JPS5818592A - Single blade type turbine pump - Google Patents

Single blade type turbine pump

Info

Publication number
JPS5818592A
JPS5818592A JP11729981A JP11729981A JPS5818592A JP S5818592 A JPS5818592 A JP S5818592A JP 11729981 A JP11729981 A JP 11729981A JP 11729981 A JP11729981 A JP 11729981A JP S5818592 A JPS5818592 A JP S5818592A
Authority
JP
Japan
Prior art keywords
blade
pump
impeller
center
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11729981A
Other languages
Japanese (ja)
Other versions
JPS6122155B2 (en
Inventor
Fumio Kobayashi
小林 文夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP11729981A priority Critical patent/JPS5818592A/en
Publication of JPS5818592A publication Critical patent/JPS5818592A/en
Publication of JPS6122155B2 publication Critical patent/JPS6122155B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • F04D29/2238Special flow patterns
    • F04D29/225Channel wheels, e.g. one blade or one flow channel

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PURPOSE:To reduce vibration and to aim at reducing the weight of a turbine by adjusting the thickness of a blade for the balancing with respect to the axial center of the pump and the axis orthogonal to the pump axis. CONSTITUTION:The thickness of a blade 2 is adjusted so that the static balance with respect to the center line 3 satisfies the relation, SIGMAMA'=SIGMAMB', where MA', MB' are moments of the mass of infinitesimal portions A', B' about the center line 3. For the static balance with respect to the axial center 0' vertical to the center line 3, the thickness of the blade 2 is adjusted so that the integral of a moment of an infinitesimal part C' of the blade 2 within an infinitesimal angle DELTAtheta having a momentum arm in the direction of the center line 3 with respect to the axial center 0', to the integral of an infinitesimal part D' having a momentum arm in the direction of the center line 3 with respect to the axial center 0', over an angle theta.

Description

【発明の詳細な説明】 ンプに関する。[Detailed description of the invention] Regarding the pump.

汚水、汚物、パルプ液等Q移送用ポンプとしては固形物
、繊維物質等の異物が詰ったシ、引っ掛った〕すゐこと
のな1無閉塞性のポンプが要求される。この種のボ/グ
としては一枚又は小数枚の翼を持つ羽根車を備えたもの
がある。
As a pump for transporting sewage, filth, pulp liquid, etc., a non-obstructive pump is required that will not be clogged or caught by foreign matter such as solid matter or fibrous matter. This type of bo/g has an impeller with one or a few blades.

第6図は従来例の小数枚の翼を備えたポンプの例である
.図において翼コを備えた羽根車/は図示する中心線3
を中心に回転するようポンプケーシタグal1c支持さ
れてiる。ポンプケーシタグダと翼一〇縁辺との間に図
示1の間隙がある。
Figure 6 is an example of a conventional pump with a small number of blades. In the figure, the impeller with blades / is the center line 3 shown in the figure.
The pump casing tag al1c is supported so as to rotate around the center. There is a gap 1 shown in the figure between the pump casing tag and the edge of the blade 10.

第7図は第1図の羽根車の一部正面図である。FIG. 7 is a partial front view of the impeller shown in FIG. 1.

翼一の翼端5は中心1113よりの放射線の方向よシ角
!後退し九位置にある。このような例ではだ液体が流れ
ゐため、間隙一の部分に固形物等が入っても間隙δが太
き一から通過し得るoしかし乍らこの構造では液の漏洩
損失が大きく、従ってポンプ効率を低下せしめる。
The tip 5 of the first wing is at an angle to the direction of the radiation from the center 1113! Backed up and in the 9th position. In such an example, liquid is flowing, so even if a solid object enters the gap 1, it can pass through the gap δ, which is wide. However, with this structure, the leakage loss of liquid is large, and therefore the pump Reduces efficiency.

