JPS58185685A - Production of light oil and hydrogen by catalytic craking of heavy oil - Google Patents

Production of light oil and hydrogen by catalytic craking of heavy oil

Info

Publication number
JPS58185685A
JPS58185685A JP57068364A JP6836482A JPS58185685A JP S58185685 A JPS58185685 A JP S58185685A JP 57068364 A JP57068364 A JP 57068364A JP 6836482 A JP6836482 A JP 6836482A JP S58185685 A JPS58185685 A JP S58185685A
Authority
JP
Japan
Prior art keywords
catalyst
water
steam
heavy oil
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57068364A
Other languages
Japanese (ja)
Inventor
Tadashi Murakami
正 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Association for Residual Oil Processing
Original Assignee
Research Association for Residual Oil Processing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Association for Residual Oil Processing filed Critical Research Association for Residual Oil Processing
Priority to JP57068364A priority Critical patent/JPS58185685A/en
Publication of JPS58185685A publication Critical patent/JPS58185685A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To reduce the temperature of a fluid bed efficiently and utilize recoverd surplus heat effectively, by performing catalytic reaction under the supply of water or water and steam instead of steam in the production of light oil and hydrogen from heavy oil in the presence of reduced ion as catalyst. CONSTITUTION:In the 1st process of catalytic cracking, heavy oil 5 and water (through a pipe 8) or water and stream (through a pipe 4) are fed into a cracking tower 1. The tower 1 has a fluid bed formed with a catalyst regenerated by reduction in a catalyst regeneration tower 2 (2nd process) and introduced through a catalyst returning pipe 3. The supply of water is controlled by monitoring the temperature of the fluid bed and receiving the signal by a computer 9. Steam is also controlled in the same manner. The fluid bed in the cracking tower 1 is maintained at a temperature of 500-800 deg.C and under the pressure of 0-15kg/cm<2> and cracking is performed. The catalyst is regenerated in a reducing atmosphere by the intoduction of oxygen-containing gas 7.

Description

【発明の詳細な説明】 本発明は重質油の接触分解による軽質化と水嵩を製造す
る方法において、上記軽質化と水素の製造工程における
温度を調整する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for lightening heavy oil and producing water by catalytic cracking, in which the temperature is adjusted in the lightening and hydrogen production steps.

従来、ラテライト等の天然鉱石、その他の鉄化合物を用
いて調製した。還元され丸鉄を活性成分として含有する
触媒を用いて、重質油を接解分解して軽質化すふととも
に水素を製造する方法が提案されているC特開1856
−49790号)。
Conventionally, it has been prepared using natural ores such as laterite and other iron compounds. JP-A-1856 C proposes a method for producing hydrogen as well as lighter sulphate by catalytically cracking heavy oil using a catalyst containing reduced round iron as an active ingredient.
-49790).

この提案方法では、tず、第1工場において常圧蒸留残
渣ヤ減圧蒸留残渣のごとき重質油をスチームの供給下で
500〜800Cの温度、0〜ll5k&/alGの圧
力下で、還元された鉄を活性成分として含有する触媒粒
子と流動床方式で接触させることにより、重質油を分解
して分解ガスと分鱗油を生成させるが、その際触媒上に
コークが付着する。tた。この重質油の分解と同時にス
チームは触媒中の還元された鉄といわゆるスチームアイ
アン反応を起して水素を生成するとともに触媒中の鉄が
酸化1れる。
In this proposed method, first, heavy oils such as atmospheric distillation residues and vacuum distillation residues are reduced in the first factory at a temperature of 500 to 800C and a pressure of 0 to 115k/alG under the supply of steam. By contacting catalyst particles containing iron as an active component in a fluidized bed method, heavy oil is cracked to produce cracked gas and scale oil, but at this time coke adheres to the catalyst. It was. Simultaneously with the decomposition of this heavy oil, the steam causes a so-called steam iron reaction with the reduced iron in the catalyst to produce hydrogen and the iron in the catalyst is oxidized.

