感圧スイッチの作動
により給電回路を閉じで点灯する例えばライトエミッテ
ィングダイオード(IEI))のような極小型のランプ
、12は筆記具9に内蔵される小型電池である。なお、
小型電池12に代えてリード線13により外部から給電
してランプ11の点灯用電源としてもよい。
Next, an application example of the first embodiment for automatically reading two-dimensional coordinate components when drawing characters or figures will be described with reference to FIG. The same symbols indicate the same parts, 1 indicates the X-axis coordinate component detector, and 2 indicates the Y-axis -6- range. 9 is a ballpoint pen or other writing instrument; 10 is a pressure-sensitive switch that detects writing pressure; 11 is an extremely small lamp such as a light-emitting diode (IEI) that lights up when the power supply circuit is closed by the operation of the pressure-sensitive switch; 12 is a small battery built into the writing instrument 9. In addition,
Instead of the small battery 12, power may be supplied from the outside through a lead wire 13 to serve as a power source for lighting the lamp 11.

その作動は、筆記具9にて文字(図上にては6字)や図
形を紙面たる測定範囲B内に画くと、筆圧により感圧ス
イッチ10が作動し、第1実施例における対象点△に相
当するランプ11が点灯4るので、その移動軌跡として
順次にX軸座標成分検出器1およびY軸座標成分検出器
2、信号処理装置4、出力装置5にて第1実施例と同様
に処理される。なお、文字・図形は逐次画かれるもので
あれば手書き・機械書きを問わずに書きながら同時にそ
の2次元座標成分を読取−7− ることができ、これらを磁気テープ・磁気ディスクなど
に記憶させておくことは勿論のこと、書くのを直ちに読
取ると同時に座標成分を遠隔電送した上で、逐次文字・
図形に再生することができるので、通常のファクシミル
などのように既に書き終った文字・図形や印刷物等を電
送する方式に比べて事務合即化面で有効に利用し得る。
Its operation is such that when characters (6 characters in the figure) or figures are drawn with the writing instrument 9 within the measuring range B on the paper, the pressure-sensitive switch 10 is activated by the pressure of the writing instrument, and the target point △ in the first embodiment is activated. Since the lamp 11 corresponding to the lamp 11 is turned on 4, the movement locus is sequentially detected by the X-axis coordinate component detector 1, the Y-axis coordinate component detector 2, the signal processing device 4, and the output device 5 in the same manner as in the first embodiment. It is processed. Note that as long as characters and figures are drawn sequentially, it is possible to read their two-dimensional coordinate components at the same time, regardless of whether they are written by hand or by machine, and these can be stored on magnetic tape, magnetic disks, etc. Of course, it is possible to immediately read what is written and at the same time transmit the coordinate components remotely, and then read the characters and characters one by one.
Since it can be reproduced as a figure, it can be used more effectively for expediting office work than a conventional facsimile, which transmits already written characters, figures, printed matter, etc. by electronic means.

なお、これらの場合、出力装置5の情報処理機能によっ
て文字・図形などの認識や判断などを行なうこともでき
る。
In these cases, the information processing function of the output device 5 can also be used to recognize and judge characters, figures, and the like.

次に対象点の3次元的な位置あるいは運動軌跡の測定に
ついて第2実施例を説明する。第4図は、直線または直
線に近似する形状の測定の対象物Cの静止中または任意
の方向へ移動中に遠隔位置・寸法またはその運動軌跡を
測定する目的に本発明を適用した実施例を示す。平面上
にて直交する軸をX軸・Y軸とし、X軸・Y軸とそれぞ
れ直交する方向をZ軸とする。第1実施例と同旬号は同
一部品を示し、1はX軸座標成分検出器、2はY軸座標
成分検出器、4は信−8− 号処理装置、5は出力装置である。3は7軸座標成分検
出器であり、円筒レンズ7の軸が7軸に平行に置かれて
いる以外は、X軸座標成分検出器1と全く同様に構成さ
れている。
Next, a second embodiment will be described regarding the measurement of the three-dimensional position or motion trajectory of the target point. FIG. 4 shows an embodiment in which the present invention is applied to the purpose of measuring the remote position, dimensions, or movement trajectory of an object C having a straight line or a shape approximating a straight line while it is stationary or moving in an arbitrary direction. show. Let the axes orthogonal on a plane be the X-axis and Y-axis, and let the direction orthogonal to the X-axis and Y-axis, respectively, be the Z-axis. The first embodiment and the same issue show the same parts; 1 is an X-axis coordinate component detector, 2 is a Y-axis coordinate component detector, 4 is a signal processing device, and 5 is an output device. Reference numeral 3 denotes a seven-axis coordinate component detector, which is constructed in exactly the same way as the X-axis coordinate component detector 1, except that the axis of the cylindrical lens 7 is placed parallel to the seven axes.

