JPS58185757A - Regenerating method of electroless plating bath - Google Patents

Regenerating method of electroless plating bath

Info

Publication number
JPS58185757A
JPS58185757A JP6736482A JP6736482A JPS58185757A JP S58185757 A JPS58185757 A JP S58185757A JP 6736482 A JP6736482 A JP 6736482A JP 6736482 A JP6736482 A JP 6736482A JP S58185757 A JPS58185757 A JP S58185757A
Authority
JP
Japan
Prior art keywords
copper
exchange membrane
bath
complexing agent
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6736482A
Other languages
Japanese (ja)
Other versions
JPS634634B2 (en
Inventor
Hideo Honma
英夫 本間
Yoshiaki Suzuki
喜昭 鈴木
Yasuhiro Matsumoto
康弘 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUASHIRITEI KK
KANTO KASEI KOGYO KK
Original Assignee
FUASHIRITEI KK
KANTO KASEI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUASHIRITEI KK, KANTO KASEI KOGYO KK filed Critical FUASHIRITEI KK
Priority to JP6736482A priority Critical patent/JPS58185757A/en
Priority to US06/372,133 priority patent/US4425205A/en
Priority to DE8282400798T priority patent/DE3272286D1/en
Priority to EP82400798A priority patent/EP0088852B1/en
Priority to GB08212818A priority patent/GB2117003B/en
Priority to CA000418017A priority patent/CA1220759A/en
Publication of JPS58185757A publication Critical patent/JPS58185757A/en
Publication of JPS634634B2 publication Critical patent/JPS634634B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1617Purification and regeneration of coating baths

Abstract

PURPOSE:To prevent the accumulation of a by-product and to prolong the life of an electrolytic bath by using a complexing agent which is recovered from an electroless copper plating bath contg. the complexing agent and supplying the consumed copper to the bath by a diaphragm electrolysis method. CONSTITUTION:A plating soln. 12 is removed from an electroless copper plating bath 11 contg. a complexing agent, and the copper ions in the soln. are separated and settled in a copper settling device 21. The soln. made free from copper is conducted to a recovering device 27 for the complexing agent and is made acidic so that the complexing agent is deposited. The deposited complexing agent is conducted to the anode chamber 33 of an electrolyzing device 31, and a neutral electrolyte soln. (when an ion exchange membrane is an anion exchange membrane) or a neutral or alkaline electrolyte soln. (when said ion exchange membrane is a cation exchange membrane) is put in the cathode chamber 35 partitioned by said exchange membrane. A DC voltage is applied between a copper anode 39 and cathode 41 to form a copper complex. The copper complex is recycled through a line 13 to the bath 11.

Description

【発明の詳細な説明】 本発明はエチレンジアミン四酢c1k(IDTA)など
の細化剤を自む無電解細めつき浴の再生方法に圓し、特
には、めっき冶中から回収した細化剤を用い、アノード
俗解により形成した銅イオンなEDTA−銅飴化物とし
て供給する無電解めっき浴の再生方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for regenerating an electroless thinning bath containing a thinning agent such as ethylenediaminetetraacetic acid C1K (IDTA). The present invention relates to a method for regenerating an electroless plating bath in which copper ion EDTA formed by using an anode is supplied as a copper candy.

無電解めっきは、それが電気めつきの下地めっきとして
用いられるものであろうとも、また、それ自体で用いら
れるものであろうとも、その反応に伴なって、めっき浴
中の銅イオン、PI(すなわち水酸化イオンおよび還元
剤が減少し、その減少に応じた反応−生智が生じる。こ
れは、無電解めっき反応が不可逆反応であるため不可避
の現象である。  ” 一方、無電解銅めつき皮膜の品質は、めっき浴組成およ
びめっき条件によって大きく左右される。つまり、めっ
き浴中の反応副生成物による塩磯度の増大につれて無電
解銅めっき皮膜の特性や品質が態化するし、めっき反応
速度が変化してくる。
In electroless plating, whether it is used as a base plating for electroplating or used on its own, copper ions, PI ( In other words, hydroxide ions and reducing agents decrease, and a reaction occurs in response to the decrease.This is an unavoidable phenomenon because the electroless plating reaction is an irreversible reaction.''On the other hand, electroless copper plating The quality of the film is greatly influenced by the plating bath composition and plating conditions.In other words, as the salt content increases due to reaction by-products in the plating bath, the characteristics and quality of the electroless copper plating film change. The reaction rate will change.