他の従来例としては母線が直線、曲線の円錐形回転面を
なすポンプケーシングとねじ羽根の翼の外周回転面が同
円錐形回転面の羽根車を備えたものがある(+lI会昭
−3−/100&)。この会知例のポンプは円錐様の第
一ハブに第一〇へプO軸に対し角度がずれてしる第二の
ハブを備えて第一、第二のハブを取巻き第二の軸のずれ
たハブから軸方向に上流に延びた略一定の厚みをもつ九
単−の連続し九螺旋形のねじ板を備えた羽根車がケーシ
ング中KII間少く納められている◎この種のポンプで
はねじ羽根を第一ハブより先に出すこ々によ)ポンプ性
能の向上が認められる一方、このように第二のハブを延
出してねじ羽根先端を補強しなければならずこのように
補強したとしてもねじ羽根先端は弱く、剛性は低く振動
を発生する原因となる。又、ねじ羽IN(ねじ徹)が一
様な厚さであるため羽根車自体が不平衡重量を備えてお
)、ポンプの振動の原因ともなって−る・これらの振動
を防止するため円錐様ハブ根本内側を研削して落して軸
を太くして対応して匹る現状にある。
Another conventional example includes a pump casing whose generating line is a straight line and a curved conical rotating surface, and an impeller whose outer circumferential rotating surface of the screw blade blade is the same conical rotating surface (+lI Kaisho-3 -/100&). The pump of this known example has a conical first hub and a second hub that is angularly shifted from the first and second hubs, and the second hub surrounds the first and second hubs and is connected to the second shaft. An impeller with a continuous nine-helical screw plate of approximately constant thickness extending axially upstream from the offset hub is housed in the casing. While it is recognized that pump performance is improved by extending the screw blades before the first hub, it is necessary to extend the second hub in this way and reinforce the tip of the screw blades. However, the tip of the screw blade is weak and has low rigidity, causing vibration. In addition, since the screw impeller IN has a uniform thickness, the impeller itself has an unbalanced weight, which causes vibrations in the pump.In order to prevent these vibrations, the impeller itself has a conical shape. The current situation is to grind down the inside of the hub base and make the shaft thicker.

そこで第一の従来例にあるような羽根車の翼端の流れを
中心に向は得て、固定物を中心に向けて移動させ、且つ
第二の従来例にあるよ5な強度、剛性上の問題点を解決
し得るような一枚翼の無閉塞性ボ/グを得ることを目的
とした特願昭36−4603!号に係わる発明「一枚翼
羽根車ポyプ」は、 「 吸込口と吐出ケーシング間が円錐様回転面をなした
ポンプケーシングに、外周回転胃がポンプケーシングの
円錐様回転面に隙間少く接近する円錐様をなしたねじ羽
根の翼を円錐様ハブに形成した羽根車をケージング内に
て回転可能に支持した一枚翼羽根車ポンプにお−て、吸
込側翼根本を円錐様ハブ頂点近傍にて終らせた該翼根率
よりポンプ軸中心線よシの放射線よりも翼端正面が前進
する方向に翼端を傾けた一枚翼羽根車ポyグ、」 であって、翼根率を円錐様ハブ先端近傍(て終らせて、
翼端を翼端前進側へ傾けて設けたから、闇彫物が羽根車
先端にて中心に向う。翼は根本が円錐様ハブ先端近傍に
て終って−るので強固で剛性があシ、翼自体振動しJI
Ivh0又、翼厚を不平衡重量をなくするよう変化させ
たから、従来の一枚翼の羽根車のようにある決った外径
のものでのみバランスして居夛、ポンプ要項(流量、揚
程)が変った場合、通常の遠心ポンプの羽根車のように
外径加工ができず(不平衡重量が生じる)、ベルト駆動
等の回転数変換に頼らざるを得ないと95点がな(なシ
応用範囲が広くなって−る。
Therefore, as in the first conventional example, the direction is obtained around the flow at the blade tip of the impeller, and the fixed object is moved toward the center, and the strength and rigidity are improved as in the second conventional example. A patent application filed in 1973-4603 aimed at obtaining a single-winged non-obstructive bore that could solve the problems of the above! The invention ``Single-blade impeller pump'' is based on ``a pump casing in which a conical rotating surface is formed between the suction port and the discharge casing, and an outer circumferential rotating stomach approaches the conical rotating surface of the pump casing with little clearance. In a single-blade impeller pump, in which an impeller with conical screw blades formed on a conical hub is rotatably supported in a casing, the root of the suction side blade is placed near the apex of the conical hub. A single-blade impeller whose blade tip is inclined in the direction in which the front surface of the blade moves forward from the line of the center line of the pump shaft, with the blade root ratio Near the tip of the conical hub (ending at
Since the wing tips are tilted toward the forward wing tip side, the dark carvings are directed towards the center at the tip of the impeller. The blade's root ends near the tip of the conical hub, so it is strong and rigid, and the blade itself vibrates.
Ivh0 Also, since the blade thickness is changed to eliminate unbalanced weight, the pump requirements (flow rate, head) can be balanced only with a certain outer diameter, like a conventional single-blade impeller. If the impeller of a centrifugal pump changes, the outer diameter cannot be machined like the impeller of a normal centrifugal pump (unbalanced weight occurs), and the number of rotations must be changed by belt drive etc. The range of applications is expanding.

