JPS58185402A - Method for increasing temperature of carbon monoxide converter - Google Patents

Method for increasing temperature of carbon monoxide converter

Info

Publication number
JPS58185402A
JPS58185402A JP57066955A JP6695582A JPS58185402A JP S58185402 A JPS58185402 A JP S58185402A JP 57066955 A JP57066955 A JP 57066955A JP 6695582 A JP6695582 A JP 6695582A JP S58185402 A JPS58185402 A JP S58185402A
Authority
JP
Japan
Prior art keywords
gas
oxygen
catalyst layer
temperature
carbon monoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57066955A
Other languages
Japanese (ja)
Other versions
JPH0317762B2 (en
Inventor
Masahiko Morimoto
森本 征彦
Osamu Okada
治 岡田
Masabumi Mihara
三原 正文
Yoshio Hino
日野 善雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP57066955A priority Critical patent/JPS58185402A/en
Publication of JPS58185402A publication Critical patent/JPS58185402A/en
Publication of JPH0317762B2 publication Critical patent/JPH0317762B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To heat up a carbon monoxide converter to a required temperature, by supplying a Co-Mo-Al2O3 catalyst layer with the oxygen-containing gas to be processed, and heating the catalyst layer by the heat of reaction of hydrogen with oxygen contained in the feed gas. CONSTITUTION:When the gas production is interrupted, the temperature of the conversion catalyst layer in the carbon monoxide converter decreases. At the restarting of the carbon monoxide conversion process, the feed gas added preliminary with a specific amount of oxygen is fed to the carbon monoxide converter, and the catalyst layer is heated by the heat of water-producing reaction of hydrogen with oxygen contained in the gas on the catalyst. The oxygen-content of the feed gas is generally about 0.1-5.0vol% preferably about 0.5- 3.0vol%. The oxygen source may be pure oxygen or air. The time necessary to heat up the catalyst layer to the stationary state can be shortened to about 1/3 compared with the conventional method.

Description

【発明の詳細な説明】 本発明は、−酸化炭素変成装置(以下CO変成装置とい
う)を附設するガス発生装置、例えば低圧接触分解油ガ
ス発生装置、炭化水素の部分燃暁ガス化装置等において
、CO変成装置を所定温度に速やかに昇温させ、CO変
成を効率的に行なう方法Kllする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas generation device equipped with a carbon oxide shift device (hereinafter referred to as a CO shift device), such as a low-pressure catalytic cracking oil gas generator, a hydrocarbon partial combustion gasification device, etc. , a method for efficiently performing CO metamorphosis by quickly raising the temperature of a CO metamorphosis device to a predetermined temperature.

以下においては、先ず水蒸気により軽質炭素水素を改質
し、得られ次数質ガスをCO変成するサイクリック式カ
ス化づラシトによる都市ガス製造を例として説明を行な
う。
In the following, description will be made by taking as an example city gas production by cyclic cassification and lacite, in which light carbon-hydrogen is first reformed with steam and the resulting organic gas is converted into CO.

都市ガス中のCOは、出来るだけ低濃度であることが望
ましい。主としてピーク時の都市ガス需要に対応すべく
運転されるサイクリック式ガス化づつシトは、その性質
上バッチ運転されることが多いので、一旦運転が停止さ
れるとCO変成装置内の触媒温度は次第に低下する。従
って、運転再開@CO変成装置が定常状IIK復帰する
までには通常3〜8時間程度を必要とする。この運転再
開稜定常運転に復帰するまでの時間は%CO転化率が低
く、従って得られる都市カス中のCO濃度が鳥いという
問題点がある。この様な問題点に対処すべく、従来例え
ば以下の如き方法が採用されている。
It is desirable that the concentration of CO in city gas be as low as possible. The cyclic gasification system, which is operated mainly to meet the demand for city gas during peak hours, is often operated in batches due to its nature, so once the operation is stopped, the catalyst temperature in the CO shift converter will drop. It gradually decreases. Therefore, it usually takes about 3 to 8 hours for the CO shift converter to resume operation and return to the steady state IIK. There is a problem in that the % CO conversion rate is low during the time it takes to return to steady operation after restarting operation, and therefore the CO concentration in the obtained urban waste is low. In order to deal with such problems, conventionally, for example, the following methods have been adopted.

