JPS58185956A - Electronic speed controller for engine - Google Patents

Electronic speed controller for engine

Info

Publication number
JPS58185956A
JPS58185956A JP6706882A JP6706882A JPS58185956A JP S58185956 A JPS58185956 A JP S58185956A JP 6706882 A JP6706882 A JP 6706882A JP 6706882 A JP6706882 A JP 6706882A JP S58185956 A JPS58185956 A JP S58185956A
Authority
JP
Japan
Prior art keywords
speed
differential
value
crankshaft
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6706882A
Other languages
Japanese (ja)
Other versions
JPH0451660B2 (en
Inventor
Toshio Suzuki
俊夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP6706882A priority Critical patent/JPS58185956A/en
Publication of JPS58185956A publication Critical patent/JPS58185956A/en
Publication of JPH0451660B2 publication Critical patent/JPH0451660B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D31/00Use of speed-sensing governors to control combustion engines, not otherwise provided for
    • F02D31/001Electric control of rotation speed
    • F02D31/002Electric control of rotation speed controlling air supply

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To check any influence attributable to speed variations in a crankshaft as well as to improve the responsive speed of control, by finding a differential compensation value in accordance with a difference between a speed signal prior to two turns of the crankshaft and a speed signal at a certain point of time. CONSTITUTION:This controllr is provided with two elements, that is, a speed detection circuit 20 which finds the time required for one rotation of the crankshaft of an engine 10, namely, a counting value serving as a speed signal out of a period and a differential operation part 30 which finds a difference in a calculating value between a certain period and such a period as prior to two cycles, namely, a differential compensation value D on the basis of a difference in engine speeds. Also it is provided with an error operation part 50 calculating an error Y between the actual revolving speed and the desired speed. And, this controller is constituted so as to perform the following functions that it adds a proportional compensation value P made up of multiplying the said error Y by a coefficient K2 with a multiplier 62 to the said differential compensation alue D with an adder 80 and further transmits the value given by adding an integral compensation value I at an integral operation part 70 with an adder 82 to a throttle control part 90 to control the opening of a throttle valve 14.

Description

【発明の詳細な説明】 本発明は、レシプロ式エンジンの回転速度を一定に保ち
、特にその回転変動量を減少させることができる電子式
速度制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electronic speed control device capable of keeping the rotational speed of a reciprocating engine constant and, in particular, reducing the amount of rotational fluctuation.

レシプロ式エンジンを用いた発電機などでは、その用途
によっては高い周波数精度を必要とする場合がある。こ
の場合はエンジン回転速度を高い精度で一定に保つ必要
があり、また急激な負荷変動に対しても速やかに一定回
転速度に安定することが要求される。
Generators using reciprocating engines may require high frequency accuracy depending on their use. In this case, it is necessary to keep the engine rotational speed constant with high precision, and it is also required to quickly stabilize the engine rotational speed to a constant rotational speed even in response to sudden load changes.

電子式速度制御装置として従来より、エンジンのクラン
ク軸の回転により多数のパルス信号を発生させ、このパ
ルス信号の周波数をF / Vコンバータによって電圧
信号Gこ変換17、この電圧信号を一定に保つようにし
たアナログ式速度制御装置が知られている。この種のア
ナログ式のもので、制御精度および負荷変動時の応答速
度を向上させるためには、クランク軸の1回転あたりの
パルス信号数を増加させることが必要である。しかし単
気筒エンジン等、気筒数の少ないエンジンでは、クラン
ク軸の1回転内での速度変動が大きい。すなわち圧縮行
程では速度が低下し、また爆発行程では速度が増加する
からである。前記した負荷変動時の応答速度を向−卜さ
せるためGこは微分補償量を増やすことが望ましいが、
前記したようにクランク軸1回転内の速度変動が大きい
とハンチングが発生して動作が不安定になり易く、微分
補償を有効に加えることが困難であった。このため前記
応答速度を犠牲にして速度制御を行なわねばならなかっ
た。
Conventionally, as an electronic speed control device, a large number of pulse signals are generated by the rotation of the engine crankshaft, the frequency of these pulse signals is converted to a voltage signal G by an F/V converter, and this voltage signal is kept constant. An analog speed control device is known. In order to improve control accuracy and response speed during load fluctuations with this type of analog type, it is necessary to increase the number of pulse signals per revolution of the crankshaft. However, in engines with a small number of cylinders, such as a single-cylinder engine, speed fluctuations within one rotation of the crankshaft are large. That is, the speed decreases during the compression stroke, and the speed increases during the explosion stroke. In order to improve the response speed during load fluctuations mentioned above, it is desirable to increase the amount of differential compensation.
As described above, if the speed fluctuation within one rotation of the crankshaft is large, hunting tends to occur and the operation becomes unstable, making it difficult to apply differential compensation effectively. For this reason, speed control had to be performed at the expense of the response speed.