処がこの第三の発明の一枚翼羽根車ポンプでは効率が従
来例に比して良好ではあっても極めて良好とは−えず歯
高効率化を計る必要が奉る。
However, although the efficiency of the single-blade impeller pump of the third invention is better than that of the conventional example, it is not extremely good; therefore, it is necessary to improve the efficiency of the tooth height.

そして第三の発明にシける翼のバランスは立体上のもの
を平置上に投影して不釣合をなくしようとするものであ
るため軸方向の釣合がとれて訃らず淘充分とは一見なi
ものである。
The balance of the wing in the third invention is to eliminate unbalance by projecting a three-dimensional object onto a flat surface, so at first glance it seems that the balance in the axial direction is maintained and it is sufficient to prevent it from collapsing. na i
It is something.

本発明の第1の目的は一枚翼羽根車ポンプの効率の向上
を計ることであシ、本発明の他の目的は円錐様回転面に
ねじ羽根の翼の外周があるような羽根車の重量の不平衡
を完全に除き得るよ5なねじ羽根の翼形状を得ることで
ある。
A first object of the present invention is to improve the efficiency of a single-blade impeller pump, and another object of the present invention is to improve the efficiency of a single-blade impeller pump. The objective is to obtain a screw blade shape that can completely eliminate weight imbalance.

本発明の一枚翼羽根車ポングは翼の厚さが羽根車回転中
心を直交してとおる直線上に存在する翼の部分が回転中
心に対して等しいモーメントを持つように翼厚を変える
と共に、羽根車の支持部をとお夛回転中心K[交する軸
に対する軸方向距離をアームとする前記翼の部分のモー
メントの合計が零となるように翼厚を変化させてなる一
枚翼羽根車ボ/グである。
The single-blade impeller pong of the present invention changes the blade thickness so that the portion of the blade that lies on a straight line passing orthogonally to the impeller rotation center has an equal moment with respect to the rotation center, and The support part of the impeller is set at the center of rotation K [the axial distance from the intersecting axes is the arm], and the blade thickness is changed so that the sum of the moments of the blade parts becomes zero. /G.

以下、図面に従って本発明の実施例につ−て説明する。Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明のポンプ軸を含む縦断面図である。ポン
プケーシタグダは吸込口6が一体に形成せられ、吸込口
6側を小端として内周は直線又は曲線もしくはそれらを
組合せた母線をポンプ主軸3′を中心にして回転させた
円錐様形状であ)、ポンプケーシタグダには吐出ケーシ
タグクが固定され、吐出ケーシタグクに軸方向移動を制
止され、回転可能に軸承され軸封(説明は省略する)さ
れ九ボ/グ主軸3′には羽根車lの円錐様ハブlがポン
プ主軸3′の締シ勝手方向になるようKねじ込まれてい
る。円錐様ハブtは母線が直線又は曲線又はそれらを組
合せた回転−面であ)、ポンプケーシタグダとの間の流
体通路が適当になるよ5に選ばれている。
FIG. 1 is a longitudinal sectional view including the pump shaft of the present invention. The pump casing tag is integrally formed with the suction port 6, and has a cone-like shape with the suction port 6 side as the small end and the inner circumference rotated around the pump main shaft 3' with a generatrix of a straight line, a curve, or a combination thereof. ), a discharge casing tag is fixed to the pump casing tag, axial movement is restrained by the discharge casing tag, rotatably supported and shaft sealed (description will be omitted), and a blade is mounted on the main shaft 3' of the pump casing. The conical hub 1 of the wheel 1 is screwed into the pump main shaft 3' so that it is in the tightening direction. The conical hub t has a generatrix of a straight line, a curved line, or a rotating surface with a combination thereof, and is selected to have an appropriate fluid passage between the hub and the pump casing.