<1)CO変成装置の外面を無機質保温材で被覆する。<1) Cover the outer surface of the CO conversion device with an inorganic heat insulating material.

この方法によれば、CO変成装置使用中には、冬期にお
いても変成反応による発熱量と変成装置の入及び出ガス
の原熱差(出ガス〉大ガス)及び放熱量の和とをバラシ
スさせ得るが、CO変変成電電作動が停止されると放熱
による触媒温度の低下は防止し―い。
According to this method, even in winter, when the CO shift converter is in use, the calorific value due to the metamorphic reaction, the raw heat difference between the input and output gases of the shift converter (output gas > large gas), and the sum of the heat radiation amount can be balanced. However, when the CO conversion operation is stopped, it is difficult to prevent the catalyst temperature from decreasing due to heat dissipation.

■ 運転再開俵暫くの間改質反応における温度及び負荷
を抑え且つ水蒸気分圧を高めることによりCOシフト反
応を促進させるとともに、得られる改質ガスによりCO
O成装置を加熱昇温させる。しかしながら、この方法で
は、ガス中のCO濃度を充分に低下させることが出来な
いのみならず、製造能力を大巾に低下させ良状態で運転
する為、ガス需要に即応し得ないのも欠点である。
■ Resuming operation For a while, the temperature and load in the reforming reaction will be suppressed and the partial pressure of water vapor will be increased to promote the CO shift reaction, and the resulting reformed gas will reduce CO2.
Heat the O-forming device to raise its temperature. However, this method not only cannot sufficiently reduce the CO concentration in the gas, but also has the disadvantage that it cannot immediately respond to gas demand because it requires a significant reduction in production capacity and is operated under good conditions. be.

(III)運転再開後直ちに通常の改質反応条件下にガ
ス製造を行ない、生成される改質ガスによりCOO成装
置を加熱昇温゛させる。この方法では、ガス中のCO濃
度は、上記(II)の場合よりも高くな〉、且つ改質ガ
スによ#)CO変成−置内の触媒層が局部的に加熱され
る為、触媒寿命が短縮される場合がある。
(III) Immediately after restarting the operation, gas production is carried out under normal reforming reaction conditions, and the COO formation apparatus is heated and heated by the produced reformed gas. In this method, the CO concentration in the gas is not higher than in case (II) above, and the reformed gas locally heats the catalyst layer in the CO conversion equipment, so the catalyst life is shortened. may be shortened.

本発明者は、この様な現状に鑑みて種々研究を重ねた結
果、co変成装置の運転再開に際し、co変成装置内の
co −No −Al2O3系触媒層に酸素を含有させ
た被処理ガスを供給し、峡ガス中の酸素と水素との反応
熱によシ触媒層の昇温を速やかに行なう場合には、CO
O成装置の運転再開後直ちに所望の高いCOO化率が達
成されることを見出した。本発明は、この様な新しい知
見に基いて完成されたものである。
As a result of various studies in view of the current situation, the present inventor has determined that when restarting the operation of the co-transformer, the to-be-treated gas containing oxygen is added to the co-No-Al2O3 catalyst layer in the co-transformer. CO
It has been found that the desired high COO conversion rate can be achieved immediately after restarting the operation of the O-coating device. The present invention was completed based on such new knowledge.

以下メ面を参照しつつ、本発明を更に詳細に説明する。The present invention will be described in more detail below with reference to the following.