ところで、プリント配線板のための無電解銅めっき、中
でもセミアディティブまたはフルアディティブ法により
作製されるプリント配−板においては、その無電解めっ
きの皮膜物性は、電解銅めつきでその殆んどの回路を形
成する従来のサブトラクティブ法における単なるスルホ
ールつまり導体化のみを目的とする無電解めっきの皮膜
物性に比べると、はるかに良質な皮膜の形成が要求され
る。つまり、無電解銅めっき皮膜の物性がビロリン鍍銅
めっきや([!細めつきに代表される電気鋼めっきのそ
れと同じようなものでなければ、同等のプリント配線板
は得られないし、また、めっき皮膜のコントロールの点
においても、無電解−めっきの反応速度のコントロール
が非常に重要になってくる。そのため、無電解銅めっき
浴組成は極カ一定した濃度に管理され、かつ、反応副生
物も極力少な〈従来は、無電解めっき反応に伴なって減
少するCu” p 0)1− * 8元剤を+動もしく
は自動分析、または被めっき体の処理りとめつき時間か
ら推測して、めっき浴中のこれら成分濃度が所定濃度&
:達した時、別途用意した憾峡銅溶液、水酸化ナトリウ
ム溶液および還元剤たとえばホルムアルデヒドを固体も
しくは水溶液状独で、それぞれ一定置を加えて、浴m度
を一部していた。
By the way, in electroless copper plating for printed wiring boards, especially in printed wiring boards produced by semi-additive or fully additive methods, the physical properties of the electroless plating film are similar to that of electrolytic copper plating. Compared to the conventional subtractive method of forming electroless plating, which aims only to form through-holes, that is, conductivity, it is required to form a film of much better quality. In other words, unless the physical properties of the electroless copper plating film are similar to those of biroline copper plating ([! Controlling the reaction rate of electroless plating is also very important in terms of controlling the film.Therefore, the composition of the electroless copper plating bath must be controlled to a very constant concentration, and the reaction by-products must also be controlled. As little as possible (Currently, Cu" p0)1-*8, which decreases with the electroless plating reaction, is removed by dynamic or automatic analysis, or estimated from the processing and plating time of the object to be plated. The concentration of these components in the bath is the specified concentration &
When the bath temperature was reached, a certain amount of separately prepared copper solution, sodium hydroxide solution, and reducing agent such as formaldehyde in solid or aqueous solution were added to partially reduce the bath temperature.

一方、これに伴ないtIAcmナトリウム、ギ敞ソーダ
さらにはメタノール、エタノールなどのアルコール類が
蓄積されてくる。そこで′、こレラ反応副生物が増大す
ると、めっき不良が増加するため、経験的にある浴寿命
まで使用すると浴の一部または全部を廃棄し、新しいめ
っき浴と更新していた。
On the other hand, along with this, sodium tIAcm, sodium chloride, and alcohols such as methanol and ethanol are accumulated. Therefore, as cholera reaction by-products increase, plating defects increase, so experience shows that after a certain bath life has been reached, part or all of the bath is discarded and replaced with a new plating bath.

しかしながら、1この方法ではコストが高くなるばかり
でなく、品質の/Jラッキ、作業性の題化などの弊害を
招き、特に上述の如く高品質の無電解めっき皮膜が要求
される場合においては問題であった。また、めっき液を
更新した場合の廃液の処理も問題であった。すなわち、
老廃液中の細化剤に対するCOD対策、BOD対策等の
無害化処理が必要となり、したがって、公W規制の点か
らいって無害化処理費用の増大を招くばかりでなく、廃
棄すること自体が峻しくなってきている社食情勢に対応
できない。
However, 1.This method not only increases costs, but also causes problems such as poor quality and poor workability, which is particularly problematic when a high-quality electroless plating film is required as described above. Met. Another problem was the treatment of waste liquid when the plating solution was renewed. That is,
Detoxification treatment such as COD and BOD countermeasures is required for the thinning agent in the waste liquid, and therefore, from the perspective of public W regulations, not only will the cost of detoxification treatment increase, but it will also be difficult to dispose of it. Unable to respond to the increasingly difficult social food situation.

本発明は、上記の如き従来技術の欠点を解決することを
目的とするものであり、反応刷生切の蓄積が少なく安定
した無電解めっきが行なえ、しかも、廃液処、理の問題
も大巾に低減しうる無電解めっき浴の再生方法を提供す
ることを目的とする。
The present invention aims to solve the above-mentioned drawbacks of the prior art, and it is possible to perform stable electroless plating with less accumulation of reactive printing chips, and it also eliminates the problems of waste liquid treatment and processing. It is an object of the present invention to provide a method for regenerating an electroless plating bath that can reduce the amount of water used.

すなわち、本発明の無電解めっき浴の再生方法は、以下
の(イ)〜に)の工程を含むことを特徴とする。
That is, the method for regenerating an electroless plating bath of the present invention is characterized by including the following steps (a) to (b).