本実施例の作用を説明する。対象物Cは第1実施例にお
ける対象点Aに該当し、背景に対してコントラストのあ
る状態としである。対象物CのX軸、Y軸、Z軸方向の
座標投影成分は各瞬間ごとに第1実施例にて説明したと
同様に、それぞれX軸座標成分検出器1、Y軸座標成分
検出器2、および7軸座標成分検出器3によって検出さ
れ、それぞれ検出信号χ、y 、l どして信号処理装
置4に入力されて必要な信号処理・演算をされた後に出
力装置5に入ノjされて表示・記録またはさらに必要な
演算・情報処理が施こされる。かくして各瞬間における
対象物CのX軸、YIl!l!lJ3よびZ軸方向の座
標投影値が測定されるので、静止中は勿論、運動中の対
象物Cの位置・寸法または運動軌跡が測定される。
The operation of this embodiment will be explained. The object C corresponds to the object point A in the first embodiment, and is in a state of contrast with the background. The coordinate projection components of the object C in the X-axis, Y-axis, and Z-axis directions are detected at each moment by an X-axis coordinate component detector 1 and a Y-axis coordinate component detector 2, respectively, as explained in the first embodiment. , and are detected by the seven-axis coordinate component detector 3, and are input into the signal processing device 4 as detection signals χ, y, l, and subjected to necessary signal processing and calculations, and then input to the output device 5. Display/record or further perform necessary calculations/information processing. Thus, the X axis of object C at each instant, YIl! l! Since lJ3 and the coordinate projection value in the Z-axis direction are measured, the position/dimension or movement trajectory of the object C not only when it is stationary but also when it is in motion is measured.

−9− 次に本発明の第3実施例として3次元の物体の形状を非
接触にて短時間で、しかも高精度に測定し得る形状測定
装置の配置を第5図に示す。
-9- Next, as a third embodiment of the present invention, FIG. 5 shows the arrangement of a shape measuring device capable of measuring the shape of a three-dimensional object in a non-contact manner in a short time and with high precision.

従来、物体の3次元形状の測定には、触針による接触式
測定法、あるいは光切断測定法、焦点法、3角側聞法、
干渉縞投影法、七アレ縞測定法などの光学的非接触測定
法が用いられていた。しかし、接触式測定法は精度は上
げ易いが測定に長時間を要し、また上記の各種の光学的
非接触測定法は比較的短時間で測定できるが精度が低い
と言う欠点があった。
Conventionally, the three-dimensional shape of an object has been measured using a contact measurement method using a stylus, a light section measurement method, a focusing method, a trigonometric method,
Optical non-contact measurement methods such as interference fringe projection method and seven-area fringe measurement method were used. However, the contact measurement method can easily improve accuracy but requires a long time for measurement, and the various optical non-contact measurement methods described above have the drawback of being low in accuracy although measurements can be made in a relatively short time.

本実施例においては、対象物に走査的に投光した点の3
次元座標成分を各軸の座標投影成分検出器を使用して、
短時間にかつ従来よりも麹段に高精度の3次元形状測定
を行なうことを特徴としている。
In this example, three of the points scanned onto the object are
The dimensional coordinate components of each axis are calculated using a coordinate projection component detector,
It is characterized by being able to measure the three-dimensional shape of the koji stage in a shorter time and with higher precision than conventional methods.

図中にて、Dはたとえば生産加工用の型や模型などの3
次元形状を測定すべき対象物であり、その底面は平面を
なして測定台E]−に載置されている。14は光束走査
装置であり、たとえば−10− レーリ“−のような細い光束を水平および垂直方向、ま
たは渦巻状に走査して測定台E上の対象物りの表面を限
なく照射する。1はX軸座標成分検出器、2はY軸座標
成分検出器、3は7軸座標成分検出器、4は信号処理装
置、5は出力装置であり第2実施例ど同様である。そし
て1′はX軸座標成分検出器、2′はY軸座標成分検出
器、31は7軸座標成分検出器であり、光束走査装置1
4からの投光点がそれぞれ該当する各成分検出器1,2
.3の視野外となった場合にそれぞれ同−n能を果す。
In the figure, D is for example 3, such as a mold or model for production processing.
This is an object whose dimensional shape is to be measured, and the bottom surface thereof is flat and placed on a measuring table E]-. Reference numeral 14 denotes a beam scanning device, which scans a narrow beam, such as a -10-Leley beam, horizontally and vertically, or in a spiral pattern, and irradiates the surface of the object on the measuring table E without limit.1 1 is an X-axis coordinate component detector, 2 is a Y-axis coordinate component detector, 3 is a 7-axis coordinate component detector, 4 is a signal processing device, and 5 is an output device, which is the same as in the second embodiment. is an X-axis coordinate component detector, 2' is a Y-axis coordinate component detector, 31 is a 7-axis coordinate component detector, and the beam scanning device 1
Each component detector 1, 2 corresponds to the light emitting point from 4.
.. When out of the field of view of 3, each performs the same function.