第1図に示すサイクリック式ガス化づ5シトにおいて、
定常運転時には、先ずライシ111からの気体又は液体
燃料:がライシ(i)からの空気等の酸素含有ガスと混
合されて燃焼12、次いでこの燃焼排ガスは、予熱室(
7)内のチェッカーレシガを加熱し、更にライシ(9)
から改質反応装置(11)K入って内部の改質用触媒を
改質反応に必要な温度Kまで加熱した優、ライシα麟、
排熱回収ボイラー6η、5イシ(1@及びスタック@O
を経て大気中に排出される。次いで、ライシ(3)から
の燃料とライシ(ilからの空気又は他の酸素含有ガス
の供給を停止し、ライシ(1)からの水又は水蒸気を予
熱器(7)K供給して改質反応条件近<Ktで加熱し、
これを更にライシ(9)から改質反応装置CIt)K送
給する。改質反応装置(川KFi、ナフサ、LPG、天
然ガス郷の軽質炭化水素が、ライシーから供給され、N
tO−MgO系触媒等の公知の改質反応触媒の存在下に
水蒸気改質される。
In the cyclic gasification system shown in Figure 1,
During steady operation, gas or liquid fuel from rice 111 is first mixed with oxygen-containing gas such as air from rice (i) and combusted 12, and then this combustion exhaust gas is sent to the preheating chamber (
7) Heat the checkered shiga inside, and then add the raishi (9)
From the reforming reactor (11) K, the reforming catalyst inside was heated to the temperature K necessary for the reforming reaction.
Exhaust heat recovery boiler 6η, 5 isi (1@ and stack@O
It is then released into the atmosphere. Next, the supply of fuel from the rice cake (3) and air or other oxygen-containing gas from the rice cake (il) is stopped, and water or steam from the rice cake (1) is supplied to the preheater (7) K to perform the reforming reaction. Heating at near conditions <Kt,
This is further fed from the rice cracker (9) to the reforming reactor CIt)K. Reforming reactor (Kawa KFi, naphtha, LPG, light hydrocarbons from natural gas town are supplied from Raishi, N
Steam reforming is carried out in the presence of a known reforming reaction catalyst such as a tO-MgO catalyst.

改質反応条件は、通常圧力1000〜200 Qam水
柱、液空間速度0.8〜1.2 At/d/ムr1出ロ
温度650〜900℃程度である。改質反応を続けるこ
とKよ妙手熱器(7)及び改質反応装置Ql)の温度が
低下すると、上記と同様にして燃焼排ガスによる加熱を
繰り返し行なう。予熱器(7)と改質反応装置(11)
とを複数セット備えておくことKよ)、加熱工程とガス
製造工程とを適宜切りかえ、ガス製造を連続的に行ない
得る。改質反応装置(+lからの改質ガスは、ライシ(
11を経て排熱回収ボイ5−UK入り、温度を下げられ
た優、ライシfilを経てライン四〇からの水蒸気とと
もKCO変成装置@に入る。
The reforming reaction conditions are usually a pressure of 1000 to 200 Qam water column, a liquid hourly space velocity of 0.8 to 1.2 At/d/mr1, and an output temperature of about 650 to 900°C. Continuing the reforming reaction When the temperature of the heating device (7) and the reforming reactor (Ql) decreases, heating with the combustion exhaust gas is repeated in the same manner as above. Preheater (7) and reforming reactor (11)
(K), the heating process and the gas production process can be switched as appropriate to continuously produce the gas. The reformed gas from the reforming reactor (+l) is
It enters the exhaust heat recovery boiler 5-UK via line 11, and then enters the KCO transformation unit@ along with the steam from line 40 through the lowered temperature and rice fil.

co変成装置内での反応条件も、公知方法の場合と%に
異なるところはなく、変成触媒としてCo −Mm −
Al2O3系触媒を使用し、例えば圧力1000〜20
00m水柱程度、温度280〜450℃程度、空間速度
400〜80ONnlld7114度の条件を採用する
。COO成装置(ハ)からの出ガスは、5イシ(至)を
通って排熱回収ボイラー(財)K入り、熱回収され要談
、ライン四から系外に取り出される。
The reaction conditions in the Co shift converter are also the same as those in the known method, and Co -Mm - is used as the shift catalyst.
Using an Al2O3 catalyst, for example, at a pressure of 1000 to 20
The following conditions are adopted: approximately 00m water column, temperature approximately 280 to 450°C, and space velocity 400 to 80ONnlld 7114 degrees. Output gas from the COO generator (c) passes through line 5 and enters the exhaust heat recovery boiler K, where the heat is recovered and taken out of the system through line 4.