←)錯化剤を含む無電解鋼めっき浴から無電解めっき液
の一部もしくは全部を連続的または間欠的に取り出して
、該液中の銅イオンを該液中から分離除去する工程。
←) A step of continuously or intermittently taking out part or all of an electroless plating solution from an electroless steel plating bath containing a complexing agent, and separating and removing copper ions in the solution.

幹) この液を酸性にして細化剤を析出せしめて回収す
る工程。
The process of acidifying this liquid to precipitate the thinning agent and recovering it.

(→ イオン交換膜により仕切って、銅を陽極とする陽
極室および一極を配設した陽極室を設け、Mlliii
極室には中性電解質溶液(曲記イオン交換編がアニオン
交換膜の場合)または中性もしくはアルカリ性電解實−
mW(前記イオン交換線がカチオン交換膜の場合)を入
れ、一方、陽極室には前記回収細化剤を導入し、前記両
極間に直流maを通電する工程。
(→ Separated by an ion exchange membrane, an anode chamber with a copper anode and an anode chamber with a single electrode are provided, and Mlliii
The polar chamber contains a neutral electrolyte solution (if the ion exchange version is an anion exchange membrane) or a neutral or alkaline electrolyte solution.
mW (if the ion exchange line is a cation exchange membrane), while introducing the recovery attenuation agent into the anode chamber, and passing DC ma between the two electrodes.

に) この陽極室内の浴液を無電解めっき浴にリサ、イ
クルする工程。
2) The process of recycling the bath solution in this anode chamber into an electroless plating bath.

以下、添付図面に沿って本発明をさらに詳細に説明する
Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.

#h1図は本発明の70−図である。無電解めっき浴1
2には銅、イオン、水酸化イオン(pHN整剤)、還元
剤、細化剤を含み、さらに檎青の助剤を含むことができ
る。無電解銅めっきが醜行するにつれて、−イオン、水
酸化イオンおよび越元剤が消費され、一方、ギ醸ナトリ
ウム、メチルアルコールなど(還元剤としてホルムアル
デヒドを使用した場合)が細化ずる。また、銅イオンが
4itcII銅として、また、水酸化イオンが水酸化ナ
トリウムとして加えられた場合は、硫酸ナトリウムが蓄
積されてくる。そこで、tnn仕分サイクル糸および非
サイクル系からそれぞれライン13および15により供
給されると共に、めっき液(副生物を含む)の一部もし
くは全部が連続的または間欠的にめつき浴12から取り
出される。なお、ここで間欠的とは一定周期をもたず単
に非連続的に取り出される場合も含む。
#h1 diagram is a 70- diagram of the present invention. Electroless plating bath 1
2 contains copper, ions, hydroxide ions (pHN adjuster), reducing agent, and thinning agent, and may further contain an auxiliary agent of limestone. As electroless copper plating progresses, - ions, hydroxide ions, and eliminators are consumed, while sodium hydroxide, methyl alcohol, etc. (when formaldehyde is used as a reducing agent) are reduced. Furthermore, when copper ions are added as 4itcII copper and hydroxide ions are added as sodium hydroxide, sodium sulfate will accumulate. Therefore, part or all of the plating solution (including by-products) is continuously or intermittently removed from the plating bath 12 while being supplied from the tnn sorted cycle yarn and the non-cycle system through lines 13 and 15, respectively. Note that the term "intermittent" as used herein includes cases in which the information is simply taken out discontinuously without a fixed period.

第1図は供給駄に応じて一部をオーt’l −7u−し
て連続的に取り出す場合について示しており、オーツ々
−フローしためつき液12はライン17を経て濾過器1
9(省略することもできる。)を介して供給口より銅沈
殿装置21に導かれる。
FIG. 1 shows a case in which a portion of the blotting liquid 12 is automatically taken out depending on the amount of water supplied, and the blotting liquid 12 that has automatically flowed is passed through a line 17 to a filter 1.
9 (which can be omitted) is led to the copper precipitation device 21 from the supply port.

銅沈殿装fi21では銅イオンの沈殿、除去が行なわれ
る。銅イオンの分離は、たとえば、以下のような方法の
1つまたは2つ以上の組合せ等により鯛キレートを分解
して綱を金属銅もしくはms化物として沈殿することに
より行なわれる。
In the copper precipitation fi21, copper ions are precipitated and removed. Separation of copper ions is carried out, for example, by decomposing the sea bream chelate by one or a combination of two or more of the following methods and precipitating the metal copper or ms compound.

