JPS58184565A - Radiation detector - Google Patents

Radiation detector

Info

Publication number
JPS58184565A
JPS58184565A JP6649782A JP6649782A JPS58184565A JP S58184565 A JPS58184565 A JP S58184565A JP 6649782 A JP6649782 A JP 6649782A JP 6649782 A JP6649782 A JP 6649782A JP S58184565 A JPS58184565 A JP S58184565A
Authority
JP
Japan
Prior art keywords
temperature
signal
circuit
temperature compensation
compensation circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6649782A
Other languages
Japanese (ja)
Other versions
JPS6341499B2 (en
Inventor
Tomoyuki Haga
知行 羽賀
Haruo Kotani
小谷 晴夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP6649782A priority Critical patent/JPS58184565A/en
Publication of JPS58184565A publication Critical patent/JPS58184565A/en
Publication of JPS6341499B2 publication Critical patent/JPS6341499B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/208Circuits specially adapted for scintillation detectors, e.g. for the photo-multiplier section

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)
  • Details Of Measuring And Other Instruments (AREA)

Abstract

PURPOSE:To achieve an accurate temperature compensation regardless whether the temperature coefficient of a signal to be detected is either positive or negative by enabling connection to the second temperature compensation circuit switched from the first temperature compensation circuit with the point of inflexion of the signal to be detected as boundary. CONSTITUTION:A comparator A4 produces a positive output when the temperature to be detected with a thermistor Th is lower than the temperature at the poit inflexion of a signal Si to be detected and an output '0' when it is higher than that. When the positive output is produced, transistors Tr1 and Tr3 conducts to be driven allowing a thermosensitive element RT to be connected to a feedback circuit of an arithmetic amplifier A2. This forms a first compensation circuit to effect a temperature compensation for a signal Si to be detected having a positive temperature coefficient. On the other hand, when the comparator A4 produces an output '0', an inversion takes place with an inverter IN and transistors Tr2 and Tr4 conducts to be driven allowing a thermosensitive element RT' to be connected to a feedback circuit of the arithmetic amplifier A2. This forms a second temperature compensation circuit to effect a temperature compensation for the signal to be detected having a negative temperature coefficient.

Description

【発明の詳細な説明】 本発明は放射線検出器に関し、殊に被検信号の温度補償
の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to radiation detectors, and more particularly to improved temperature compensation of signals under test.

放射線検出器として例オーばNaI(Tjlシンチレー
ション検出器においては従来、被検信号であるパルスの
波高値の温度依存性が第1図に示すように常温の範囲に
おいて負の特性をもつものに対してその温度補償は感温
素子を演算増幅器のフィードバック回路に挿入した公知
の補償回路を用いただけの簡素なものであった。しかし
、本発明者らの知見によれば被検信号の温度依存性はN
a I(T/ )シンチレーションの温度特性のみでな
く、それに組合されるPMT (光電子増倍管)の温度
特・−性やプリアンプの回路時定数にも影響されること
が確認された。九とえていうなら被検信号の温度依存性
は第2図に示すように結晶、PMTの温度特性やプリア
ンプの回路時定数によって実線のような特性を示したり
、破線、或いは鎖線のような特性を示したりするのであ
る。
For example, as a radiation detector, NaI (Tjl) scintillation detectors have conventionally used a scintillation detector that has negative characteristics in the room temperature range, as shown in Figure 1, in which the temperature dependence of the peak value of the pulse, which is the test signal, is negative. The temperature compensation was simple, using a known compensation circuit in which a temperature sensing element was inserted into the feedback circuit of an operational amplifier.However, according to the findings of the present inventors, the temperature dependence of the test signal is N
It was confirmed that it is affected not only by the temperature characteristics of aI(T/) scintillation, but also by the temperature characteristics of the PMT (photomultiplier tube) combined with it and the circuit time constant of the preamplifier. In other words, as shown in Figure 2, the temperature dependence of the signal under test can vary depending on the temperature characteristics of the crystal and PMT and the circuit time constant of the preamplifier, and can exhibit characteristics like the solid line, broken line, or chain line. It shows.

このため、従来使用されていた温度補償回路は大半の場
合適応できないものである。
For this reason, conventionally used temperature compensation circuits are not applicable in most cases.

そこで本発明は、被検信号が正の温度係数から負の温度
係数に変化する特性を有していても、正の温度係数、負
の温度係数を示す全ての領域にわたって確実に1i度補
償することのできる放射線検出器を提供するものである
Therefore, even if the test signal has a characteristic of changing from a positive temperature coefficient to a negative temperature coefficient, the present invention reliably compensates by 1i degrees over all regions exhibiting a positive temperature coefficient and a negative temperature coefficient. The present invention provides a radiation detector capable of detecting radiation.