円錐様ハブHcはねじ羽根の翼−2J)!一体に形成せ
られてiる。翼コの吸込口1の側は円錐様ハブtの頂点
附近もしくは頂点で終っておシ、その位置よシ翼端!が
翼−の外周に向う。翼コの外周はポンプクーシングヂの
内周面と隙間少な一位置KIhる直線又は曲線もしくは
これらを組合せた母線を有する軸3′を中心とする回@
藺上にある。
The conical hub Hc is a screw blade wing - 2J)! It is integrally formed. The suction port 1 side of the wing ends near or at the apex of the conical hub t, and that position is the wing tip! toward the outer circumference of the wing. The outer periphery of the blade rotates around an axis 3' having a straight line, a curved line, or a generatrix of a combination of these, which is located at a position KIh with a small clearance from the inner circumferential surface of the pump cushioning.
It's on point.

第1図は翼コの先端中心部の拡大正面図である・円錐様
ハブlと翼コの根本の境界線デは中心線3(紙面に直交
している)近傍にて終っており、中心IIJよりの放射
線10よシ翼端jが進んで行く方向に翼端!は放射線1
0よシ次第に離れて行くような凹な曲線をなしている。
Figure 1 is an enlarged front view of the center of the tip of the wing. The boundary line between the conical hub l and the root of the wing ends near the center line 3 (orthogonal to the plane of the paper), and the center Radiation 10 from IIJ and the wing tip in the direction in which the wing tip j advances! is radiation 1
It forms a concave curve that gradually moves away from 0.

これは曲率が太き−ときは直線に代えてもよいが後に説
明される流体の流れを中心に向けるように図のような中
心より離れるに従って切線角rが次第に大となる曲線が
望ましい。中心線3と翼端5と翼−の外周l/との交点
/Jとを結ぶ線と放射線10が中心線3に張る角αは図
示冥例の大きさである。
This may be replaced with a straight line if the curvature is thick, but it is preferable to use a curved line in which the tangential angle r gradually increases as the distance from the center increases as shown in the figure so as to direct the flow of fluid toward the center, which will be explained later. The angle α between the center line 3 and the line connecting the center line 3 and the intersection /J of the blade tip 5 and the outer circumference l/ of the blade and the ray 10 is the size of the illustrated example.

第3図は羽根車/の略正面図である。図におμて説明の
ため中心線3を原点としてX、Y座標軸を設けである。
FIG. 3 is a schematic front view of the impeller. In the figure, for explanation purposes, X and Y coordinate axes are provided with the center line 3 as the origin.

今、翼−の厚さを同一とすると、右上を第一象限として
左回シに見て第三、第四象限の翼1の各部を中心線Jを
とおる直−につiて対抗した中心I!3につめての一次
+ −メントは明かに第三象限、第四象限の翼シが小さ
i・従って翼厚が一定とすると不平衡重量を生ずる。そ
こでこの実施例では第3図に示され、又翼コの展開した
外周縁側よシ見九第ゲ図に示されるように中心線JKつ
−て1次モーメンFが等しくなるように第三、第四象限
にある翼コO翼厚を変化させである。この翼−の肉厚を
厚くする部分は第4tWJに誇張して示されるように翼
コの裏側73であって流体に作用する表側は流体力学的
に適する面としておく。この不釣合重量に関しては更に
後にのべるO 第を図は羽根車lの翼−の吸込口側よ)見る正面図であ
って翼コのおもて側シェラウド側角が示されて−る。第
デ図は第を図における中心線を含む羽根車/の断面図で
ある。
Now, assuming that the thickness of the wing is the same, the upper right corner is the first quadrant, and each part of the wing 1 in the third and fourth quadrants when viewed from the left is the center opposed to the center line i through the center line J. I! In the third primary + -ment, the blades in the third and fourth quadrants are clearly small i. Therefore, assuming that the blade thickness is constant, unbalanced weight will occur. Therefore, in this embodiment, as shown in Fig. 3 and also shown in Fig. 9 when viewed from the outer peripheral edge side where the wing is expanded, the third The thickness of the blade in the fourth quadrant is changed. The part where the wall thickness of the blade is increased is the back side 73 of the blade, as shown exaggeratedly in the fourth tWJ, and the front side that acts on the fluid is a hydrodynamically suitable surface. This unbalanced weight will be discussed further below.The figure is a front view looking from the suction port side of the blade of the impeller l, and shows the front side corner of the shroud of the blade. Figure D is a sectional view of the impeller including the center line in Figure D.