次に本実施例の作用を説明する。Next, the operation of this embodiment will be explained.

測定台E上の対象物りに対して光束走査装置14によっ
て対象物りの底面を除く全表面を水平および垂直走査、
または渦巻状走査によって3次元的に隈なくレーザーな
どの細い光束を投光しつつ走査する。各投光点の直交座
標投影成分はそれぞれX軸座標成分検出器1,1  、
Y軸座標成分検出器2.2’  、Z軸座標成分検出器
3.3′ によって検出され、それぞれ検出器−11− 号χ、y 、z として信号処理装置4に入力されて各
瞬間における各投光点の直交3次元座標位置が測定され
、ざらに出ノj装置5に入力されて表示・記録または演
算・情報処理等が施こされる。光束走査装置14は測定
台F上の対象物りの全表面を隈なく投光走査するので、
各瞬間の投光点の各直交3次元座標投影成分伯をすべて
集積J−れば測定台E十の対象物りの見える部分の3次
元の形状が得られる。なお、必要に応じて光束走査装置
14を複数個設けて切替え使用することもできる。
Horizontally and vertically scans the entire surface of the object on the measuring table E except for the bottom surface of the object using the beam scanning device 14;
Alternatively, a spiral scan may be used to three-dimensionally scan the entire area while projecting a narrow beam of light such as a laser beam. The orthogonal coordinate projection component of each light projection point is determined by the X-axis coordinate component detectors 1, 1,
The signals are detected by the Y-axis coordinate component detector 2.2' and the Z-axis coordinate component detector 3.3', and are input to the signal processing device 4 as detector No. 11-x, y, and z, respectively. The orthogonal three-dimensional coordinate position of the light projection point is measured and roughly input to the output device 5 for display/recording or calculation/information processing. Since the beam scanning device 14 emits and scans the entire surface of the object on the measurement table F,
By integrating all the orthogonal three-dimensional coordinate projection component counts of the light projecting point at each instant, the three-dimensional shape of the visible part of the object on the measurement platform E can be obtained. Note that a plurality of beam scanning devices 14 may be provided and used selectively as necessary.

つぎに、3次元形状物体を1個の座標成分検出器を使用
してざらに高精度に測定しltJる第4実施例を第6図
の配置図について説明する。
Next, a fourth embodiment in which a three-dimensional shaped object is roughly measured with high accuracy using one coordinate component detector will be described with reference to the layout diagram of FIG. 6.

Fは3次元形状を測定すべき対象物であり、その底面は
平面とする。20は測定台であり、その」−面は水平面
をなし、その上に対象物[を載置して形状測定における
基準色となる。15は細い光束を発生する光源であり、
レーザーを使用するのが便利であるがレーザーに限定す
る−  12 − ものではない。16は回転多面鏡で細い光束を回転走査
する。17は回転多面鏡16を駆動するモータ、18は
モータ17したがって回転多面鏡16と同期して駆動さ
れ一定回転角ごとにパルスを発生するロータリエンコー
ダである。
F is an object whose three-dimensional shape is to be measured, and its bottom surface is a flat surface. Reference numeral 20 designates a measuring table, the surface of which is a horizontal surface, on which an object is placed and serves as a reference color for shape measurement. 15 is a light source that generates a narrow luminous flux;
Although it is convenient to use a laser, it is not limited to lasers. A rotating polygon mirror 16 rotates and scans a narrow beam of light. 17 is a motor that drives the rotating polygon mirror 16; 18 is a rotary encoder that is driven in synchronization with the motor 17 and therefore the rotating polygon mirror 16 and generates a pulse at every constant rotation angle.

19は平行走査鏡であり、回転多面鏡16によって回転
走査された細い光束を測定台20の上面に対し常に一定
角度eをもつように平行に揃えて投光するとともに、該
光束を一定の方向に走査するために、詰物円筒面状をな
している。
Reference numeral 19 denotes a parallel scanning mirror, which projects a thin beam of light that has been rotated and scanned by the rotating polygon mirror 16 in parallel to the top surface of the measuring table 20 so that it always has a constant angle e, and also directs the beam in a certain direction. It has a padded cylindrical surface shape for scanning.