次いで、上記方法では、このようにして酸化され丸鉄を
含み、且つその表面にコークを付着した触媒を@2工程
に移送し、鉄触媒を、それに付着したコークを燃焼させ
るために導入した補助燃料が完全に燃焼するには不足な
量の酸素含有ガスと750〜950Cの温度、O〜15
に9/jGO圧力下で流動状態で接触させて触媒上に付
着したコークを燃焼して除去するとともに触媒中の酸化
鉄を還元させる。このようにして還元再生され九触媒は
第1工程へ循環される。
Next, in the above method, the catalyst thus oxidized and containing round iron and having coke attached to its surface is transferred to step @2, and the iron catalyst is transferred to the auxiliary iron catalyst introduced to burn the coke attached to the iron catalyst. An insufficient amount of oxygen-containing gas for complete combustion of the fuel and a temperature of 750-950C, O-15
is brought into contact in a fluidized state under 9/jGO pressure to burn and remove the coke deposited on the catalyst and reduce the iron oxide in the catalyst. The nine catalysts thus reduced and regenerated are recycled to the first step.

更に、上記提案方法では重質油として硫黄分含量の高い
ものを用いる場合には、その硫黄分が触媒中の鉄と化合
して硫化鉄が生成し触媒の長期間に亘る循環使用により
触媒中IC漸次蓄積して、触媒による上述の反応、特に
鉄の還元反応の反応率を低下させるに至るので、必要に
応じこの硫化鉄を除去する工程、ガえば触媒の焙焼1糧
を付加している。
Furthermore, in the above proposed method, when heavy oil with a high sulfur content is used, the sulfur content combines with the iron in the catalyst to produce iron sulfide, and the cyclic use of the catalyst over a long period of time causes iron sulfide to be formed in the catalyst. IC gradually accumulates, leading to a decrease in the reaction rate of the above-mentioned reactions by the catalyst, especially the iron reduction reaction, so if necessary, a step of removing this iron sulfide, such as roasting the catalyst, is added. There is.

而して、上述し丸ごとき提案方法においては、第2工程
でのコーク等の燃焼により発生ずゐ熱の吸熱反応である
重質油の接触分等に際して消費されるとして4、上記ス
チームアイアン反応は発鵬反応であゐ九め、第1工鴨で
の水素の生成量を多くする場合には系内の熱収支上第1
工椙では熱が余剰にな夛、熱エネルギーの浪費が避けら
れない欠点がみられる。すなわち、上記提案方法は熱エ
ネルギーの有効利用の観点からすれば工業上得策な方法
とは言えない。
Therefore, in the above-mentioned proposed method, it is assumed that the heat is not generated due to the combustion of coke, etc. in the second step, but is consumed during contact with heavy oil, which is an endothermic reaction of heat4, and the steam iron reaction is This is due to the Hikari reaction, and when increasing the amount of hydrogen produced in the first factory, the first is due to the heat balance in the system.
The disadvantage of this method is that there is a surplus of heat and the waste of thermal energy is unavoidable. That is, the above-mentioned proposed method cannot be said to be an industrially advantageous method from the viewpoint of effective utilization of thermal energy.

ところで、上記提案方法における余剰熱発生の解決手段
としてllX1工11に冷却コイルを設けて余剰熱を系
外へ回収する方法並びに第1工楊と第2工椙との間の触
媒循環量を調整する方法が考慮される。しかしながら、
前者の方法では第1工場の反応塔の構造が複−となゐの
で設備費が増大し、加うるに長期間の運転による冷却コ
イルの摩耗が起る等の経済上及び設備上の問題があり、
を九、後者の方法では触媒の循環量を低減することによ
シ余剰熱の問題は解消し得るとしても触媒の循環量の低
減により第2工程における触媒の還元度合が平衡状態に
接近する結果触媒の還元反応速度が反応律速となって反
応面での障害が生じ、これを回避するには反応器を大き
くする必要があるという問題点がみられる。
By the way, as a solution to the surplus heat generation in the above proposed method, a cooling coil is provided in the 11th plant 11 to recover the excess heat from the system, and the amount of catalyst circulation between the first plant and the second plant is adjusted. The method of doing so will be considered. however,
In the former method, the structure of the reaction tower in the first factory is complicated, which increases equipment costs, and in addition, there are economic and equipment problems such as wear of the cooling coil due to long-term operation. can be,
(9) In the latter method, even though the problem of excess heat can be solved by reducing the amount of catalyst circulation, the reduction of the catalyst in the second step approaches an equilibrium state due to the reduction in the amount of catalyst circulation. There is a problem in that the reduction reaction rate of the catalyst becomes the rate-determining reaction rate, causing problems in the reaction, and in order to avoid this, it is necessary to increase the size of the reactor.