また4ザイクル単気筒エンジンを用いる場合はクランク
軸2回転で吸入・圧縮・爆発・排気の全行程を行なうた
め、クランク軸1回転当たりの回転速度変動量が一層大
きくなる。このため微分補償量の増加は一層困難で、制
御精度の悪化と応答速度の低下を防ぐことができないと
いう問題があった。
Furthermore, when a 4 cycle single cylinder engine is used, the entire stroke of suction, compression, explosion, and exhaust is performed in two revolutions of the crankshaft, so the amount of variation in rotational speed per revolution of the crankshaft becomes even larger. For this reason, it is more difficult to increase the amount of differential compensation, and there is a problem in that it is impossible to prevent deterioration in control accuracy and decrease in response speed.

不発明はこのような事情に鑑みなされたものであり、精
度が高く、負荷変動時の応答性が良好で安定な速度制御
を可能にするエンジンの電子式速度制御装置を提供する
ことを目的とする。
The invention was made in view of these circumstances, and the purpose is to provide an electronic engine speed control device that is highly accurate, has good responsiveness during load fluctuations, and enables stable speed control. do.

不発明はこの目的を達成するため、クランク軸の1回転
に要する時間から速度信号を求める速度検出回路と、前
記速度信号の時間に対する微分値を求め微分補償量を算
出する微分演算部とを備え回転速度を目標値に一致させ
るよう微分動作を含む制御を行なうものにおいて、前記
微分演算部は2回転前の前記速度信号を記憶するレジス
タと、成る時点の速度信号と前記2回転前の速度信号と
の速度差を求める減算器とを備え、前記速度差に基づい
て前記微分補償量を求めるように構成したものである。
In order to achieve this object, the present invention includes a speed detection circuit that obtains a speed signal from the time required for one rotation of the crankshaft, and a differential calculation section that obtains a differential value of the speed signal with respect to time and calculates a differential compensation amount. In the device that performs control including a differential operation so as to make the rotational speed match a target value, the differential calculation section includes a register that stores the speed signal from two revolutions ago, a speed signal at the time of the rotation, and a speed signal from the two revolutions before. and a subtracter for determining the speed difference between the two speeds, and the differential compensation amount is determined based on the speed difference.

以下図示の実施例に基づき本発明の詳細な説明する。The present invention will be described in detail below based on the illustrated embodiments.

第1図は本発明の一実施例を示すブロック図、第2図は
そのタイミング図である。第1図において符号10は4
サイクル単気筒エンジン、12は気化器、14はスロッ
トル弁であり、このスロットル弁14はサーボモータな
どのアクチュエータ16により開閉駆動される。このス
ロットル弁14の開度は、ポテンショメータなどの開度
センサ18により常時検出されている。
FIG. 1 is a block diagram showing one embodiment of the present invention, and FIG. 2 is a timing diagram thereof. In Figure 1, the code 10 is 4.
A cycle single cylinder engine, 12 is a carburetor, 14 is a throttle valve, and the throttle valve 14 is driven to open and close by an actuator 16 such as a servo motor. The opening degree of the throttle valve 14 is constantly detected by an opening sensor 18 such as a potentiometer.