第を図の真コの吸込口側の翼端のQ−a断面翼コ・で表
わされる。翼コaの所間の厚さはシ具ツウド儒1/、翼
根本儒を−とするとtl−tl即ち平板状でわる・ 翼−と円錐様ハブlとの取付角α、即ち翼コのおもて側
とポンプ主軸3′の中心線3とのなす角αは入口側の翼
J&にてはαm5o−4ayであ夛出口側の翼コ・にて
はα=0〜ダ0[であル、入口側よ)出口側に向って角
αは次第に小となってiる。
The number is represented by the Q-a cross section of the blade tip on the suction port side of the figure. If the thickness of the wing core a is 1/, and the base thickness of the wing is -, then it is tl - tl, that is, it is a flat plate. The angle α between the front side and the center line 3 of the pump main shaft 3' is αm5o-4ay for the blades J& on the inlet side, and α=0~da0[ for the blades J& on the outlet side. (That's the entrance side) The angle α gradually becomes smaller towards the exit side.

以上に対して従来例の一枚翼羽根車ポンプの翼の上記諸
元は第を図の断面線を第10図で示すような翼断面を有
し、入口部の翼−2&の翼厚1/(1−であり、翼取付
角α=so〜60fであって入口側の翼コaよシ出ロ側
の翼−etで一定である。
In contrast to the above, the above specifications of the blade of the conventional single-blade impeller pump have a blade cross section as shown in Figure 10, and the blade thickness of the inlet part is 1. /(1-, and the blade attachment angle α=so~60f, which is constant between the blade A on the inlet side and the blade -et on the exit side.

第1図において羽根車lが回転すると固形物を含んだ流
体は吸込まれ、ポンプケーシング夢中で翼−の9間を移
動して吐出ケーシタグクに送られ吐出される。その際、
第3図の説明図に示されるように翼端jの部分で固形物
等は矢印l#の方向に流れる。円錐様ハブtの先端は図
示されてはしるが翼コの厚さにより実際にはなく、翼端
Sは円錐様)1プtに滑かに連続しているから、翼コと
円錐様ノ)プを及びポンプケーシタグダ間の空間に障害
なく入る。かくして固形物等を含む液体も翼1外周とボ
ンプケーシタグダ間の隙間につまることなく送られる。
In FIG. 1, when the impeller l rotates, fluid containing solids is sucked in, moves between the blades of the pump casing, is sent to the discharge casing, and is discharged. that time,
As shown in the explanatory view of FIG. 3, solid matter and the like flow in the direction of arrow l# at the blade tip j. Although the tip of the conical hub t is shown in the figure, it is not actually present due to the thickness of the wing, and the wing tip S smoothly continues to the conical hub. into the space between the pump and the pump casing without obstruction. In this way, liquid containing solid matter and the like is also sent to the gap between the outer periphery of the blade 1 and the bomb case tag without clogging it.

即ち、本発明の一枚翼羽根車ポンプ4従来例も同様に動
作する・こ−Kか−で入口側の翼jaは一定厚さである
ことによ〕従来例に比して固型物等が滑らかく翼間に入
ることが判明した。
That is, the conventional single-blade impeller pump 4 of the present invention operates in the same manner.In this case, the blades ja on the inlet side have a constant thickness. etc., it was found that it could smoothly fit between the wings.

第11図は以上に説明した本発明の一枚翼羽根車ポンプ
と従来例のもののポンプ性能の比較を示す線図である。
FIG. 11 is a diagram showing a comparison of the pump performance of the single-blade impeller pump of the present invention described above and the conventional pump.

横軸に吐出し量を縦軸には全揚程と効率をとったもので
、実線で示されるものは本発明の一枚翼羽根車ボy7′
に関するものであシ、点線は従来例に関するものである
The horizontal axis shows the discharge amount, and the vertical axis shows the total head and efficiency.The solid line shows the single blade impeller body 7' of the present invention.
The dotted line is related to the conventional example.

図よ)明らかなように最大効率において本発明の一枚翼
羽根車ポンプのほうが従来例よシ改良されてsI−,6
、その点における本発明の一枚翼羽根車ポンプの揚程を
■11従来例のものをHJとするとII//Hコwxb
−〜i、sであった・このように本発明の一枚翼羽根車
ポングは従来例よ)%効率よく揚1大であるから、逆に
同揚程のものとするとポンプを小さくできる訳である。
As is clear, the single-blade impeller pump of the present invention is improved over the conventional example in terms of maximum efficiency.
, In that respect, the head of the single-blade impeller pump of the present invention is II//H wxb, assuming that the conventional example is HJ.
- ~ i, s - In this way, the single-blade impeller pump of the present invention is 1% more efficient than the conventional example, so if it has the same head, the pump can be made smaller. be.