本発明者は、従来提3にされている重質油の接触分解に
よる軽質化と水素を製造する方法に与られる上述し友ご
とき問題点に鎌み、この方法の有利な工業化を確立すべ
く検討した結果上述の提案方法において、第1工程での
重質油と触媒とOII触を、スチームに代えて水もしく
は水とスチームとの供給下に行って水を瞬時にスチーム
化することにより、第1工楊での触媒の流動床に何ら悪
影響を与えることなく、該流動床の温度を低下し得るこ
と、及びこれによ#)II2工程で触媒の還元が平衡状
態近くで進行することがない故に反応律速にならず、し
たがって、反応器の規模を増大することなしに第1工程
での水素生成量を増加させ得ること、更には幕内での余
剰熱を有効に利用し得ることの知見を得て本発明をなす
に至つ九。
The present inventor has taken into account the above-mentioned problems of the conventional method of lightening heavy oil and producing hydrogen by catalytic cracking, and has set out to establish an advantageous industrialization of this method. As a result of the study, in the above-mentioned proposed method, the heavy oil, catalyst and OII contact in the first step are performed under the supply of water or water and steam instead of steam, thereby instantly turning the water into steam. The temperature of the fluidized bed of catalyst in the first step can be lowered without any adverse effect on the fluidized bed of the catalyst, and this allows the reduction of the catalyst to proceed near the equilibrium state in Step II2. The knowledge that the amount of hydrogen produced in the first step can be increased without increasing the scale of the reactor, and that excess heat in the makuuchi can be effectively used. By obtaining the above, we have completed the present invention.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の特徴は、R元された鉄を活性成分として含む触
媒を用いて、重質油の接触分堺による軽質化及び水素を
製造方法において1重質油と触媒の接触を水もしくは水
とスチームの供給下に行って、上記軽質化及び水1生成
工程における温度を調整することにある。
A feature of the present invention is that in a method for lightening heavy oil by contact separation and producing hydrogen using a catalyst containing R-substituted iron as an active component, the contact between heavy oil and a catalyst is carried out with water or water. The purpose is to adjust the temperature in the above-mentioned lightening and water 1 generation steps by supplying steam.

すなわち1本発明では前述した公知方法におけるjlE
1工程における触媒流動床の温度を成る設定された温度
に調整する丸めに従来のスチームに代えて水単独をもし
くは水をスチームと一緒にして噴霧状で触媒流動床へ直
接供給す石ものである。
That is, in the present invention, jlE in the above-mentioned known method
In order to adjust the temperature of the catalyst fluidized bed in one step to a set temperature, instead of the conventional steam, water alone or water together with steam is supplied directly to the catalyst fluidized bed in the form of a spray. .

この触媒床への水の供給は、第1工11における触媒流
動床の温度を検知し、この信号を演算器で操作して水の
量をコントロールパルプにょ)調節して供給し得るシス
テムを適用することによp自動的に実施で幹る。また、
水をスチームと共に供給する場合は水とスチームとの供
給量は必ずしも量的な補完関係にある必要はないが、水
の供給量に応じてスチームの供給量を低減することが経
済上から好ましい。
To supply water to the catalyst bed, a system is used that detects the temperature of the catalyst fluidized bed in the first stage 11 and operates this signal with a computer to adjust the amount of water. By doing this, p will be automatically executed. Also,
When water is supplied together with steam, the supply amounts of water and steam do not necessarily have to be in a quantitatively complementary relationship, but from an economical point of view it is preferable to reduce the supply amount of steam in accordance with the amount of water supplied.

このようにして触媒流動床へ供給され九本は該流動床内
(重質油の分解のために温度は500〜5oocに保持
される)で瞬時にスチーム化し、その際大量の蒸発潜熱
を奪うので触媒流動床の温度を効率よく低下させ得る。
In this way, the nine catalysts supplied to the fluidized bed are instantaneously turned into steam in the fluidized bed (the temperature is maintained at 500 to 5ooc for the decomposition of heavy oil), and at the same time, a large amount of latent heat of vaporization is taken away. Therefore, the temperature of the catalyst fluidized bed can be efficiently lowered.