20は速度検出回路であり、この回路20は、前記エン
ジン10のクランク軸1回転に要する時間すなわち一周
期から後記するように速度信号としての計数値nを求め
る。この回路20は波形整形回路22と、タイミング信
号発生制御回路24とカウンタ26と、レジスタ28と
を備える。波形整形回路22は、例えばエンジン10の
クランク軸に連結された交流発電機が出力するクランク
軸1回転に1サイクルの変化をする回転信号A (第2
図)に基づき、クランク軸1回転Gこ対し1個のパルス
信号Bを出力する。タイミング信号発生制御回路24は
このパルス信号の波形の立上がりを基準として、所定の
タイミングにタイミングパルスT]〜T6、カウントパ
ルス0、リセットパルスR1セレクト信号S E L等
を出力する。カウントパルスCは、エンジン回転速度に
関係なくパルス信号Bより短い一定周期で常に出力され
ている。カウンタ26はリセットパルスRが入力される
と零復帰し、カウントパルスCを2つのリセットパルス
8間で加算する。すなわちクランク軸が1回転する時間
を、カウンタ26の計数値nにより求めるものであり、
この計数値nは速度信号になる。この場合カウントパル
スCの発生周期により分解能が決まる。レジスタ28は
前記タイミングパルステ工の波形の立上がりに同期して
カウンタ26の内容である計数値ηを読込み、この読込
んだ計数値nを次のタイミングパルステ工が発生される
までの間記憶している。
Reference numeral 20 denotes a speed detection circuit, and this circuit 20 calculates a count value n as a speed signal from the time required for one revolution of the crankshaft of the engine 10, that is, one cycle, as described later. This circuit 20 includes a waveform shaping circuit 22, a timing signal generation control circuit 24, a counter 26, and a register 28. The waveform shaping circuit 22 generates a rotation signal A (second
(Fig.), one pulse signal B is output for one rotation G of the crankshaft. The timing signal generation control circuit 24 outputs timing pulses T] to T6, count pulse 0, reset pulse R1 select signal SEL, etc. at predetermined timings based on the rise of the waveform of this pulse signal. The count pulse C is always output at a fixed period shorter than the pulse signal B regardless of the engine rotation speed. The counter 26 returns to zero when the reset pulse R is input, and adds the count pulse C between the two reset pulses 8. In other words, the time it takes for the crankshaft to rotate once is determined by the count value n of the counter 26.
This count value n becomes a speed signal. In this case, the resolution is determined by the generation period of the count pulse C. The register 28 reads the count value η, which is the content of the counter 26, in synchronization with the rise of the waveform of the timing pulse shifter, and stores this read count value n until the next timing pulse shifter is generated. are doing.

ろ0は微分演算部であり、この演算部30は、レジスタ
62、ろ4、セレクタろ6、減算器ろ8、乗算器40お
よびレジスタ42を備える。レジスタ32、ろ4はタイ
ミングパルスT2およびT3ニ基ツいて、前記速度検出
回路20のレジスタ28に記憶された計算値nを、クラ
ンク軸の1周期内にそれぞれ1回づつ交互に読込む。第
2図でn (0) 、n (1) 、・・・・ はクラ
ンク軸1回転毎のカウンタ26の計数値nを順次示す。
RO 0 is a differential calculation section, and this calculation section 30 includes a register 62 , a filter 4 , a selector 6 , a subtractor 8 , a multiplier 40 , and a register 42 . The registers 32 and filter 4 alternately read the calculated value n stored in the register 28 of the speed detection circuit 20 once per cycle of the crankshaft based on the timing pulses T2 and T3. In FIG. 2, n (0), n (1), . . . sequentially indicate the count value n of the counter 26 for each revolution of the crankshaft.