この走査方向をY方向と称する。I−tlAは該平行走
査された細い光束が測定台20上に投射した光点(以下
投光点と称す)の直線状の軌跡を示す。Ll 線は対象
物Fがないと仮定した場合の投光点の軌跡で、L線ど一
直線をなす。L、、2曲線は該細い光束の対象物Fの表
面上への投光点の軌跡である。3o は対象物「をその
視野内に納めるように上方の一定位置に固定した7軸座
標成分検出器で第2実施例におけるZ軸座標成分検出器
と異なる点は、投光点の光学像を走査−13− (Y)方向に対してのみ微小幅に圧縮し、これど直角な
方向(X方向)に対しては等倍に撮像する円筒レンズ7
を備えており、すなはら第2実施例にお【ノるX軸座標
成分検出器1と同一の機能を有することである。そして
後記するようにX軸座標成分を検出することにより検出
信号2を発信する。21は測定台20をX方向に平行に
移動させるためのガイド、22は測定台20を微細に移
動させるだめの送りねじ、23は送りねじ22を回転さ
せるモータ、24はモータ23の回転したがって送りね
じ22の回転と同期して一定回転角ごとにパルスを発生
するロータリエンコーダである。4は信号処理装置であ
り、5は出力装置である。
This scanning direction is called the Y direction. I-tlA indicates a linear locus of a light point (hereinafter referred to as a light projection point) projected onto the measuring table 20 by the parallel-scanned thin beam. The Ll line is the locus of the light projection point assuming that there is no object F, and forms a straight line with the L line. The curve L, 2 is the locus of the point of projection of the thin beam onto the surface of the object F. 3o is a 7-axis coordinate component detector fixed at a fixed position above so as to keep the object within its field of view.The difference from the Z-axis coordinate component detector in the second embodiment is that it detects the optical image of the light projection point. Scanning-13- A cylindrical lens 7 that compresses the width to a minute width only in the (Y) direction and captures an image at the same magnification in the direction perpendicular to this direction (X direction).
It has the same function as the X-axis coordinate component detector 1 in the second embodiment. Then, as described later, a detection signal 2 is transmitted by detecting the X-axis coordinate component. 21 is a guide for moving the measuring table 20 in parallel to the X direction, 22 is a feed screw for finely moving the measuring table 20, 23 is a motor for rotating the feed screw 22, and 24 is a rotation of the motor 23, and thus a feed. This is a rotary encoder that generates pulses at every fixed rotation angle in synchronization with the rotation of the screw 22. 4 is a signal processing device, and 5 is an output device.

次に本実施例の作用について説明する。Next, the operation of this embodiment will be explained.