すなわち、#述し友ごとき第1工程で発生する余剰熱が
水のスチーム化に回収できるようになる。
That is, the excess heat generated in the first step as described above can be recovered to steam water.

本発明で用いる水はその水質及び温度等が制限されない
ので純水のみならず工業用水であってもよく、1九、場
合によっては装置上の腐食に注意を払えば排水も用いる
ことも可能であL%に本発明の方法を実施する際に排出
される排水を用いることにより後述するように排水のク
ローズシステふ化も可能となる。
The water used in the present invention is not limited in its water quality or temperature, so it may be not only pure water but also industrial water. 19. In some cases, drainage may also be used if care is taken to prevent corrosion on the equipment. By using the waste water discharged when carrying out the method of the present invention for A L%, closed system hatching of the waste water is also possible as described later.

以下に本発明の一実總態様を70−シートとして例示し
九添付図i1に基いて、上述し九本(又は水とスチーム
)の供給操作を含めて本発明の方法を具体的に説明する
An embodiment of the present invention will be exemplified as a 70-sheet below, and the method of the present invention will be specifically explained, including the above-mentioned operation of supplying the nine (or water and steam), based on the attached Figure i1. .

添付図において1は第1工程としての重質油の接触分解
塔であって、咳分解塔には、第2工楊としての触媒再生
塔2で還元再生され九触謀が触媒返送管3を通じて導入
され九触媒の流動床が形成されており、そζに重質油5
及び水もしくは水とスチームが供給される。なお、水は
管8を通して。
In the attached diagram, 1 is a catalytic cracking tower for heavy oil as the first step, and the catalytic cracking tower is supplied with nine catalysts that have been reduced and regenerated in a catalyst regeneration tower 2 as a second stage through a catalyst return pipe 3. A fluidized bed of 9 catalysts is formed, and 5 heavy oils are added to it.
and water or water and steam are supplied. Note that water is passed through pipe 8.

スチームは管4を通して供給される。Steam is supplied through pipe 4.

ここで水の供給量は、上記流動床の温度を検知し、この
信号を演算wh9により操作して管8に設ケタコンFロ
ールパルプにより調整し得るシステムによりコントロー
ルすることが可能であ)、又。
Here, the amount of water supplied can be controlled by a system that detects the temperature of the fluidized bed, operates this signal by calculation wh9, and can be adjusted by the digital controller F roll pulp installed in pipe 8), or .

スチームを用いる場合も同様にコントロールし得る。Similar control can be achieved when using steam.

上記分解塔内の流動床は500〜800Cの温度及び0
〜15に9/mGの圧力の所定条件下に保持されてお#
)、この条件下で重質油は分解されて分解ガスと分解油
を生成すゐ一方、上記流動床へ導入され九本は瞬時にス
チーム化され触媒中の還元され丸鉄(主としてウスタイ
ト)とスチームアイアン反応を起して水素を生成すると
ともに触媒中の鉄は酸化される。また、この際触媒上に
コータが付着する。
The fluidized bed in the cracking tower has a temperature of 500 to 800C and 0
It is held under predetermined conditions of pressure of ~15 to 9/mG.
), under these conditions, the heavy oil is cracked to produce cracked gas and cracked oil, while the nine oils introduced into the fluidized bed are instantly converted to steam and reduced to round iron (mainly wustite) in the catalyst. A steam iron reaction occurs to generate hydrogen and the iron in the catalyst is oxidized. Further, at this time, a coater adheres to the catalyst.

上記工程においては、流動床へ供給され九本のスチーム
化に伴って、前述したようKaa床の温度が低下するの
で、公知方法に与られるようなスチームアイアン反応に
起因する余剰熱を有効に利用できる。
In the above process, the temperature of the Kaa bed decreases as described above as it is supplied to the fluidized bed and steamed, so that the surplus heat resulting from the steam iron reaction as in the known method can be effectively utilized. can.

次いで、コークが付着し友、酸化されえ触媒は移送管6
を通して第2工楊である触媒再生塔2へ移送され、ここ
で還元雰囲気下に酸素含有ガス7(例えば空気)の導入
により触媒上に付着し九コークが燃焼され、触媒は還元
されて再生される。
Next, the coke is deposited and the oxidized catalyst is transferred to the transfer pipe 6.
The catalyst is transferred to the second stage, the catalyst regeneration tower 2, where the coke deposited on the catalyst is burned by introducing an oxygen-containing gas 7 (for example, air) into a reducing atmosphere, and the catalyst is reduced and regenerated. Ru.