セL/クタろ6はセレクト信号SELに基づき、レジス
タろ2、ろ4のいずれかの記憶内容を選択して減算器3
8に入力する。セレクト信号SELはクランク軸1周期
毎にHレベルとLレベルとの間で変化し、例えばこのセ
レクト信号SELがHレベルの時にはレジスタ34の内
容を、またLレベルの時にはIノジスタ62の内容をそ
れぞれ減算器38へ入力する。減算器ろ8はレジスタ2
8の内容からセレクタろ8の出力を減算する。例えばレ
ジスタ28の内容が成る周期のn(0)であれば、セレ
クタ66はその2周期前の計算値n(o−2)を記憶す
るレジスタろ2の内容n(0−2)を減算器38へ送る
。従って減算器68はこの時両者の差 n(0)−n 
(0−2)  を出力する。この差は、回転速度の所定
周期間Gこおける変動量すなわち微分値を示すものであ
る。乗算器40はこの差に係数に工を掛け、その結果で
あるD (0) −K 1−X (n (0)  n 
(02))をレジスタ42に入力する。レジスタ42は
タイミングパルスT4に同期して乗算器40の出力+読
込み、記憶する。このレジスタ42の内容は微分補償量
りに対応するものであり、前記係数に工を変えることに
より、この制御系Gこおける微分動作の割合を変えるこ
とができる。
Based on the select signal SEL, the selector L/actuator 6 selects the memory contents of either register 2 or register 4 and subtracter 3
Enter 8. The select signal SEL changes between H level and L level every crankshaft cycle, and for example, when this select signal SEL is at H level, it changes the contents of register 34, and when it is at L level, it changes the contents of I no register 62. Input to subtractor 38. Subtractor 8 is register 2
The output of selector 8 is subtracted from the contents of 8. For example, if the contents of the register 28 are n(0) in the period, the selector 66 subtracts the contents n(0-2) of the register 2 which stores the calculated value n(o-2) two periods before. Send to 38. Therefore, the subtracter 68 calculates the difference between the two at this time n(0)-n
(0-2) is output. This difference indicates the amount of variation in the rotational speed over the predetermined period G, that is, the differential value. The multiplier 40 multiplies this difference by a coefficient, resulting in D (0) −K 1−X (n (0) n
(02)) is input to the register 42. The register 42 reads and stores the output of the multiplier 40 in synchronization with the timing pulse T4. The contents of this register 42 correspond to the differential compensation scale, and by changing the coefficients mentioned above, the rate of differential operation in this control system G can be changed.

微分演算部30はこのように成る周期と、その2周期前
の周期との計算値nの差、すなわち回転速度の差に基づ
いて微分補償量りを決めるので、成る時点で圧縮行程に
あればその2周期前も同じ圧縮行程になり、この動作行
程の違いによる回転速度の変動Gこよる影響を受けるこ
とがなくなる。
The differential calculation unit 30 determines the differential compensation scale based on the difference in the calculated value n between the cycle that occurs in this way and the cycle two cycles before, that is, the difference in rotational speed. The compression stroke is the same two cycles ago, and is no longer affected by the rotational speed variation G due to this difference in operating stroke.

従って制御の安定性が増し、微分補償を有効に効かせる
ことができる。
Therefore, the stability of control is increased, and differential compensation can be effectively applied.

50は誤差演算部であり、加算′a52と、減算器54
とを備える。加算器52は微分演算部ろ0のレジスタ3
2.3,1こ記憶された連続する2つの周期の計数値例
えばn(0−1,)とn (0)とを加算し、また減算
器54はこの加算値n (o−1)十n (0)と、制
御目標速度の2倍に対応する設定値Sとの差Y (0)
 =n (0−1)+n (0)−8を算出する。この
ように連続する2周期分の計数値の和を求めることによ
り、特Oこ4サイクルエンジンでの圧縮行程の周期と排
気行程の周期との速度変動を打消すことができる。すな
わちこの加算値n (0−1)+n (0)は2周期分
の回転速度の平均値Gこ対応することになる。また前記
差Y (0) −n (0−1)−1−n (0) −
Sは現実の回転速度と目標速度との誤差Yに対応する。
50 is an error calculation section, which includes an addition 'a52 and a subtractor 54.
Equipped with. The adder 52 is the differential operation section 0 register 3.
2.3.1 The stored count values of two consecutive cycles, e.g. Difference between n (0) and the set value S corresponding to twice the control target speed Y (0)
=n (0-1)+n (0)-8 is calculated. By calculating the sum of the count values for two consecutive cycles in this way, it is possible to cancel the speed fluctuation between the compression stroke cycle and the exhaust stroke cycle in a special 4-cycle engine. That is, this added value n(0-1)+n(0) corresponds to the average value G of the rotational speed for two cycles. Also, the difference Y (0) −n (0-1)−1−n (0) −
S corresponds to the error Y between the actual rotational speed and the target speed.