まづ、形状を測定すべき対象物Fを測定台20の水平面
上に設置し、通常レーザーを用いる細い光束の光源15
を点灯し、モータ17を駆動して回転多面鏡16を回転
させて細い光束を回転走査させるが、該光束は詰物円筒
面上の平−14= 行走査鏡19にて反射され、測定台20に対して一定角
度θをもって平行に投射されると共に一定のY方向に走
査される。測定台20は送りねじ22によって該走査方
向と直角なX方向に微動送りができるが、当初は細い光
束が対象物Fの手前の測定台20の水平面にのみ投光さ
れるような位置から起すノするようにモータ23に、よ
って調整しておく。測定台20したがって対象物FのX
方向の移動量は、モータ23と同期したロータリエンコ
ーダ24によって一定回転角ごとに発生するパルス列と
して信号処理装置4に入力される。かくして測定台20
のX方向への送りの進行によりY方向に走査される細い
光束が遂に対象物Fど交叉するようになるが、対象物F
の形状により第7図に示す投光点Pの測定台20に対す
る高さ、すなはちZ軸方向の寸法Zpが変化することと
なる。第7図において、対象物Fがないど仮定じた場合
の測定台20面−Eの投光点Q(LJ 線上)と、対象
物Fへの投光点P(L2曲線上)から下した垂直線と−
15− 測定台20上面との交点1」、との間の距111111
−I Qをfとすれば、 Zp=l−t、α。θ   ・・・・・・・・・(1)
となり、角eは細い光束の測定台20に対する投光角で
あり一定値である。θ−45°どすると、   tCL
nθ−1となり、 zP =1  ・・・・・・・・・・・・・・・・・・
(2)となる。では、細い光束が測定台20に投光した
点の軌跡の延長線L1線上のQ点と、投光点PのX軸へ
の投影点Hとの距11flC君である。Z軸座標成分検
出器3゜は、まづ軌跡]−線の位置を基準位置として検
出し、信号処理装置4に入力してこれを一時記憶してお
く。次いで、投光点軌跡し2曲線に相当する各投光点P
のX軸投影位置1−1を順次検出し信号処理装置4に入
力する。よって、該装置4に一時記憶された軌跡り線、
したがってその延長L1 線の位置Qと各投光点のX軸
投影位”置1」とを比較して、両位置間の距Mlの値か
ら対象物[への投光点Pの高さZpが求められる。した
がって、ある瞬間の投−16− 光点1〕のZ軸座標成分ZPは、(1,)式またはθ−
45°の場合は(2)式の信号処理を行なうように予め
設定した信号処理装置4によって決定される。他方、移
動する投光点Pの各瞬間のX軸座標成分はロークリエン
コーダ24により、同Y軸座標成分はロータリエンコー
ダ18により、一定回転角ごとのパルス数として変換さ
れてそれぞれ検出信号χ、yとして信号処理装M4に入
ツクされているから、対象物Fに対する投光点Pの各直
交軸(X、Y、Z)座標成分が求められ、送りねじ22
によるX軸方向の送りおよび細い光束のY軸方向の走査
によって測定台20上の対象物Fの上部の全表面は隈な
く走査されるので、対象物Fの形状が確定される。
First, the object F whose shape is to be measured is placed on the horizontal surface of the measuring table 20, and the light source 15, which emits a narrow beam of light using a laser, is used.
is turned on and the motor 17 is driven to rotate the rotary polygon mirror 16 to rotate and scan a thin beam of light, which is reflected by the plane scanning mirror 19 on the filled cylindrical surface and sent to the measuring table 20. It is projected parallel to the target at a constant angle θ and scanned in a constant Y direction. The measuring table 20 can be finely moved in the X direction perpendicular to the scanning direction by the feed screw 22, but initially from a position where a narrow beam of light is projected only onto the horizontal plane of the measuring table 20 in front of the object F. Adjust the motor 23 so that the The measuring table 20 and therefore the X of the object F
The amount of movement in the direction is input to the signal processing device 4 as a pulse train generated at every constant rotation angle by a rotary encoder 24 synchronized with the motor 23. Thus, the measuring platform 20
Due to the progress of feeding in the X direction, the thin beam of light scanned in the Y direction finally intersects the object F, but the object F
Depending on the shape, the height of the light projecting point P shown in FIG. 7 relative to the measuring table 20, that is, the dimension Zp in the Z-axis direction changes. In Fig. 7, assuming that there is no object F, the light projection point Q (on the LJ line) of the measuring table 20 surface-E and the light projection point P (on the L2 curve) to the object F are shown. Vertical line and -
15- Distance 111111 between the intersection point 1 and the top surface of the measuring table 20
-I If Q is f, then Zp=lt, α. θ・・・・・・・・・(1)
The angle e is the projection angle of the narrow light beam onto the measuring table 20 and is a constant value. When θ-45° is turned, tCL
nθ-1, zP = 1 ・・・・・・・・・・・・・・・・・・
(2) becomes. Here, the distance between point Q on the extension line L1 of the locus of the point where the thin beam of light is projected onto the measuring table 20 and the projection point H of the projection point P onto the X axis is 11flC. The Z-axis coordinate component detector 3° first detects the position of the locus]- line as a reference position, and inputs it to the signal processing device 4 to temporarily store it. Next, each light projecting point P corresponding to two curves is determined by the light projecting point locus.
The X-axis projected positions 1-1 of the image data are sequentially detected and input to the signal processing device 4. Therefore, the trajectory line temporarily stored in the device 4,
Therefore, by comparing the position Q of the extension L1 line with the X-axis projection position "Position 1" of each light projection point, the height Zp of the light projection point P toward the object is determined from the value of the distance Ml between the two positions. is required. Therefore, the Z-axis coordinate component ZP of the projected light spot 1 at a certain moment can be expressed by equation (1,) or θ-
In the case of 45°, the determination is made by the signal processing device 4 which is preset to perform the signal processing of equation (2). On the other hand, the X-axis coordinate component at each moment of the moving light projection point P is converted by the rotary encoder 24, and the Y-axis coordinate component is converted by the rotary encoder 18 as the number of pulses per constant rotation angle, and the detection signals χ, y is entered in the signal processing device M4, the orthogonal axes (X, Y, Z) coordinate components of the light projection point P with respect to the object F are determined, and the feed screw 22
The entire surface of the upper part of the object F on the measurement table 20 is thoroughly scanned by the feeding in the X-axis direction and the scanning in the Y-axis direction of the thin light beam, so that the shape of the object F is determined.

さらに必要により出力装置5にて表示・記録または演算
・情報処理される。なお、対象物Fの全表面への投光走
査、すなはち形状測定時間の短縮のため、あるいは対象
物Fの形状により1方向のみからの投光走査だけでは全
表面の投光走査を行ない難い場合には、複数個の投光走
査−17− 装置とこれに応する個数のX軸座標成分検出器を設置す
るとよい。
Furthermore, if necessary, the output device 5 displays, records, calculates, and processes the information. Note that in order to scan the entire surface of the object F, in other words, to shorten the shape measurement time, or depending on the shape of the object F, it is not possible to scan the entire surface of the object F by projecting light from only one direction. If this is difficult, it is advisable to install a plurality of light projection scanning devices and a corresponding number of X-axis coordinate component detectors.