なお、上起工11において必要に応じコータを燃焼する
ための補助燃料(第1工程での重質油を適用して4よい
)を供給してもよい。
In addition, in the upper construction 11, auxiliary fuel (heavy oil used in the first step may be applied) may be supplied for burning the coater as necessary.

上述のようにして第2工程で再生された触媒は返送管3
を導入して第1工橿へ循環される。
The catalyst regenerated in the second step as described above is sent to the return pipe 3.
is introduced and circulated to the first tunnel.

本発明において第1工程へ供給される水として排水等を
用いる場合は、第1工椙で生成し九分解ガス、分解油等
の分解生成物及び水素を未分解の重質油及び未反応スチ
ームとともにサイクロン(図示されていない)へ通して
同伴粒子を分離。
In the case of using wastewater or the like as water to be supplied to the first step in the present invention, decomposition products such as cracked gas and cracked oil produced in the first step and hydrogen are mixed with undecomposed heavy oil and unreacted steam. and a cyclone (not shown) to separate entrained particles.

除去した後、スクラバー11.精留塔12.ストリッパ
ー13及びセパレータ14等を介して未分解重質油9分
解ガスと水素及びナフサ、灯油、@油のごとき分解油、
更には未反応スチームにそれぞれ分離し、この未反応ス
チームは他のストリッピングスチーム15. 18’、
 15’とと4にセパレーター14で凝縮水1Gとして
分離することにょリ、管8を通して第1工程へ循環する
ことができる。このようにして得られる凝縮水には水f
IIIJI!、の有機物、無機物、更にはエマルジ冒ン
化した油分が混入していて水質が極めて悪いため0通常
のようにしてこの凝縮水を排水として系外へ放出するに
は多大な排水処理設備を設ける必要があるが。
After removing, scrubber 11. Rectification column 12. Undecomposed heavy oil 9 cracked gas and hydrogen and cracked oil such as naphtha, kerosene, @oil, etc. through the stripper 13 and separator 14, etc.
Furthermore, the unreacted steam is separated into unreacted steam, and this unreacted steam is combined with other stripping steam 15. 18',
15' and 4 are separated as 1 G of condensed water by a separator 14, and can be circulated to the first step through a pipe 8. The condensed water obtained in this way contains water f
IIIJI! The quality of the water is extremely poor as it is contaminated with organic matter, inorganic matter, and even emulsion-contaminated oil.To discharge this condensed water out of the system as wastewater as usual, a large amount of wastewater treatment equipment is required. Although it is necessary.

本発明では該凝縮水を第1工程へ循環使用してもそれに
混在する上記汚染物質が第1工程で分解され九り、又は
触媒にコークと共に付着して萬2工程で燃焼されるので
実質上排水の系外への放出が必要でなくなり、いわゆる
クローズドシステムでの運転が可能となる。なお、再生
循環される触媒の一部を新しい触媒と逐次交換すること
によっても上記凝縮水中の汚染物質を触媒に付着させて
系外へ排出し得るので、仮に排水処理設備を設けるとし
ても小型のもので済むようになる。
In the present invention, even if the condensed water is recycled to the first step, the above-mentioned pollutants mixed therein are decomposed in the first step, or adhere to the catalyst together with coke and are burned in the second step. It is no longer necessary to discharge wastewater outside the system, making it possible to operate in a so-called closed system. Furthermore, by successively replacing a part of the regenerated catalyst with a new catalyst, the contaminants in the condensed water can adhere to the catalyst and be discharged outside the system, so even if wastewater treatment equipment is installed, it will require a small You will be able to get by with things.

以下に実施例を示して本発明の効果を具体的に説明する
。なお、重質油と触媒の接触をスチーム0供給Oみで実
施し九場合を比IIR1Plとして併せて示す。
EXAMPLES The effects of the present invention will be specifically explained below with reference to Examples. In addition, the case where the contact between the heavy oil and the catalyst is carried out with only 0 steam and 0 supply is also shown as a ratio IIR1Pl.