既に第3W1にお−てのべたように羽根車lは策されて
−る。処がポンプ主軸3′を含む縦断面図の第1J図に
示されるように翼コが軸方向に位置を変えながら渦巻状
〈なって−るから、第3図に示される釣合の取り方は第
1−図に示されるように中心線3を頂点とする対重な微
小角60間に含まれる翼1の図示位置A′の質量Δ1l
lLとitθ0反対側の位置B′の質量Δmbを比較し
て釣合せている訳であるから、ポンプ軸3′の中心線J
上の点を第7−2図の紙面に直交して羽根車の支持部を
とおる軸心0/に関して不釣合を生ずる。
The impeller l is designed as already mentioned in 3rd W1. However, as shown in Figure 1J, which is a longitudinal cross-sectional view including the pump main shaft 3', the blades are shaped like a spiral while changing their position in the axial direction, so the balance shown in Figure 3 is achieved. is the mass Δ1l of the blade 1 at the illustrated position A', which is included between the overlapping minute angles 60 with the center line 3 as the apex, as shown in FIG.
Since the balance is made by comparing lL with the mass Δmb at position B' on the opposite side of itθ0, the center line J of pump shaft 3'
An unbalance occurs with respect to the axis 0/, which passes through the support portion of the impeller with the upper point perpendicular to the paper plane of FIG. 7-2.

JI/J図に示されるよ5に中心線3に関しての微小部
分ム′、B′の質量の中心@jについてのモーメントを
Mム′1MB′とすると中心1.7に対する静的の釣合
は J M 、/−ΣMBI の関係となるよ5翼−20肉厚は変化させると共に、第
73図に示すように中心線3に対して直角な細心07に
対する静的′つプ合をとるため、微小角Δθ内の翼コの
微小部分C′の軸心O′についての中心lIJ方向をア
ームとするモーメントを輩c′、微小部分D′の軸心0
′につ1ての中心線3方向をアームとするモーメントを
MD′γとするとの関係となる様肉厚を変化させである
。この結果翼コの厚さは翼コの展開図の第グ図に示され
るよ5に入口側の厚さをtl、出口側の厚さtoとする
と t1≧−to にとられることとなって−る。これらの翼形は翼表側は
流体力学的(定められ、真裏側をふくらませて形成され
て−る。
As shown in the JI/J diagram, if the moment about the center of mass @j of the minute part M' and B' with respect to the center line 3 is M'1MB', the static balance with respect to the center 1.7 is In order to change the wall thickness of the 5-blade 20 so that the relationship is J M , /-ΣMBI, and to take the static 'fit for the fine center 07 perpendicular to the center line 3 as shown in Figure 73, The center of the minute part C' of the wing within a minute angle Δθ about the axis O' generates a moment with the arm in the IJ direction, and the axis 0 of the minute part D'
The wall thickness is changed so that the relationship is as follows, where MD'γ is the moment when the three directions of the center line are the arms. As a result, the thickness of the blade is set to t1≧-to, as shown in Figure 5 of the expanded view of the blade, where the thickness on the inlet side is tl and the thickness on the exit side is to. -ru. These airfoils are formed by having the front side of the blade hydrodynamically defined and the back side bulging.

以上の結果、一枚翼羽根車ポンプの羽根車の釣合は静的
にポンプ軸軸心並びにポンプ軸に直交する軸に関する釣
合を翼の厚さで加減することKよル従来例のようにおも
りを設けたシすることが不要となり、その結果羽根車の
軽量化2!lE可能となシ、振動を軽減できる。
As a result of the above, the balance of the impeller of a single-blade impeller pump is determined by statically adjusting the balance with respect to the pump shaft axis and the axis perpendicular to the pump shaft by adjusting the blade thickness. It is no longer necessary to provide a weight, which results in a lighter impeller 2! It is possible to reduce vibrations.