60は比例演算部であり、乗算′a62を備える。Reference numeral 60 denotes a proportional calculation section, which includes a multiplication 'a62.

この乗算器62は前記誤差演算部50で求めた誤差n 
(o−1)+n (0) −8に係数に2を掛け、P(
0)= K 2(n (o−1)+n (G)−S)を
算出する。この値Pは比例補償量を示すものであり、係
数に2を変えることによりこの制御系における比例動作
の割合を変えることができる。
This multiplier 62 calculates the error n calculated by the error calculation section 50.
(o-1)+n (0) -8 is multiplied by 2, and P(
0)=K2(n(o-1)+n(G)-S). This value P indicates the amount of proportional compensation, and by changing the coefficient to 2, the proportion of proportional operation in this control system can be changed.

70は積分演算部であり、加算器72、レジスタ74、
除算器76を備える。加算器72は誤差演算部50の出
力である誤差Yとレジスタ74の記憶する内容とを加算
して、その和をレジスタ74にタイミングパルスT5に
基づいて1周期毎に加算する。この結果レジスタ74(
こけ”E  (n (i−1) +n (i) −s 
)の値が記憶され、この値は前記誤差Yの積分値に対応
することになる。この積分値には除算器76において係
数1/に3が掛けられ、その出力は]’、(0) −1
(n(11) + n(i)  S)/ K3となる。
70 is an integral operation section, which includes an adder 72, a register 74,
A divider 76 is provided. The adder 72 adds the error Y that is the output of the error calculation unit 50 and the contents stored in the register 74, and adds the sum to the register 74 every cycle based on the timing pulse T5. This result register 74 (
Moss”E (n (i-1) +n (i) -s
) is stored, and this value corresponds to the integral value of the error Y. This integral value is multiplied by a coefficient 1/3 in a divider 76, and the output is ]', (0) −1
(n(11) + n(i) S)/K3.

この工(0)は積分補償量に対応するもので、係数に3
を変えることGこより、この制御系における積分動作の
寄1y、の割合を変えることができる。
This factor (0) corresponds to the integral compensation amount, and the coefficient is 3
By changing G, the ratio of integral action 1y in this control system can be changed.

以−1−のようにして求めた比例補償lipと微分補償
けDは加算器80で加えられ、この和P −1−Dには
、さらに加算器82において積分補償量Tが加算される
。これらの和I) +1) 十Tはレジスタ84Gこタ
イミングパルスT6に基づいて1周期毎にレジスタ86
に記憶される。
The proportional compensation lip and the differential compensation D obtained as described in -1- above are added by an adder 80, and an integral compensation amount T is further added to this sum P-1-D by an adder 82. The sum of these I) + 1) is the register 84G.
is memorized.

以上の各演算はテジタル信汗により処理される。Each of the above calculations is processed by digital communication.

すなわち速度検出部20のノノウンタ26の計数値nけ
、例えば2進化10進数で出力され、以後の各演算にお
けるデータの転送は全て、複数ビットを有するバスGこ
よって行なわれる。
That is, the count value n of the non-counter 26 of the speed detection section 20 is outputted, for example, in binary coded decimal notation, and all data transfers in subsequent calculations are performed by the bus G having a plurality of bits.