実施例1〜2及び比較例 6例ともに下記に示す装置、原料重質油及び触媒を用か
、第1表に示す各運転条件で重質油の接触分解による軽
質化及び水素の製造(第1工S)と触媒の還元再生(第
鵞工1りを行った。また。
In Examples 1 and 2 and 6 comparative examples, lightening and hydrogen production by catalytic cracking of heavy oil and production of hydrogen were carried out using the equipment, raw material heavy oil, and catalyst shown below, or under the operating conditions shown in Table 1. 1 Engineering S) and reduction regeneration of the catalyst (No. 1 Eng S). Also.

第2工糧で触媒の一部を抜き出して触媒中に生成した硫
化鉄を焙焼して脱硫する1楊を6例とも付加した。
In all six cases, a step was added in which a part of the catalyst was extracted in the second process and the iron sulfide produced in the catalyst was roasted and desulfurized.

装置 第1工程での分解塔   内 径  1龜7備鳥さ 1
6G51 第2工程での再生塔   内 径  1!S、1aw高
さ 1110m 脱   硫   塔   内 1110!5g高さ 1
9051 原料重質油(減圧残渣油)の性状 比  重 (15C/4U)   1.038WA  
 嶽 (wNl)      24.17硫黄(wt−
)   5.62 触  媒 Fe S 7.4wtL Ni 1.2vt*、 My
o 0.8vt*。
Decomposition tower in the first step of the device Inner diameter 1 x 7 x 1
6G51 Regeneration tower in the second process Inner diameter 1! S, 1aw Height 1110m Desulfurization tower Inside 1110!5g Height 1
9051 Raw material heavy oil (vacuum residual oil) property specific gravity (15C/4U) 1.038WA
Take (wNl) 24.17 Sulfur (wt-
) 5.62 Catalyst Fe S 7.4wtL Ni 1.2vt*, My
o 0.8vt*.

810m 2.7 wt qb、 AJm Os 6.
6 wt−の組成を有するラテライト鉱石を粉砕し、1
練し、造粒vk1111成して平均粒樋を0.2−に調
整し友もの。
810m 2.7 wt qb, AJm Os 6.
Laterite ore having a composition of 6 wt- is crushed and 1
Knead, granulate VK1111, and adjust the average grain size to 0.2-.

第1表 上記による運転の結果譲1工程で得られ九生成物を各ガ
毎に第2表に示す。
Table 1 Results of the above operation The nine products obtained in step 1 are shown in Table 2 for each moth.

第  2  表 ¥2泰にみられるように、本発明によりスチームに代え
て水(実施例1)並びに水をスチームとともに(実施例
2)供給して重質油の接触分解を行うときは、従来提案
されているスチームのみの供給下での接触分解に比し、
水素の発生量が高くすゐことができた。
As shown in Table 2, when catalytic cracking of heavy oil is performed by supplying water instead of steam (Example 1) and water together with steam (Example 2) according to the present invention, it is possible to Compared to the proposed catalytic cracking under the supply of steam only,
We were able to generate a high amount of hydrogen.

加うるに本発明による実施1F11〜!では発熱反応で
ああスチームアイアン反応を増大させ、水嵩の角生量を
増IIA畜せ九にもかかわらず第1工場ての触媒の流動
床の温度を一定に保つことができ、系内で発生する余刺
熱が水のスチーム化に有効に利用され九ことが観痺され
九。
In addition, implementation 1F11~ according to the present invention! In this case, the exothermic reaction increases the steam iron reaction, increasing the volume of water and the amount of horn produced. The after-stinging heat is effectively used to steam the water, making you feel numb.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図は本発明の一実施態様を例示したフローシートを
示す。 図中。 1・・・第1工機としての重質油OII触分解塔2・・
・第2工程としての重質油の還元再生塔4・・・スチー
ム供給管 8・・・水供給管 5・・・重質油導入管 11・・・スクラバー。
The accompanying figure shows a flow sheet illustrating one embodiment of the invention. In the figure. 1...Heavy oil OII catalytic cracking tower 2 as the first machine...
- Heavy oil reduction and regeneration tower 4 as a second step...Steam supply pipe 8...Water supply pipe 5...Heavy oil introduction pipe 11...Scrubber.