本実施例においては、X軸およびY軸の各座標成分値の
検出に高分解能のロータリエンコーダを使用し得るため
に第3実施例に比べてさらに高精度が得易いし、かつ投
光走査装置と座標成分検出器とを複数組使用して分割測
定することにより測定時間を短縮して迅速・高精度の形
状測定を非接触にてなし得る。
In this embodiment, since a high-resolution rotary encoder can be used to detect each coordinate component value of the X-axis and Y-axis, it is easier to obtain higher accuracy than in the third embodiment, and the light projection scanning device By performing divided measurements using multiple sets of coordinate component detectors and coordinate component detectors, measurement time can be shortened and shape measurements can be performed quickly and with high precision without contact.

なお、第4実施例においてはY方向の走査は駆動円筒面
状の平行走査鏡19によって細い光束を平行に揃えて走
査するようにしたが、平行走査鏡19を省略して直接回
転多面鏡16によって細い光束を円弧状に走査して測定
を行ない、得られた測定値を出力装置5によって円弧状
走査データを直線走査データに変換してもよい。
In the fourth embodiment, scanning in the Y direction is performed by aligning narrow light beams in parallel using a driving cylindrical parallel scanning mirror 19, but the parallel scanning mirror 19 is omitted and a rotating polygon mirror 16 is used instead. The measurement may be performed by scanning a thin beam of light in an arc shape, and the output device 5 may convert the arc scan data into linear scan data.

また、測定台20のX方向移動量は、モータ23の回転
角をロータリエンコーダ24によるパルスによって検出
するようにしたが、ロークリエンコーダ24を省略して
測定台20に通常の−18− 光学式または磁気式などの微小変位検出器を設置して、
測定台20の移動帛を直接検出するようにしてもよい。
Furthermore, the amount of movement of the measuring table 20 in the X direction is detected by the rotation angle of the motor 23 using pulses from the rotary encoder 24, but the rotary encoder 24 is omitted and the measuring table 20 is replaced with a normal -18- optical Or, install a magnetic type or other minute displacement detector.
The moving piece of the measuring table 20 may be directly detected.

なお、第3実施例にお【プる対象物1〕・第4実施例に
a5りる対象物Fの底面は平面としたが、該底面が平面
でない場合には、まづ上面のみを測定し、しかる後に裏
返して同様に底面部分を測定することによって対象物F
または[)の形状を決定でき、まlζ、第3実施例J3
よび第4実施例においてそれぞれ対象物D a3 J、
び同「の全表面を隅な(投光走査するようにしたが、対
象物りおよび同Fが連続的な形状の場合は適宜な間隔で
1ナンプリング測定してもよいことは勿論である。
Note that the bottom surface of [object 1] in the third embodiment and the object F in a5 in the fourth embodiment is a flat surface, but if the bottom surface is not flat, first measure only the top surface. Then, turn the object F over and measure the bottom part in the same way.
Or the shape of [) can be determined, ζ, Third Example J3
and in the fourth example, the object D a3 J,
Although the entire surface of the object is scanned by projecting light from every corner, it goes without saying that if the target object and the object F have a continuous shape, one numbering measurement may be performed at appropriate intervals.