以上のとおり、本発明は円錐様ポンプケーシングに外周
が円錐様のねじ羽根の翼を有する羽根車を納めたポンプ
において、入口側の翼厚をシヱラウド側と根本側を同一
厚さとし翼のハブへの取付角を従来例よ)も傾けて且つ
入口側と出口側の取付角を異にするよ5KL、たからボ
ンオh 朱i プ効率は増大し、同一吐出し量に対するmは増大し、ポ
ンプ容量を同一とするとポンプを小さくできる。
As described above, the present invention provides a pump in which an impeller having threaded blades with a conical outer circumference is housed in a conical pump casing, in which the thickness of the blades on the inlet side is the same on the shield side and the base side, and the blades are connected to the hub of the blade. By tilting the mounting angle (compared to the conventional example) and making the mounting angles on the inlet and outlet sides different, the pump efficiency will increase, m for the same discharge amount will increase, and the pump capacity will increase. If the values are the same, the pump can be made smaller.

羽根車の釣合をポンプ軸軸心とポンプ軸軸心K[角な軸
に対する静的釣合と翼の厚さを変化させて保つようにし
たから、羽根車は軽量化でき、振動も軽減できる。
The balance of the impeller is maintained between the pump shaft center and the pump shaft center K [static balance with respect to the square shaft and by changing the thickness of the blades, so the impeller can be made lighter and vibrations are reduced. can.

そこでこの種ポンプflC>14で従来のようにポンプ
完成后に振動を避けるために回転数を変化させることを
予定してベルト駆動を行うように設ける必要もない。以
上のポンプ効率の向上と釣合の精度向上によシ一枚羽根
車ポンプを小原軽量化できる。
Therefore, in this type of pump flC>14, there is no need to provide belt drive with the intention of changing the rotational speed to avoid vibrations after the pump is completed, as is the case in the prior art. By improving the pump efficiency and balancing accuracy as described above, it is possible to reduce the weight of the single impeller pump.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の縦断面図、第J図は第1図の
一部拡大正間図、第3図は第1図の一部正wWJ、第#
図は翼の展開図、第3図は第7図の作用の説明図、第4
図は従来例の作用を説明する縦断面略図、第7図は第1
図の一部拡大正m*、第を図、第を図は本発明の翼形を
示すrIti面であって、第1WJは正面図、第デ図は
縦断面図、第1O図は従来例の翼形の縦断面図1、第1
1図はポンプ性能の比較線図、第1−図、第i、y図は
羽根車の釣合方法を示すための図画であって第1コ図は
正面図、第73図は縦断面図である。 l・・羽根車 −・・翼 3・・中心−3′・・ポンプ
主軸 参・・ポングクーシタグ j・・翼端 6・・吸
込口 7・・吐出ケーシング t・・円錐様ハブ デ・
・境界III  10・・放射線 1/・・外周 /コ
・・交点 /3・・裏側 ム/、 )’、 O’、 D
’・・微小部分0.0′・・軸心。 第1図 第2図 第3図 第5図 第6図 人 第7s
FIG. 1 is a vertical sectional view of an embodiment of the present invention, FIG. J is a partially enlarged front view of FIG. 1, and FIG. 3 is a partially enlarged front view of FIG.
The figure is a developed view of the wing, Figure 3 is an explanatory diagram of the action of Figure 7, and Figure 4 is an explanatory diagram of the action of Figure 7.
The figure is a schematic vertical cross-sectional view explaining the operation of the conventional example, and Figure 7 is the first
Partially enlarged regular m* of the figure, Fig. 1 and Fig. 1 are rIti planes showing the airfoil of the present invention, No. 1 WJ is a front view, No. D is a longitudinal sectional view, and No. 1 O is a conventional example. Longitudinal cross-sectional view of the airfoil 1, 1st
Figure 1 is a comparison diagram of pump performance, Figures 1-1, i, and y are diagrams to show how to balance the impeller, and Figure 1 is a front view, and Figure 73 is a longitudinal cross-sectional view. It is. l.. Impeller -.. Blade 3.. Center - 3'.. Pump main shaft.. J.. Blade tip 6.. Suction port 7.. Discharge casing t.. Conical hub De.
・Boundary III 10...Radiation 1/...Outer periphery /K...Intersection /3...Backside Mu/, )', O', D
'...Minute part 0.0'...Axis center. Figure 1 Figure 2 Figure 3 Figure 5 Figure 6 Person 7s

Claims (1)