さて、ガス製造が中断され、COO成装置(ハ)内での
COO成反応が停止すると、COO成触媒層の温度は次
第に低下する。Co −No −At203系触媒の場
合、その触媒層入口温度が250℃未満になると、CO
変成率#i7〇−以下とな砂、製造ガス中のCO濃度が
高くなる。周知の如く、ガス製造中断期間中CO変成触
媒層入口温度を常に250℃以上に維持することは、困
難であり且つ経済的にも不利である。従って、本発明に
おいては、(?o −No −At203系CO変成触
媒層入口温度を少なくとも150℃程度KJII持して
おき(これは容易である)、CO変成工程の再開時には
、予め一定量の酸素を含有させた被処理ガスをCO変成
装置rz!IK供給し、該ガス中の水素と酸素とが触媒
上で反応し1水を生成する際に発生する反応熱によ1り
触媒層の昇温を行なう。被処理ガス中の酸素含有量は、
触媒量、触媒層温度等によガ変)得るが、触媒層の急激
な加熱、不均一な昇温等を避けるべく、0.1〜5.Q
 voL−程度より好ましくは0.5〜3.0−程度と
する。酸素源は、純酸素でも良く、空気でも良い、触媒
層入口温度が250℃程度になれば、CO変成率170
1以上となるので、被処理カスに対する酸素の添加を停
止する。かくして、活性の増大したCO変成触媒上での
CO変成進行により変成反応熱が増加し、触媒層温度は
、従来の3程度の短時間内に定常状!IIK復帰し、所
定のCO変成率が得られる様になる。
Now, when gas production is interrupted and the COO formation reaction in the COO formation apparatus (c) is stopped, the temperature of the COO formation catalyst layer gradually decreases. In the case of a Co-No-At203 catalyst, when the catalyst layer inlet temperature is less than 250°C, CO
If the metamorphism rate is less than #i70, the CO concentration in the sand and manufactured gas will increase. As is well known, it is difficult and economically disadvantageous to constantly maintain the inlet temperature of the CO shift catalyst bed at 250° C. or higher during the gas production interruption period. Therefore, in the present invention, the inlet temperature of the (?o -No -At203-based CO shift catalyst layer is maintained at least about 150°C (this is easy), and when the CO shift process is restarted, a certain amount of The gas to be treated containing oxygen is supplied to the CO shift converter rz!IK, and the reaction heat generated when the hydrogen and oxygen in the gas react on the catalyst to produce 1 water causes the catalyst layer to be heated. The temperature is raised.The oxygen content in the gas to be treated is
(varies depending on catalyst amount, catalyst layer temperature, etc.), but in order to avoid rapid heating of the catalyst layer, uneven temperature rise, etc. Q
It is more preferably about 0.5 to 3.0 than about voL. The oxygen source may be pure oxygen or air.If the catalyst bed inlet temperature is about 250℃, the CO conversion rate will be 170.
Since it becomes 1 or more, the addition of oxygen to the waste to be treated is stopped. In this way, the heat of the shift reaction increases as the CO shift progresses on the CO shift catalyst with increased activity, and the catalyst bed temperature reaches a steady state within a short time of about 3 seconds compared to the conventional one! IIK returns and a predetermined CO metamorphosis rate can be obtained.

尚、Co Mo  At20−、系触媒は、硫化を必要
とするので、CO変成装置(ハ)に入る被処理ガスは、
H2Sとして50〜500 ppm程度の硫黄分を含有
していることが好ましい。
Incidentally, since the CoMo At20- system catalyst requires sulfidation, the gas to be treated entering the CO shift converter (c) is
It is preferable that the sulfur content is about 50 to 500 ppm as H2S.

@2図に示す炭化水素の部分燃焼ガス化装置において、
石炭、重質油等の原料がライシーから改質炉−に送られ
、常法に従って空気及び水蒸気の存在下に改質される。
In the hydrocarbon partial combustion gasification device shown in Figure @2,
Raw materials such as coal and heavy oil are sent from rice fields to a reforming furnace, where they are reformed in the presence of air and steam according to conventional methods.