本発明に係る物体の座標投影成分の測定は、物体と背頽
どの間に=1ントラス1へを形成し、座標軸に対応して
物体の光学像を躍録する光学装置と軸方向が選択された
座標軸に平行な円筒レンズにより物体の光学像を該座標
軸に対して集束する光学装置と該光学装置により集束し
て撮−19− 像された物体の光学像位置に設置した1次元光電素子よ
りなる座標成分検出器を少(とも1個使用してなされる
ので、物体の2次元または3)次元の座標投影成分の検
出を最終的にはそれぞれ1次元的な光電検出どなし1q
る。このため光電索子どしては容易に人手できる既製の
1次元の光ダイオードアレイのような比較的安価で20
00ビット以−トの高分解能が得られる光電素イを使用
できるので、高精度にしてかつ迅速に物体の座標投影成
分の測定がなされる。
The measurement of the coordinate projection components of an object according to the present invention is performed by forming a truss between the object and the back of the neck, and selecting an optical device and an optical device that records an optical image of the object in correspondence with the coordinate axes. An optical device that focuses an optical image of an object on the coordinate axis using a cylindrical lens parallel to the coordinate axis, and a one-dimensional photoelectric element installed at the optical image position of the imaged object. Since this is done using a small number (at least one) of coordinate component detectors, the detection of the two-dimensional or three-dimensional coordinate projection components of the object is ultimately performed using one-dimensional photoelectric detection, etc.
Ru. For this reason, photoelectric cables are relatively inexpensive, such as ready-made one-dimensional photodiode arrays that can be easily made by hand.
Since a photoelectric element capable of obtaining a high resolution of 00 bits or more can be used, the coordinate projection components of an object can be measured quickly and with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る物体の座標投影成分測定方法を2
次元測定に適用した場合の第1実施例の各装置の配置図
、第2図は本発明に使用される座標成分検出器の概略#
4造図、第3図は第1実施例を文字や図面を画く場合に
適用した応用例の説明図、第4図は本発明に係る物体の
座標投影成分測定方法を3次元測定に適用した場合の第
2実施例の各装置の配置図、第5図は本発明に係る物体
の形状を測定する第3実施例の−20− 各装置の配置図、第6図は本発明に係る物体の形状を測
定する第4実施例の各装置の配置図、第7図は物体への
投光点高さを求める説明図である。 1.1′  ・・・・・・X軸座標成分検出器1d・・
・・・・・・・・・・ケース 2.2 ・・・・・・Y軸座標成分検出器3.3’、3
0 ・・・Z軸座標成分検出器4・・・・・・・・・・
・・・・・借上処理装置5 ・・・ ・・・ ・・・ 
・・・ ・・・ 出 ノコ 装 f「6・・・・・・・
・・・・・・・・対物レンズ7・・・・・・・・・・・
・・・・円筒レンズ8・・・・・・・・・・・・・・・
1次元光電素子9・・・・・・・・・・・・・・・筆記
具10・・・・・・・・・・・・・・・感圧スイッチ1
1・・・・・・・・・・・・・・・ランプ12・・・・
・・・・・・・・・・・電池8d、13・・・リード線 14・・・・・・・・・・・・・・・光束走査装置15
・・・・・・・・・・・・・・・光源−21− 16・・・・・・・・・・・・・・・回転多面鏡17.
23・・・・・・モータ 18.271・・・・・・ロータリ1ンコーダ19・・
・・・・・・・・・・・・・平行走査鏡E、20・・・
・・・測定台 21・・・・・・・・・・・・・・・ガイド22・・・
・・・・・・・・・・・・送りねじA・・・・・・・・
・・・・・・・測定の対象点B・・・・・・・・・・・
・・・・測定範囲C,D、F・・・(測定の)対象物 −22− 力1 図 南2図 七 3 圀 7174  回 士51¥1 ん7 口 手続補正書(自利 昭和57年 7月30日 特許庁長官 若杉和夫 殿 1、事件の表示 昭和57年  特許願 第68689@2、発明の名称 物体の座標投影成分の測定方法 3、補正をする者 事件との関係  特許出願人 カワシ〜 し り マ ウ オ・ソYマ住所  神奈川
県用崎市多摩区細山 4、代理人 〒166 住所  東京都杉並区梅里 5、補正により増加する発明の数  O7、補正の内容 明細出用4頁16行「る。」と「第1図において、[ど
の間に、「対物レンズ6は、図示の如き凸レンズのばか
円筒の軸が円筒レンズ7の軸と直角な長焦点の円筒レン
ズが使用される。」を加入する。 −2−
FIG. 1 shows two methods for measuring coordinate projection components of an object according to the present invention.
A layout diagram of each device in the first embodiment when applied to dimensional measurement, and FIG. 2 is a schematic diagram of the coordinate component detector used in the present invention.
4. Fig. 3 is an explanatory diagram of an application example in which the first embodiment is applied to drawing characters and drawings, and Fig. 4 is an illustration in which the method for measuring coordinate projection components of an object according to the present invention is applied to three-dimensional measurement. FIG. 5 is a layout diagram of each device in the second embodiment of the present invention, FIG. 5 is a layout diagram of each device in the third embodiment for measuring the shape of an object according to the present invention, and FIG. FIG. 7 is an explanatory diagram for determining the height of a light projection point on an object. 1.1'...X-axis coordinate component detector 1d...
......Case 2.2 ...Y-axis coordinate component detector 3.3', 3
0...Z-axis coordinate component detector 4...
・・・・Rental processing device 5 ・・・ ・・・ ・・・
... ... Exit saw f"6...
・・・・・・・・・Objective lens 7・・・・・・・・・・・・
・・・Cylindrical lens 8・・・・・・・・・・・・・・・
One-dimensional photoelectric element 9...Writing instrument 10...Pressure-sensitive switch 1
1... Lamp 12...
......Battery 8d, 13...Lead wire 14......Light flux scanning device 15
・・・・・・・・・・・・・・・Light source-21- 16・・・・・・・・・・・・Rotating polygon mirror 17.
23...Motor 18.271...Rotary 1 encoder 19...
・・・・・・・・・・・・Parallel scanning mirror E, 20...
...Measurement stand 21...Guide 22...
・・・・・・・・・・・・Feed screw A・・・・・・・・・
・・・・・・Measurement target point B・・・・・・・・・・・・・・・
...Measurement range C, D, F...(Measurement) object -22- Force 1 Figure South 2 Figure 7 3 Koku 7174 Kaishi 51 yen 1 N7 Oral procedure amendment (Jiri 1982) July 30th Japan Patent Office Commissioner Kazuo Wakasugi 1, Indication of the case 1982 Patent Application No. 68689 @ 2, Title of the invention Method for measuring the coordinate projection components of an object 3, Person making the correction Relationship with the case Patent applicant Kawashi ~ Shiri Ma O So Y Ma Address 4 Hosoyama, Tama-ku, Yozaki City, Kanagawa Prefecture Agent 166 Address 5 Umesato, Suginami-ku, Tokyo Number of inventions increased by amendment O7, Details of contents of amendment published page 4 In line 16, ``Ru.'' and ``In Figure 1, ``The objective lens 6 is a convex lens as shown in the figure. -2-