【特許請求の範囲】[Claims] l 吸込口と吐出ケーシング間が円錐411回転面をな
したポンプケーシングに、外周回転面がポンプケーシン
グの円錐様回転l1fKlli間少く接近する円錐様を
なしたねじ羽根の翼を円錐様ハブに形成した羽根車をケ
ーシング内にて回転可能に支持した一枚翼羽根車ポンプ
におiで、翼の厚さが羽根車回転中心を直交してとおる
電線上に存在する翼の部分が回転中心に対して等し一モ
ーメントを持つように翼厚を変え石と共に、羽根車の支
持部をとお夛回転中心K[交する軸に対する軸方向距離
をアーふとする前記翼の部分のモーメントの合計が零と
なるように翼厚を変化させてなる一枚翼羽根車ポンプ。
l On a pump casing with a conical 411 rotating surface between the suction port and the discharge casing, a conical hub is formed with a conical screw blade whose outer circumferential rotating surface approaches the pump casing a little during the conical rotation l1fKlli. In a single-blade impeller pump in which the impeller is rotatably supported within the casing, the thickness of the blade is such that the part of the blade that is on the electric wire passing perpendicularly to the center of rotation of the impeller is relative to the center of rotation. The thickness of the blades is changed so that the blades have an equal moment, and the support part of the impeller is attached to the center of rotation K. A single-blade impeller pump with varying blade thickness.
JP11729981A 1981-07-27 1981-07-27 Single blade type turbine pump Granted JPS5818592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11729981A JPS5818592A (en) 1981-07-27 1981-07-27 Single blade type turbine pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11729981A JPS5818592A (en) 1981-07-27 1981-07-27 Single blade type turbine pump

Publications (2)

Publication Number Publication Date
JPS5818592A true JPS5818592A (en) 1983-02-03
JPS6122155B2 JPS6122155B2 (en) 1986-05-30

Family

ID=14708309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11729981A Granted JPS5818592A (en) 1981-07-27 1981-07-27 Single blade type turbine pump

Country Status (1)

Country Link
JP (1) JPS5818592A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0561489U (en) * 1992-01-23 1993-08-13 石垣機工株式会社 Foreign material cutting device in sewage pump
JPH05321867A (en) * 1992-05-25 1993-12-07 Sanko Pump Seisakusho:Kk Complex impeller formed by integrating mixed flow blade and centrifugal blade together
JPH0722094U (en) * 1986-10-06 1995-04-21 インガーソル・ランド・カンパニー Pulp pumping equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0722094U (en) * 1986-10-06 1995-04-21 インガーソル・ランド・カンパニー Pulp pumping equipment
JPH0561489U (en) * 1992-01-23 1993-08-13 石垣機工株式会社 Foreign material cutting device in sewage pump
JPH05321867A (en) * 1992-05-25 1993-12-07 Sanko Pump Seisakusho:Kk Complex impeller formed by integrating mixed flow blade and centrifugal blade together

Also Published As

Publication number Publication date
JPS6122155B2 (en) 1986-05-30

Similar Documents

Publication Publication Date Title
US4531890A (en) Centrifugal fan impeller
US5797724A (en) Pump impeller and centrifugal slurry pump incorporating same
JP2003515041A (en) Single-wing or multi-wing rotor
US4427336A (en) Single vane rotodynamic impeller
JP2001509226A (en) Impeller and fan incorporating it
US3363832A (en) Fans
JPS5818592A (en) Single blade type turbine pump
JP2008196381A (en) Impeller for centrifugal compressor and centrifugal compressor
JP2020165379A (en) Turbo pump
JPH05202899A (en) Nondisturbing pump
JPH0692723B2 (en) Axial flow fluid machine
US4530644A (en) Device for deriving energy from a flowing medium
JP3003357B2 (en) Swirl pump
JPS5818591A (en) Single balde type turbine pump
JPH0380997B2 (en)
JPH0689651B2 (en) Axial flow fluid machine
JP4183612B2 (en) Axial flow pump
JPH05340265A (en) Radial turbine moving blade
JPH1030544A (en) Fluid machine
JPH09195986A (en) Impeller of fluid machinery
JPS61164096A (en) Centrifugal pump rotatable to both normal and reverse directions allowing both normal and reverse flow of liquid
JP4084112B2 (en) Francis turbine runner and Francis turbine
Schwenk et al. Experimental investigation of a transonic axial-flow-compressor rotor with double-circular-arc airfoil blade sections III: comparison of blade-element performance with three levels of solidity
KR100285968B1 (en) Centrifugal Fan Impeller
JP2002005069A (en) Suction bell mouth of pump