(υ 銅板、銅箔、銅粉などの金NN14fを液中に飾
加する。
(υ Decorate the liquid with gold NN14f such as a copper plate, copper foil, or copper powder.

<27  Pd”+などの触媒を液中に添加する。<27> Add a catalyst such as Pd''+ to the liquid.

(37液を44mかつ高pHに維持する。(Maintain liquid 37 at 44m and high pH.

また、銅の除去はこれら沈殿除去とは別に電解除去によ
っても行なわれる。たとえば、無電解鋼めっき液中に不
溶性陽極および一極を配して直流電流をa電して陽極上
に銅を析出せしめて、鹸浴中の嗣イオンを除去する。
In addition to these precipitation removal methods, copper removal is also carried out by electrolytic removal. For example, an insoluble anode and one electrode are placed in an electroless steel plating solution, and a direct current is applied to deposit copper on the anode to remove residual ions in the soap bath.

したがって、銅沈殿装置IIt21は、所望により銅粉
、Pd1+、アルカリ剤などの投入部材であるいは加熱
部材を含むことができ、さらに上記反応を速やかに行な
うために攪拌部材を含むことができる。また、wh檎お
よび一極を配設することもできる。沈殿した銅成分は、
成型、〕9ルブ24から排出される。
Therefore, the copper precipitator IIt21 can include an input member for copper powder, Pd1+, an alkali agent, etc. or a heating member, if desired, and can further include a stirring member to quickly carry out the above reaction. Furthermore, a whirlpool and a single pole can also be provided. The precipitated copper component is
Molding, ] 9 is discharged from the lube 24.

嗣イオンの沈殿除去された溶液は、排出口がらライン2
3を経て濾過器25(省略することもできる。)を介し
て錯化剤回収装置27に4かれる。錯化剤回収装置には
ライン28を経て酸を導くことができ、この装置内の液
性を錯化剤が析出するに十分に酸性とすることにより、
−化銅が析出する。好適なpH範囲は錯化剤によって異
なるが、たとえばEDTAの場合はpH4,0以下が一
般的であり、好ましくはpH2,0以下、さらに好まし
くはpH1,0以下である。液性の調整には一般の酸が
適当である。たとえば、硫酸、塩酸などが例示できる。
The solution from which the ions have been precipitated and removed is passed through the outlet through line 2.
3 and then to a complexing agent recovery device 27 via a filter 25 (which may be omitted). Acid can be led to the complexing agent recovery device via line 28, and by making the liquid in this device sufficiently acidic for the complexing agent to precipitate,
-Copper chloride precipitates. The suitable pH range varies depending on the complexing agent, but for example, in the case of EDTA, it is generally pH 4.0 or less, preferably pH 2.0 or less, and more preferably pH 1.0 or less. General acids are suitable for adjusting the liquid properties. Examples include sulfuric acid and hydrochloric acid.

第2図は錯化剤としてli;DTAを用いた場合の回収
率とpHとの関係を示すグラフである。液性をpH2,
0以下とすることにより十分にEDTAを回収すること
ができ、pH1,0以下とすることがさらに好ましいこ
とが判る。なお、本例においては硫酸でpHを調整した
FIG. 2 is a graph showing the relationship between recovery rate and pH when li;DTA is used as a complexing agent. pH2,
It can be seen that EDTA can be sufficiently recovered by setting the pH to 0 or less, and it is more preferable to set the pH to 1.0 or less. In this example, the pH was adjusted with sulfuric acid.

このように、無電解鋼めっき浴からの錯化剤の分離は、
銅キレート剤の分解、細化剤の析出分層により達成され
るが、このプロセスの適用できる錯化剤としては、ED
TAの他に、ロッシェル(歯石噛ナトリウムカリウム)
、エチレンジアミンテトラ電ン、トリエタノールアミン
、ジェタノールアミンなど多くの公知の無′−解銅めつ
き用−化銅がある。
Thus, the separation of complexing agents from electroless steel plating baths is
This is achieved by the decomposition of a copper chelating agent and the precipitation of a thinning agent, but the applicable complexing agent for this process is ED.
In addition to TA, Rochelle (sodium potassium tartar)
There are many known copper oxides for copper-free copper plating, such as ethylene diamine tetraene, triethanolamine, and jetanolamine.