Claims (1)

【特許請求の範囲】[Claims] 物体の2次元または3次元の座標投影成分の測定におい
て、物体と背影との間にコントラストを形成し、座標軸
に対応して物体の光学像を撮像する光学装置と軸方向が
選択された座標軸に平行な円筒レンズにより物体の光学
像を該座標軸に対して集束する光学装置と該光学装置に
より集束して搬像された物体の光学像位置に設置した1
次元光電素子とによりなる座標成分検出器を少くとも1
個使用することを特徴とする物体の座標投影成分の測定
方法。
In the measurement of two-dimensional or three-dimensional coordinate projection components of an object, an optical device that forms a contrast between the object and the back shadow and captures an optical image of the object corresponding to the coordinate axes and an axial direction aligned with the selected coordinate axes is used. An optical device that focuses an optical image of an object onto the coordinate axis using a parallel cylindrical lens, and an optical device installed at the position of the optical image of the object focused and transported by the optical device.
At least one coordinate component detector consisting of a dimensional photoelectric element
A method for measuring coordinate projection components of an object, characterized in that the method uses:
JP6868982A 1982-04-26 1982-04-26 Measuring method of co-ordinate projection component of object Pending JPS58186006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6868982A JPS58186006A (en) 1982-04-26 1982-04-26 Measuring method of co-ordinate projection component of object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6868982A JPS58186006A (en) 1982-04-26 1982-04-26 Measuring method of co-ordinate projection component of object

Publications (1)

Publication Number Publication Date
JPS58186006A true JPS58186006A (en) 1983-10-29

Family

ID=13380963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6868982A Pending JPS58186006A (en) 1982-04-26 1982-04-26 Measuring method of co-ordinate projection component of object

Country Status (1)

Country Link
JP (1) JPS58186006A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60219504A (en) * 1984-04-12 1985-11-02 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Measuring device for height of circuit element on substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60219504A (en) * 1984-04-12 1985-11-02 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Measuring device for height of circuit element on substrate

Similar Documents

Publication Publication Date Title
US6094269A (en) Apparatus and method for optically measuring an object surface contour
JP3511450B2 (en) Position calibration method for optical measuring device
CN108225190B (en) Measuring system
JPS60185108A (en) Method and device for measuring body in noncontacting manner
JP2003117778A (en) Precision measurement device for machine tool
JP4743598B2 (en) Equipment for observing and measuring the surface shape of objects
JP3817640B1 (en) 3D shape measurement system
JP2003285249A (en) Accuracy analyzing device for machine tool
JP6702343B2 (en) Shape measuring device, structure manufacturing system, and shape measuring method
JPS58186006A (en) Measuring method of co-ordinate projection component of object
JP2009258135A (en) Three-dimensional measuring device
JP2005172610A (en) Three-dimensional measurement apparatus
JP2987540B2 (en) 3D scanner
JP2008032496A (en) Optical measuring device
JP3324367B2 (en) 3D input camera
JPH07113534B2 (en) Precision contour visual measurement method and device
JPS6055211A (en) Contactless three-dimensional measuring device
GB2157419A (en) Optical sensor for for use in controlling a robot
JPH0560529A (en) Height measuring device
JP3027674B2 (en) Laser emission angle detection method
JPH08105721A (en) Method and apparatus for measuring distance
JP2731681B2 (en) 3D measurement system
JP2018119817A (en) Shape measurement device and shape measurement method
JPS63108207A (en) Method and device for measuring sectional shape
JP2002040352A (en) Scanner and three-dimensional measuring device