90はスロットル制御部であり、変換ROM(ランダム
アクセスメ゛モリ)92と、アクチュエータ制?1MN
’A94と、アクチュエータドライバ96と、前記アク
チュエータ16と、スロットル開度セッザ18とを備え
る。前記レジスタ86の内容P+D+Iけ、制御量ヲ指
ij<する2進信号でこの2進信4は変換f(OM 9
2 QJおいて前記スロソトル弁14の開閉量を示ず2
進信号に変換される。
90 is a throttle control section, which includes a conversion ROM (random access memory) 92 and an actuator system. 1MN
'A94, an actuator driver 96, the actuator 16, and a throttle opening degree setter 18. The content of the register 86 P+D+I is a binary signal indicating the control amount ij<, and this binary signal 4 is converted f(OM 9
2 QJ does not indicate the opening/closing amount of the throttle valve 14 2
Converted to a decimal signal.

アクチュエータ制御部94はこの変換ROM 92と、
前記スロットル開度セッザ18の示す開度信じ゛との差
を求め、開閉制御信号を出力する。この開閉制御信壮ニ
増幅器からなるアクチュエータドライバ96で増1陥さ
れ、前記アクチュエータ16を作動さゼることによりス
ロットル弁14 k 開閉する。この結果スロットル弁
14はレジスタ86の記憶する制御= (1) +1)
 + T )に対応する開度に一致するように開閉制御
される。
The actuator control unit 94 has this conversion ROM 92,
The difference between the throttle opening degree setter 18 and the opening degree belief is determined, and an opening/closing control signal is output. This opening/closing control signal is increased by an actuator driver 96 consisting of an amplifier, and by operating the actuator 16, the throttle valve 14k is opened and closed. As a result, the throttle valve 14 performs the control stored in the register 86 = (1) +1)
The opening/closing is controlled to match the opening degree corresponding to +T).

この実施例は以]−のようにクランク軸の1周期間(こ
加算したカウンタ26の計数値nを用いて、1周期おき
の計数値例えばn(0−]−)とη(1)の差に基づき
微分補償量りを求める。また連続する2周期のH1数値
の和例えばn (0−1−)十n (0)と、目標速度
を定める設定値Sとの差によって速度誤差Yを求め、こ
の速度誤差Yに基ついて比例補償計Pおよび積分補償量
■を求める。そしてこれら各補償計の和P +1) 十
Tによって、スロットル弁14の開度をこの和P +I
) 十Iが示ず開度Gこ一致する(]1) ようスロットル制御部90で制御するものである。
This embodiment uses the count value n of the counter 26 added during one cycle of the crankshaft as shown below to calculate the count value n(0-]-) and η(1) at every other cycle. Calculate the differential compensation scale based on the difference.Also, calculate the speed error Y from the difference between the sum of the H1 values of two consecutive cycles, for example n (0-1-) ten n (0), and the set value S that determines the target speed. , calculate the proportional compensator P and the integral compensation amount ■ based on this speed error Y.Then, the sum of these compensators P +1) 10T determines the opening degree of the throttle valve 14 by this sum P +I
) The throttle control section 90 controls so that the opening degree G does not match (1).

るので、特に49イクルエンジンでは圧縮行程を含む周
期と爆発行程を含む周期とで回転の変動が大きいG、二
もかかわらず、そσ)影響を受iJることかi−r く
なる。
Therefore, especially in a 49-cycle engine, although the rotational fluctuation is large between the cycle including the compression stroke and the cycle including the explosion stroke, it is affected by the rotation.

さらにこσ)実施例では、クラシフdll+の現実の回
転速度と1]標速度との差を、2周期分の速度信号とし
2てのH(数値nσ)和に基づき求めているので、特G
こ4ザイクルでの回転変動の影響全打消すことができ、
一層+l:、4Wな速度制御が可能Gこなる。
Furthermore, in this example, the difference between the actual rotational speed of Classif dll+ and 1] target speed is calculated based on the sum of H (numerical value nσ) as 2 as a speed signal for 2 cycles, so the special G
It is possible to completely cancel out the effects of rotational fluctuations in these 4 cycles.
Further +l: 4W speed control is possible.