改質炉−を出九高温生成カス中には、)−ポジ、灰分等
が含まれており、これ郷不純分が後続の工程におけるト
ラブル発生の原因となる。従って、生成ガスは、ライン
ー、熱交換器ζ3カ及びライン□□□を経て洗浄装置@
ηに送られ、水洗によりこれ等不純分を除去される。水
洗を終えたガスは、ライシIから熱交換a(財)K送ら
れ、ラインーからの高温生成ガスにより加熱された後、
ライシ(ロ)を経てCO変成装置f41に供給されるが
、CO変成装置−人口におけるカス温度は、通常210
℃程度である。従って、この場合にも水洗を終えたガス
に予め所定の酸素を加え、これをCO変成装置111に
供給する。かくして、第1図に示す実施例の場合と同様
に、ガス中の水素と酸素とが反応して水を生成する際の
反応熱により触媒層の昇温を行なうことが出来る。CO
齋成装置(へ)を出たガスは、ライン■から常法の脱炭
酸、脱硫等の精製工程に供され、更に必l!に応じ常法
に従ってメタン化等の処理を受ける。
The high-temperature sludge that leaves the reforming furnace contains positive substances, ash, etc., and these impurities cause trouble in subsequent steps. Therefore, the generated gas passes through the line, heat exchanger ζ3, and line □□□ to the cleaning device @
These impurities are removed by washing with water. The gas that has been washed with water is sent from Raishi I to heat exchanger AK, where it is heated by the high-temperature generated gas from the line.
It is supplied to the CO transformation device f41 via rice cake (b), but the temperature of the waste in the CO transformation device is usually 210
It is about ℃. Therefore, in this case as well, a predetermined amount of oxygen is added in advance to the gas that has been washed with water, and this is supplied to the CO converter 111. Thus, as in the case of the embodiment shown in FIG. 1, the temperature of the catalyst layer can be raised by the reaction heat generated when hydrogen and oxygen in the gas react to produce water. C.O.
The gas leaving the Saisei equipment is sent through line ■ to the usual purification processes such as decarboxylation and desulfurization. Depending on the situation, the material is subjected to treatments such as methanation according to conventional methods.

本発明によれば、以下の如き効果が達成される。According to the present invention, the following effects are achieved.

(−1′)断続的或いは非連続的に運転される5[1t
スにおいては、カス製造の再開後短時間内に所定のCO
変成率が達成され、CO濃度の低いガスが得られる。
(-1') 5[1t operated intermittently or discontinuously
In the production process, the specified CO
The conversion rate is achieved and gas with low CO concentration is obtained.

10)  ガス製造再開時の触媒層温度は、150℃程
度でも良いので、ガス製造の中断期間が特に長期となら
ない限り、加熱による保温を必要としない。
10) Since the temperature of the catalyst layer when gas production is restarted may be about 150°C, there is no need to keep it warm by heating unless the interruption period of gas production is particularly long.

Q〜 連続的に運転されるづ0セスにおいても、ガスが
CO変成触媒層内に送入されると、触媒層は、短時間内
に所定温度まで昇温されるので、CO変成装置への供給
に先立って熱交換器による予熱を行なう必要はなく、触
媒必要量は少なくて済み、CO変成器が小型化される。
Q ~ Even in a continuous operation, when gas is fed into the CO shift catalyst layer, the temperature of the catalyst layer is raised to a predetermined temperature within a short time. There is no need for preheating with a heat exchanger prior to supply, less catalyst is required, and the CO shift converter is smaller.

実施例 1 Co −No−A120.系CO変成触媒800tを内
径50■の反応管に充填し、H2S100PP罵Cwq
t−5/N−)及びCO22,5υoL%を含む水蒸気
改質ガスに所定量の酸素を加え、水蒸気とともに該反応
管に供給し、常圧下にCO変成反応を行なった。
Example 1 Co-No-A120. A reaction tube with an inner diameter of 50 cm was filled with 800 tons of CO conversion catalyst, and H2S100PP
A predetermined amount of oxygen was added to a steam reformed gas containing t-5/N-) and CO22.5 υoL%, and the mixture was supplied together with steam to the reaction tube to carry out a CO conversion reaction under normal pressure.