Claims (1)

【特許請求の範囲】[Claims] (1)  重質油をスチームの供給下で、j1元され丸
鉄を活性成分として含有する触*に*触させて重質油の
軽質化と水素を製造する方法において、上記接触をスチ
ームに代えて水もしくは水とスチームの供給下で行うこ
とによ〉上記軽質化と水素の製造工程における温度を調
整することを特徴とする重質油の接触分解による軽質化
と水素の製造方法。
(1) A method for lightening heavy oil and producing hydrogen by bringing heavy oil into contact with a catalyst containing round iron as an active ingredient under the supply of steam, in which the contact is brought into contact with steam. A method for lightening and producing hydrogen by catalytic cracking of heavy oil, characterized in that the temperature in the above lightening and hydrogen production process is adjusted by carrying out the process under the supply of water or water and steam instead.
JP57068364A 1982-04-23 1982-04-23 Production of light oil and hydrogen by catalytic craking of heavy oil Pending JPS58185685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57068364A JPS58185685A (en) 1982-04-23 1982-04-23 Production of light oil and hydrogen by catalytic craking of heavy oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57068364A JPS58185685A (en) 1982-04-23 1982-04-23 Production of light oil and hydrogen by catalytic craking of heavy oil

Publications (1)

Publication Number Publication Date
JPS58185685A true JPS58185685A (en) 1983-10-29

Family

ID=13371653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57068364A Pending JPS58185685A (en) 1982-04-23 1982-04-23 Production of light oil and hydrogen by catalytic craking of heavy oil

Country Status (1)

Country Link
JP (1) JPS58185685A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019234960A1 (en) * 2018-06-08 2019-12-12 フレンド株式会社 Hydrogen mixed gas generation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5542222A (en) * 1978-09-18 1980-03-25 Yahagi Seitetsu Kk Continuous production of hydrogen using metal scrap
JPS5649790A (en) * 1979-09-29 1981-05-06 Res Assoc Residual Oil Process<Rarop> Cracking of heavy oil to light oil and production of hydrogen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5542222A (en) * 1978-09-18 1980-03-25 Yahagi Seitetsu Kk Continuous production of hydrogen using metal scrap
JPS5649790A (en) * 1979-09-29 1981-05-06 Res Assoc Residual Oil Process<Rarop> Cracking of heavy oil to light oil and production of hydrogen

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019234960A1 (en) * 2018-06-08 2019-12-12 フレンド株式会社 Hydrogen mixed gas generation method
WO2019234961A1 (en) * 2018-06-08 2019-12-12 フレンド株式会社 Hydrogen mixed gas generation method
WO2019234922A1 (en) * 2018-06-08 2019-12-12 フレンド株式会社 Hydrogen mixed gas generation method

Similar Documents

Publication Publication Date Title
US2455419A (en) Synthesis of hydrocarbons and regeneration of synthesis catalyst
US4388218A (en) Regeneration of cracking catalyst in two successive zones
US7182926B2 (en) Process for separating and recovering valuable metals
JPS5827837B2 (en) Processing method for sulfur-containing heavy oil
JPS6019350B2 (en) Coke oven gas desulfurization method
JPS602247B2 (en) Method for recovering alumina-cryolite waste materials in aluminum production
US3438727A (en) Absorbent regeneration using carbon regenerant
JPS6142590A (en) Preparation of high-concentration hydrogen gas with thermal cracking of heavy oil
JPH01131297A (en) Treatment of heavy oil
JPH0222703B2 (en)
US4137295A (en) Carbide production using molten metals as heat source
US5670061A (en) Process for treating ash
US4132627A (en) Integrated coal conversion process
JPS58185685A (en) Production of light oil and hydrogen by catalytic craking of heavy oil
US4556402A (en) Process of gasifying solid fuels in a moving bed and in a fluidized bed
GB697727A (en) Improvements relating to the catalytic desulphurisation of petroleum hydrocarbons
JP3538146B2 (en) Treatment of medium filter cake
US4147615A (en) Hot sand-coal-cracking to hydrodistillate fuels
US2773808A (en) Two stage fluidized hydroforming
JPH04322747A (en) Method and device for removing substance such as carbon substance from particles containing said substance
EP0606957B2 (en) Carbon burn-off process
US4280893A (en) Integrated coal conversion process
JP2001322804A (en) Manufacturing method of gaseous hydrogen and device therefor
US5609841A (en) Method and apparatus for treating a flow of gas containing oxidized sulphur compounds
US4078989A (en) Coal conversion process