析出した細化剤はライン29を経て電解装置31の陽極
室33に4かれる。なお、この際、−化銅は必要により
洗浄さらには乾燥してもよく、さらに−収線化銅は固形
状態で供給してもよく、また、予めアルカリ溶液に俗解
して溶液状線で電解装置31の陽極室33に導いてもよ
いO 電解@置3にはイオン交換膜37に仕切られて陽極室3
3および陽極室35が形成されている。そして、陽極室
33には銅からなる陽極3゛9が配設され、一方、幽4
11II室35には陰極41が配設されている。輌機4
1としては、ステンレス、カーーンなどの一極水浴液に
不溶性のものが好ましい。
The precipitated thinning agent is discharged into the anode chamber 33 of the electrolyzer 31 via the line 29. At this time, the -copper chloride may be washed and further dried if necessary, and the -copper chloride may be supplied in a solid state, or it may be made into an alkaline solution in advance and electrolyzed with a solution wire. O may be introduced into the anode chamber 33 of the device 31.The O electrolyzer 3 has an anode chamber 3 separated by an ion exchange membrane 37.
3 and an anode chamber 35 are formed. An anode 39 made of copper is disposed in the anode chamber 33, while an anode 39 made of copper is disposed in the anode chamber 33.
A cathode 41 is arranged in the 11II chamber 35. Tank machine 4
Preferably, the material 1 is insoluble in a monopolar water bath, such as stainless steel or Karn.

陽極室33には回収錯化剤が固体状繍、液体状態などで
供給されると共に、その液性は錯化剤が溶解可能な液性
に保たれる。たとえばEDTAの場合はpH4,0以上
が一般的であり、好ましくはpH7,0以上である。
The recovered complexing agent is supplied to the anode chamber 33 in a solid state, liquid state, etc., and the liquid property is maintained at a level in which the complexing agent can be dissolved. For example, in the case of EDTA, the pH is generally 4.0 or higher, preferably 7.0 or higher.

(1)11m極室35にアルカリ性溶液が入れられる場
合は、イオン交換膜としてカチオン交換膜が用いられ、
また、(II)@極室35に中性電解質溶液が入れられ
る場合は、イオン交換膜としてカチオンまたはアニオン
交換膜のいずれもが用いられる。カチオン交換膜はすぐ
れた特性のものが容易に入手でき、この点ではアニオン
交換膜より好ましい。
(1) When an alkaline solution is placed in the 11m electrode chamber 35, a cation exchange membrane is used as the ion exchange membrane,
In addition, (II) @ When a neutral electrolyte solution is placed in the electrode chamber 35, either a cation or anion exchange membrane is used as the ion exchange membrane. Cation exchange membranes are readily available with excellent properties and are preferred over anion exchange membranes in this respect.

両極間、すなわち陽極39および陰極41間に直流電流
を通電して電解すると、銅が溶解して陽極室33中に銅
イオンが生成すると共に、このイオンはフィン29を経
て供給される錯化剤と銅錯化物を形成し、らいで、この
銅錯化物はライン13から無電解めっき浴11にリサイ
クルされる。
When electrolysis is performed by passing a direct current between the two electrodes, that is, between the anode 39 and the cathode 41, copper is dissolved and copper ions are generated in the anode chamber 33, and these ions are supplied to the complexing agent via the fins 29. The copper complex is recycled to the electroless plating bath 11 via line 13.

このように銅イオン(錯化合物として)はフィン13よ
り供給され、また、oH−イオン還元剤略は門イン15
からもしくは15・および13を経て供給される。以上
、銅イオンの分離、錯化剤の回収、電解にょる嗣イオン
の溶出を別々の僧で行なう場合について説明したが、上
記各操作を1つの槽内によって行なうことも可能である
。  ′ 第3図は電流密度とアノード溶解効率との関係を示すグ
ラフである。これは第1図に示した電解装置を用い、陽
極室中にEDT’^・4 Na O,08mol / 
lを、陰極室中にNaOH0,1mol//を入れ、カ
チオン交換膜を用い、陽極として0.54dの銅板を一
極として0.5d+/の18−8ステンレスを用い、g
m5o℃で行なった。
In this way, copper ions (as a complex compound) are supplied from the fin 13, and the oH-ion reducing agent is supplied from the fin 15.
or via 15 and 13. Although the case where separation of copper ions, recovery of complexing agent, and elution of ion by electrolysis are carried out in separate chambers has been described above, it is also possible to carry out each of the above operations in one tank. ' Figure 3 is a graph showing the relationship between current density and anode dissolution efficiency. This was done by using the electrolyzer shown in Figure 1, and adding EDT'^.4 Na O, 08 mol /
1 mol// of NaOH is placed in the cathode chamber, a cation exchange membrane is used, a 0.54 d copper plate is used as an anode, and a 0.5 d+/18-8 stainless steel plate is used as the anode.
The test was carried out at 50°C.