運転再開15分後の触媒層重[l温度とCO変成率を調
べた結果は、第1表に扁1及びム3として示す通抄であ
る。
The results of examining the catalyst layer weight [1] temperature and CO conversion rate 15 minutes after restarting operation are shown in Table 1 as 1 and 3.

又、酸素を加えることなく同様のCO変成反応を行なつ
九結果を第11!にム2及びム4として示す鳴 尚、CO変成率は、以下の様にして求めた。
In addition, the 9th result of performing the same CO modification reaction without adding oxygen is shown in the 11th! Meisho and CO metamorphosis rates, shown as Nimu2 and Mu4, were determined as follows.

第  1  表 第1表に示す結果から、本発明方法の優れ九効来が明ら
かである。
Table 1 From the results shown in Table 1, the superior efficacy of the method of the present invention is clear.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は、本発明の実施態様を説明する為の
フローチャートである。 (1)・・・・・水又は水蒸気供給うイシ、(3)・・
・・・燃料供給ライン、To)・・・・・空気等の酸素
含有ガス供給うイシ、(7)・・・・・予熱器、(川・
・・・・改質反応装置、−・・・・・軽質炭化水素供給
ライン、Oη・・・・・排熱回収ボイラー1.aU・・
・・・水蒸気供給ライン、(ハ)・・・・・CO変成装
置、(財)・・・・・排熱回収ボイラー、(311・・
・・・石炭、重質池畔の原料供給ライン、(ト)・・・
・・改質炉、−・・・・・熱交換器、@す・・・・・洗
浄装置、四・・・・・CO変成装置。 (以 上)
1 and 2 are flowcharts for explaining embodiments of the present invention. (1)...Water or steam supply unit, (3)...
... Fuel supply line, To) ... Oxygen-containing gas supply line such as air, (7) ... Preheater, (River...
...Reforming reactor, -...Light hydrocarbon supply line, Oη...Exhaust heat recovery boiler1. aU...
...Steam supply line, (c)...CO transformation device, (Foundation)...exhaust heat recovery boiler, (311...
・・・Coal, heavy pond raw material supply line, (g)...
...Reforming furnace, -...Heat exchanger, @S...Cleaning device, 4...CO transformation device. (that's all)

Claims (1)

【特許請求の範囲】[Claims] ■ −酸化炭素変成装置の昇温方法であって、−酸化炭
素変成装置内のco −Me −AL203畢触媒層に
酸素を含有する被処理カスを供給し、鋏ガス中の水素と
酸素との反応熱によって触媒層の昇温を行なうことを特
徴とする一酸化炭素変成装置の昇温方法。
- A method for raising the temperature of a carbon oxide shift device, which includes supplying a to-be-treated waste containing oxygen to a co-Me-AL203 catalyst layer in a carbon oxide shift device, and combining hydrogen and oxygen in the scissor gas. A method for raising the temperature of a carbon monoxide shift apparatus, characterized by raising the temperature of a catalyst layer using reaction heat.
JP57066955A 1982-04-20 1982-04-20 Method for increasing temperature of carbon monoxide converter Granted JPS58185402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57066955A JPS58185402A (en) 1982-04-20 1982-04-20 Method for increasing temperature of carbon monoxide converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57066955A JPS58185402A (en) 1982-04-20 1982-04-20 Method for increasing temperature of carbon monoxide converter

Publications (2)

Publication Number Publication Date
JPS58185402A true JPS58185402A (en) 1983-10-29
JPH0317762B2 JPH0317762B2 (en) 1991-03-08

Family

ID=13330948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57066955A Granted JPS58185402A (en) 1982-04-20 1982-04-20 Method for increasing temperature of carbon monoxide converter

Country Status (1)