この実施例では以トのようGこ、比例士積分士微分動作
(いわゆるP I 1)動作)を行なうものであるため
速度制御精度か著しく向−4−する。しかし本発明は比
例士微分動作(いわゆるP I)動作)を行trうもの
Gこも適用1社能なことはもちろんであり、少なくとも
微分補償を含む仕度制御装置であれば適用でき、これら
のものも本発明は包含するものである。
In this embodiment, since the proportionalist-integrator-differential operation (so-called P I 1) operation is performed as described below, the speed control accuracy is significantly improved. However, it goes without saying that the present invention can be applied to any device that performs a proportional differential operation (so-called PI operation), and can be applied to any preparation control device that includes at least differential compensation. The present invention also encompasses the following.

(]2) なお本発明は4サイクルエンジンばかりでなく2づイク
ルエンジンGこもそのまま適用できることはもちろんで
ある。2ヤイクルエンジンではスロットル弁の全閉4f
いし低開度時に、掃気の悪化に伴う小整燃焼が発生し、
回転変動が発生ずることが多い。本発明をこのような2
サイクルエンジンに適用すねば、この低・無負荷時の回
転変動に原因するハンチングの発生全抑制でき、速度制
御の安定性が著しく向]−する。
(]2) It goes without saying that the present invention can be applied not only to 4-cycle engines but also to 2-stroke engines. In a 2-cycle engine, the throttle valve is fully closed 4f.
When the engine is opened at a low opening, small combustion occurs due to poor scavenging.
Rotation fluctuations often occur. The present invention can be applied to two such
If applied to a cycle engine, the occurrence of hunting caused by rotation fluctuations during low/no-load conditions can be completely suppressed, and the stability of speed control can be significantly improved.

本発明は以I−のように、クランク軸の2回転AiJ、
すなわち2周期前の速度信号をレジスタに記憶し成る時
点とその2回転前の各速度信号の差に基づいて微分補償
はを算出するので、クランク軸の回転変動による影響を
抑制でき、制御を不安定化することなく微分補償量を増
やすことができる。このため制御の応答速度を向上でき
速度制御精度が向」−する。特に4サイクル単気筒エン
ジンに適用した場合には速度変動Gこよる影響を完全に
打消すことか可能であり、不発明の効果は一層顕著Gこ
なる0
As shown in I- below, the present invention provides two rotations AiJ of the crankshaft,
In other words, the differential compensation is calculated based on the difference between the time when the speed signal from two cycles ago is stored in the register and each speed signal from two revolutions before that time, so the influence of crankshaft rotation fluctuations can be suppressed and the control can be performed without interruption. The amount of differential compensation can be increased without stabilization. Therefore, the control response speed can be improved, and the speed control accuracy can be improved. In particular, when applied to a 4-stroke single-cylinder engine, it is possible to completely cancel out the effects of speed fluctuations, and the effect of this invention is even more remarkable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例栄示す/ロック図、第2図は
そのタイミング図である。 10・・・エンジン、20・°°速度検出回路、60°
°°微分演算部、ろ2.64・・・レジスタ、68・・
・減算器、n・・・速度信号としての計数値、D・・・
微分補償量。 特許出願人 ヤマハ発動機株式会社 代理人弁理士 山  1) 文  雄
FIG. 1 is a lock diagram showing one embodiment of the present invention, and FIG. 2 is a timing diagram thereof. 10...Engine, 20.°°speed detection circuit, 60°
°°Differential calculation section, 2.64...Register, 68...
・Subtractor, n... Count value as speed signal, D...
Differential compensation amount. Patent applicant Yamaha Motor Co., Ltd. Representative Patent Attorney Yama 1) Yu Fumi

Claims (1)