184図は同様に銅イオンとEDTAとの濃度比R(R
=(EDTA)/(Cu”))と、アノード゛溶解効率
との関係を示すグラフである。EDTA、、□うイE”
、tえよ4.ユ□、[。1,1ケ  □なった。銅の錯
化剤であるEDTAJII度が高い方が、電流効率よく
溶解し、したがって、錯化剤を所定繊度以上に保つこと
により効率よく溶解補給することができる。
Similarly, Figure 184 shows the concentration ratio R (R
It is a graph showing the relationship between =(EDTA)/(Cu")) and the anode dissolution efficiency. EDTA,...
4. Yu□, [. 1,1 □It became. The higher the EDTAJII degree of the copper complexing agent, the more efficiently it dissolves with current, and therefore, by keeping the complexing agent at a predetermined fineness or higher, it can be dissolved and replenished efficiently.

第5図は陽極室の液温とアノード溶解効率の関係を示す
グラフである。これは、第2図と同一の両極室組成、電
流値2A、通電艦3600クローン、陽極電流密度3A
/dwl、隘極電流田度4 A/antで行ならた。陽
極室の液温か高い方が電流効率よく銅が溶解することが
判る。たとえばプリント配線板のように、めっきの高連
化とめつき被膜の物性を厳しく要求される無電解めっき
では、めっき浴温が極力高い状態で使用するのが理想的
であるので、一層効果的である。
FIG. 5 is a graph showing the relationship between the liquid temperature in the anode chamber and the anode dissolution efficiency. This has the same bipolar chamber composition as in Figure 2, current value 2A, energized ship 3600 clone, and anode current density 3A.
/dwl, the polar current was 4 A/ant. It can be seen that the higher the temperature of the liquid in the anode chamber, the more efficient the current is in dissolving copper. For example, in electroless plating, such as printed wiring boards, which requires high plating density and strict physical properties of the plating film, it is ideal to use the plating bath at a temperature as high as possible, making it even more effective. be.

以上説明したように、本発明によれば、無電解めっき液
の少なくとも一部を取り出し、これから錯化剤を回収し
、この錯化剤を用いて銅錯化合物として消費された銅分
を供給することにより、硫酸ナトリウムやギ酸ナトリウ
ムあるいはアルコールといった副生物の無電解銅めっき
浴中への蓄積が非常に少なくなり、極端には一部ナトリ
ウムのIM積はゼロになり、電解浴の大巾な長寿命化が
可能となり、高品簀の無電解めっきを安定に行なうこと
ができる。また、従来はめつき廃液のCOD 、 no
oM*が公害上大きな間脳となっていたが、めっき浴の
長寿命化により浴を廃集せずにすみ、しかもEDTAな
どの高価な・−化銅を回収して有効に利用することがで
きる。
As explained above, according to the present invention, at least a portion of the electroless plating solution is taken out, a complexing agent is recovered from it, and the copper content consumed as a copper complex compound is supplied using the complexing agent. As a result, the accumulation of by-products such as sodium sulfate, sodium formate, or alcohol in the electroless copper plating bath becomes extremely small, and in the extreme, the IM product of some sodium becomes zero, and the large length of the electrolytic bath is reduced. It is possible to extend the service life and perform stable electroless plating of high-quality screens. In addition, conventionally, COD of plating waste liquid, no
OM* has been a major problem in terms of pollution, but by extending the life of the plating bath, there is no need to dispose of the bath, and moreover, expensive copper oxides such as EDTA can be recovered and used effectively. can.

実験例 IDTA・4Nm       301/ICw 80
4 ・51(*0                 
61171ノリホルムアルデヒド          
     7 1/1pH(NaOHで#@)    
      tt、aの浴組成(浴jli5j)を用い
、温度50’Cc’、ガラスエポキシ銅張横層板に無電
解めっきを施した。このとき、第1表に示すように浴中
に減酸ナトリウムを添加し、その影−を調べた。
Experimental example IDTA・4Nm 301/ICw 80
4 ・51 (*0
61171 Noriformaldehyde
7 1/1 pH (#@ with NaOH)
Using a bath composition of tt and a (bath jli5j), electroless plating was applied to a glass epoxy copper-clad horizontal laminate at a temperature of 50'Cc'. At this time, sodium deoxylate was added to the bath as shown in Table 1, and its effect was examined.

第1表 実施例1 ガラスエポキシ鋼張積層板をリン酸三ソーダ409/l
で脱脂し、過硫酸アンモニウム1001/lでエツチン
グし、ノラジウム、スズのコロイド溶液ついで硫酸5o
 l / lで活性化した後、拳法および従来法で無電
解鋼めっきを行なった。
Table 1 Example 1 Glass epoxy steel clad laminate with trisodium phosphate 409/l
Degreased with 1001/l of ammonium persulfate, etched with a colloidal solution of noradium and tin, and then etched with 50 ml of sulfuric acid.
After activation with 1/1, electroless steel plating was performed by Kenpo and conventional methods.