Country Link
JP (1) JPS58185402A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62167629A (en) * 1986-01-20 1987-07-24 Canon Inc Optical system driving device
JP2001322803A (en) * 2000-03-21 2001-11-20 Dmc 2 Degussa Metals Catalysts Cerdec Ag Conversion method of carbon monoxide in a gaseous mixture containing hydrogen and catalyst therefor
JP2002003207A (en) * 2000-04-27 2002-01-09 Haldor Topsoe As Method for production of hydrogen rich gas
JP2011093719A (en) * 2009-10-27 2011-05-12 Tokyo Gas Co Ltd Method for producing and utilizing hydrogen

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4940559A (en) * 1972-08-21 1974-04-16
JPS5488891A (en) * 1977-12-09 1979-07-14 United Catalysts Inc Carbon monoxide conversion catalyst* its manufacture and method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4940559A (en) * 1972-08-21 1974-04-16
JPS5488891A (en) * 1977-12-09 1979-07-14 United Catalysts Inc Carbon monoxide conversion catalyst* its manufacture and method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62167629A (en) * 1986-01-20 1987-07-24 Canon Inc Optical system driving device
JP2001322803A (en) * 2000-03-21 2001-11-20 Dmc 2 Degussa Metals Catalysts Cerdec Ag Conversion method of carbon monoxide in a gaseous mixture containing hydrogen and catalyst therefor
JP2002003207A (en) * 2000-04-27 2002-01-09 Haldor Topsoe As Method for production of hydrogen rich gas
JP2011093719A (en) * 2009-10-27 2011-05-12 Tokyo Gas Co Ltd Method for producing and utilizing hydrogen

Also Published As

Publication number Publication date
JPH0317762B2 (en) 1991-03-08

Similar Documents

Publication Publication Date Title
CN102256894B (en) Method and device for producing raw synthesis gas
CN101190781B (en) Minitype light hydrocarbon steam reforming hydrogen manufacturing technique
JPS6140279B2 (en)
EP1846324A1 (en) Method for producing syngas with low carbon dioxide emission
CN106554831B (en) Equipment and process for purifying methane and synchronously methanation-transforming carbon dioxide
CN109485018B (en) Purification and sulfur recovery process for coal-to-methanol synthesis gas
CN100579896C (en) Method and system for preparing synthetic gas with appropriate hydrogen-carbon ratio from lurgi furnace outlet coal gas through non-catalytic partial oxidation by pure oxygen
FR2589082A1 (en) PROCESS FOR REMOVING THE SULFUR COMPOUNDS CONTAINED IN A RESIDUAL GAS, IN PARTICULAR FROM A SULFUR-CLUSED FACTORY, WITH RECOVERY OF SAID COMPOUNDS IN THE FORM OF SULFUR
US3758676A (en) Method for recovery of elemental sulfur from sour gas
CN204237559U (en) A kind of Acidic Gas Treating system
CN112023923B (en) Copper-based catalyst activation method for hydrogen production by methanol pyrolysis
JPS58185402A (en) Method for increasing temperature of carbon monoxide converter
SU598553A3 (en) Method of obtaining hydrogen-containing gas
JP2002058996A (en) Eigester gas refining agent and method for refining digester gas
CN104593079A (en) Process for producing clean synthesis gas from crushed coal
CN114774611A (en) Hydrogen rich gas CO2Method for producing iron by oxidation conversion and hydrogen-based shaft furnace direct reduction
JP6680960B1 (en) Gas processing method and gas processing apparatus
JPS6317498B2 (en)
CN218893633U (en) Temperature regulating system for preparing shaft furnace reducing gas from coke oven gas
JPH0517163B2 (en)
CN218811562U (en) System for preparing reducing gas by coke oven gas coupling shaft furnace conversion
CN115246628B (en) Purification method for synthesis gas at outlet of organic hazardous waste plasma gasification melting furnace
CN215516649U (en) Natural gas hydrogen production device
KR910005726B1 (en) Production of high-btu town gas from methanol
CN218842080U (en) System for preparing reducing gas of shaft furnace by coke oven gas