【特許請求の範囲】[Claims] クランク軸の1回転に要する時間から速度信号を求める
速度検出回路と、前記速度信号の時間に対する微分値を
求め微分補償量を算出する微分演算部とを備え、回転速
度を目標値に一致させるよう微分動作を含む制御を行な
うものにおいて、前記微分演算部は2回転前の前記速度
信号を記憶するレジスタと、成る時点の速度信号と前記
2回転前の速度信号との速度差を求める減算器とを備え
、前記速度差に基づいて前記微分補償量を求めることを
特徴とするエンジンの電子式速度制御装置。
It is equipped with a speed detection circuit that obtains a speed signal from the time required for one rotation of the crankshaft, and a differential calculation section that obtains a differential value of the speed signal with respect to time and calculates a differential compensation amount. In the device that performs control including a differential operation, the differential operation section includes a register for storing the speed signal from two revolutions ago, and a subtracter for calculating a speed difference between the speed signal at the time when the speed signal is obtained and the speed signal from the two revolutions before. An electronic speed control device for an engine, characterized in that the differential compensation amount is determined based on the speed difference.
JP6706882A 1982-04-23 1982-04-23 Electronic speed controller for engine Granted JPS58185956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6706882A JPS58185956A (en) 1982-04-23 1982-04-23 Electronic speed controller for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6706882A JPS58185956A (en) 1982-04-23 1982-04-23 Electronic speed controller for engine

Publications (2)

Publication Number Publication Date
JPS58185956A true JPS58185956A (en) 1983-10-29
JPH0451660B2 JPH0451660B2 (en) 1992-08-19

Family

ID=13334156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6706882A Granted JPS58185956A (en) 1982-04-23 1982-04-23 Electronic speed controller for engine

Country Status (1)

Country Link
JP (1) JPS58185956A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015229929A (en) * 2014-06-03 2015-12-21 株式会社ミクニ Engine start control unit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5584858A (en) * 1978-12-18 1980-06-26 Nippon Denso Co Ltd Engine control
JPS58156142U (en) * 1982-04-14 1983-10-18 日産自動車株式会社 Internal combustion engine electronic control unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5584858A (en) * 1978-12-18 1980-06-26 Nippon Denso Co Ltd Engine control
JPS58156142U (en) * 1982-04-14 1983-10-18 日産自動車株式会社 Internal combustion engine electronic control unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015229929A (en) * 2014-06-03 2015-12-21 株式会社ミクニ Engine start control unit

Also Published As

Publication number Publication date
JPH0451660B2 (en) 1992-08-19

Similar Documents

Publication Publication Date Title
US4425890A (en) Spark timing control apparatus for use with a internal combustion engine
JP4071279B2 (en) Adaptive transient fuel compensation for spark ignition engines
US4575800A (en) System for optimizing the timing of diesel or spark ignition engines
EP0120730B1 (en) Fuel redistribution control for an internal combustion engine
US4380800A (en) Digital roughness sensor
US5359519A (en) Process and device for measuring the torque of an internal combustion heat engine taking into consideration, in particular, the recirculation of exhaust gases and residual burnt gases and excess oxidant
US4354239A (en) Fuel injection control system for an internal combustion engine
US4643152A (en) Method for controlling the fuel supply of an internal combustion engine
US4495925A (en) Device for intake air temperature-dependent correction of air/fuel ratio for internal combustion engines
US5771483A (en) Internal combustion engine torque measurement device and method
US4794900A (en) Ignition system for an internal combustion engine
US4143622A (en) Fuel injection apparatus for internal combustion engines
US5243948A (en) Electronic control system for fuel metering in an internal combustion engine
JPS58185956A (en) Electronic speed controller for engine
US5040412A (en) Evaluation of a fluctuating variable
US4359987A (en) Digital timing system
US4292941A (en) Electronic ignition control systems
JP3469254B2 (en) Electronic fuel supply control device for internal combustion engine
US4337744A (en) Ignition system for internal combustion engines
US4644784A (en) Suction pipe pressure detection apparatus
US4262334A (en) Digital advance control device for internal combustion engines
US4671241A (en) Method for controlling the fuel supply of an internal combustion engine
EP0404761A1 (en) Fuel injection system for an internal combustion engine, having compensation for changing dynamic operating conditions.
JPS63131840A (en) Control method for fuel injection amount of internal combustion engine
JPH02241948A (en) Intake air state quantity detecting device for internal combustion engine