浴組成 硫酸銅      1o11/I KDTA          509/lホルムアルデ
ヒド         1 og7を水酸化ナトリウム
          pH12にallG浴   温 
  50℃ l di/lの負荷で12日間めっきを行なった。
Bath composition Copper sulfate 1o11/I KDTA 509/l Formaldehyde 1 og7 to sodium hydroxide pH 12 allG bath Temperature
Plating was carried out for 12 days at 50° C. and under a load of l di/l.

従来法では銅イオンおよび水酸化イオンの補給を硫酸銅
および水酸化ナトリウムを追加することにより行なった
ので、 iitmナトリウムの濃度が上昇した。拳法で
は第1図に示した装置めっき浴を齢記浴組成とし、カチ
オン交換膜を用い。
In the conventional method, copper ions and hydroxide ions were supplemented by adding copper sulfate and sodium hydroxide, so the concentration of IITM sodium increased. In Kempo, the equipment plating bath shown in Figure 1 has the composition of the old bath and uses a cation exchange membrane.

電解装置の陰極室にNaOH0,1g/jを入れ、陽極
として鋼板を一極としてスグンレス根を用V)、陽憔電
流@・[2,5A/ da’、Us電流密反4A/dm
で通電し、盪た、陽極室に回収El)TA 4を補給し
て行なったが硫酸す) IJウムの濃度の増加はみられ
なかった。
Put 0.1 g/j of NaOH into the cathode chamber of the electrolyzer, use a steel plate as an anode, and use a sugunless root (V), positive current @ [2,5 A/ da', Us current density 4 A/dm
The test was carried out by supplying the collected El)TA4 to the anode chamber, but no increase in the concentration of IJum was observed.

El)TAの回収をよ、めつ0浴の一部を取り出し、p
H1k14として銅袖を加えて銅イオンを沈殿除去し、
ついでP液にH,So、を加えてpH2,0として定量
的にEDTAを析出せしめ、′P遇することにより何な
っ九〇 この結果を以下に示す。
El) To collect TA, take out a part of the bath and p
Add copper sleeves as H1k14 to precipitate and remove copper ions,
Next, H and So were added to the P solution to adjust the pH to 2.0 to quantitatively precipitate EDTA.The results are shown below.

半田耐熱におけるコーナークラックの発生異状析出 非触媒性部位への鋼の析出 外 観(析出状態等) 延 性(60XI 0XOJ)5’m)抗張力(60X
10X0.05jwwe)
Occurrence of corner cracks during soldering heat resistance Abnormal precipitation Precipitation of steel in non-catalytic areas Appearance (precipitation state, etc.) Ductility (60XI 0XOJ) 5'm) Tensile strength (60X
10X0.05jwwe)

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明について示すフロー図である。 第2図はFDTAの回収率を示すグラフである。 第3図は電流密度とアノード溶解効率との関係を示すグ
ラフである。 第4図は銅イオンとEDTAとの濃度比Rと。 アノード溶解効率との1≠係を示すグラフである。 第5図は液温とアノード効率との関係を示すグラフであ
る。 11・・・無電解めつ自浴  21・・銅沈殿装置27
・・・錯化剤1可収@置  31・・・電解装置37・
・イオン交換膜  39・・・陽   極41・・・陰
     極 ′7!P)2図 を弐4L梵(A/drn2) 一 ( 5図 0 0
FIG. 1 is a flow diagram illustrating the present invention. FIG. 2 is a graph showing the recovery rate of FDTA. FIG. 3 is a graph showing the relationship between current density and anode dissolution efficiency. Figure 4 shows the concentration ratio R of copper ions and EDTA. It is a graph showing a relationship of 1≠ with anode dissolution efficiency. FIG. 5 is a graph showing the relationship between liquid temperature and anode efficiency. 11... Electroless toilet bath 21... Copper precipitation device 27
...Complexing agent 1 available @place 31...Electrolyzer 37.
・Ion exchange membrane 39...Anode 41...Cathode '7! P) 2 diagrams 24L Sanskrit (A/drn2) 1 (5 diagrams 0 0

Claims (1)

【特許請求の範囲】 1、(イ)錯化剤を含む無電解銅めっき浴から無電解め
っき液の一部もしくは全部を連続的または間欠的に取り
出して、該液中の銅イオンを該液から分離除去し、 (ロ) この液を酸性にして錯化剤を析出せしめて回収
し、 ぐ→ イオン交換膜により仕切って、銅を陽極とする陽
極室および陰極を配設した陰極室を設け、該陰極室には
中性電解質溶液(前記イオン交換膜がアニオン交換膜の
場合)または中性もしくはアルカリ性電解質溶液(前記
イオン交換膜がカチオン交換膜の場合)を入れ、一方、
陰極室には前記回収細化剤を導入し、前記両極間に直流
電流を通電し、 に)ついで、前記陽極室内の溶液を一前記無電解めっき
浴にリサイクルする ことを特徴とする無電解めっき浴の再生方法。
[Claims] 1. (a) Part or all of the electroless plating solution is continuously or intermittently taken out of the electroless copper plating bath containing a complexing agent to remove copper ions from the solution. (b) This solution is made acidic to precipitate the complexing agent and collected. → Separated by an ion exchange membrane, an anode chamber with a copper anode and a cathode chamber with a cathode are provided. , a neutral electrolyte solution (if the ion exchange membrane is an anion exchange membrane) or a neutral or alkaline electrolyte solution (if the ion exchange membrane is a cation exchange membrane) is placed in the cathode chamber;
Electroless plating characterized by introducing the recovery attenuation agent into the cathode chamber, passing a direct current between the two electrodes, and then recycling the solution in the anode chamber to the electroless plating bath. How to regenerate a bath.
JP6736482A 1982-03-13 1982-04-23 Regenerating method of electroless plating bath Granted JPS58185757A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP6736482A JPS58185757A (en) 1982-04-23 1982-04-23 Regenerating method of electroless plating bath
US06/372,133 US4425205A (en) 1982-03-13 1982-04-27 Process for regenerating electroless plating bath and a regenerating apparatus of electroless plating bath
DE8282400798T DE3272286D1 (en) 1982-03-13 1982-04-30 A process for regenerating electroless plating bath and a regenerating apparatus of electroless plating bath
EP82400798A EP0088852B1 (en) 1982-03-13 1982-04-30 A process for regenerating electroless plating bath and a regenerating apparatus of electroless plating bath
GB08212818A GB2117003B (en) 1982-03-13 1982-05-04 Apparatus and process for electroless plating bath regeneration
CA000418017A CA1220759A (en) 1982-03-13 1982-12-17 Regeneration of plating bath by acidification and treatment of recovered chelating agent in membrane cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6736482A JPS58185757A (en) 1982-04-23 1982-04-23 Regenerating method of electroless plating bath

Publications (2)

Publication Number Publication Date
JPS58185757A true JPS58185757A (en) 1983-10-29
JPS634634B2 JPS634634B2 (en) 1988-01-29

Family

ID=13342877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6736482A Granted JPS58185757A (en) 1982-03-13 1982-04-23 Regenerating method of electroless plating bath

Country Status (1)

Country Link
JP (1) JPS58185757A (en)

Also Published As

Publication number Publication date
JPS634634B2 (en) 1988-01-29

Similar Documents

Publication Publication Date Title
US4051001A (en) Process for regenerating etching solution
CA1220759A (en) Regeneration of plating bath by acidification and treatment of recovered chelating agent in membrane cell
US4933051A (en) Cyanide-free copper plating process
US5478448A (en) Process and apparatus for regenerating an aqueous solution containing metal ions and sulfuric acid
JPH10317154A (en) Method for reclaiming solution for tin plating and apparatus therefor
KR101797516B1 (en) Method for removing impurities from plating solution
US4435258A (en) Method and apparatus for the recovery of palladium from spent electroless catalytic baths
US6444112B1 (en) Manufacturing method of electrodeposited copper foil
US4906340A (en) Process for electroplating metals
US3843504A (en) Method of continuously regenerating and recycling a spent etching solution
JPH0416549B2 (en)
JPS62243776A (en) Method and apparatus for regenerating electroless copper plating bath
JPS58185757A (en) Regenerating method of electroless plating bath
US4416745A (en) Process for recovering nickel from spent electroless nickel plating solutions
JPH06272096A (en) Refining of cyanide-free copper plating bath
JPS639020B2 (en)
US4302319A (en) Continuous electrolytic treatment of circulating washings in the plating process and an apparatus therefor
JP3254580B2 (en) Etching waste liquid treatment method and etching waste liquid treatment apparatus
JP3468650B2 (en) Electroless nickel plating method
JP2002515549A (en) Copper electroplating method for substrate
JPS599159A (en) Method and apparatus for adjusting concentration of electroless plating bath
JPH07286279A (en) Electroless plating method
JP3339386B2 (en) Treatment method of electroless plating bath
US4238314A (en) Continuous electrolytic treatment of circulating washings in the plating process and an apparatus therefor
CN1242095C (en) Regeneration process of non-electrolysis plating liquid