而して本発明は正の温度係数をもつ信号を温度補償する
第1の温度補償回路と、負の温度係数をもつ信号を温度
補償する第2の温度補償回路と、被検信号が正の温度係
数から負の温度係数へ変化する変曲点の温度で切替信号
を発する切替信号発生回路と、この切替信号によって前
記@1.第2の温度補償回路を被検信号検出回路に選択
的に接続する接続切替手段とを有してなる放射線検出器
を要旨としている。ここで、第1の温度補償回路として
は、負の温度係数を有する感温素子を用い九前述の如き
公知の温度補償回路を使用し、ま大気2の温度補償回路
としては正の温度係数を有する感温素子を用いた公知の
温度補償回路を使用するのがよい。このような回路は正
又は負の温度係数を有する被検信号に逆の温度係数を有
する補償信号を乗算して温度補償を行なうという一般に
知られている技術である。しかし、被検信号と同じ温度
特性を有する補償信号を作り、被検信号をその信号で除
算して温度補償を行なうことも可能である。この場合、
第1又は第2の温度補償回路の一方のみをそのように除
算により温度補償する回路とすれば、両方の回路に用い
る感温素子は正又は負いずれか一方の特性を有するもの
を使用することができる。従ってその場合#icに感温
素子を2つの温度補償回路で共用する方向へ改良できる
発展性がある。切替信号発生回路は、被検信号の変曲点
の温[を検出する必要があるので、この回路にも一般に
感温素子は必要である。
Thus, the present invention includes a first temperature compensation circuit that temperature compensates a signal with a positive temperature coefficient, a second temperature compensation circuit that temperature compensates a signal with a negative temperature coefficient, and a second temperature compensation circuit that temperature compensates a signal with a negative temperature coefficient. A switching signal generation circuit generates a switching signal at the temperature at the inflection point where the temperature coefficient changes from a negative temperature coefficient, and the switching signal causes the above @1. The gist of the present invention is a radiation detector comprising connection switching means for selectively connecting a second temperature compensation circuit to a test signal detection circuit. Here, as the first temperature compensation circuit, a well-known temperature compensation circuit as described above is used, using a temperature sensing element having a negative temperature coefficient, and as the temperature compensation circuit for the atmosphere 2, a temperature sensing element having a negative temperature coefficient is used. It is preferable to use a known temperature compensation circuit using a temperature sensing element having the following characteristics. Such a circuit is a generally known technique of performing temperature compensation by multiplying a test signal having a positive or negative temperature coefficient by a compensation signal having an opposite temperature coefficient. However, it is also possible to perform temperature compensation by creating a compensation signal having the same temperature characteristics as the test signal and dividing the test signal by that signal. in this case,
If only one of the first or second temperature compensation circuits is a circuit that performs temperature compensation by division, the temperature sensing elements used in both circuits should have either positive or negative characteristics. Can be done. Therefore, in that case, #ic has the potential to be improved in the direction of sharing the temperature sensing element with two temperature compensation circuits. Since the switching signal generating circuit needs to detect the temperature at the inflection point of the signal under test, this circuit also generally requires a temperature sensing element.

次に上記補償回路、切替信号発生回路及び接続切替手段
を図面に示す実施に基づき説明する。第3図は本発明に
係る放射線検出器の原理的な回路を示し、lVi正の温
度係数をもつ信号を温度補償する第1の温度補償回路で
、演算増幅器へ、フィードバック抵抗として負の温If
%性を有する感温素子RT例えばサーミスタを用い、た
公知の回路である。2ij負の温度係数をもつ信号を温
度補償する%2の@度補償回路で、第1の温度補償回路
1と同一の回路構成をしている。但し、感温素子RT′
は正の温1特性71’j膚する例えば金属箔抵抗体及び
多数キャリアを利用し大半導体抵抗素子などが用いられ
ている。3は被検信号Siが正の温度係数から負の温度
係数に変化する変曲点の温度で切替信号Scを発生する
切替信号発生回路で、変曲点の温度を検出するためサー
ミスタ等の感温素子Thが用いられている。4.4は前
記切替信号Scによって2つの温度補償回路1.2を選
択的に被検信号検出回路5に接続する接続切替手段であ
る。
Next, the compensation circuit, switching signal generating circuit, and connection switching means will be explained based on the implementation shown in the drawings. FIG. 3 shows the principle circuit of the radiation detector according to the present invention. The first temperature compensation circuit temperature-compensates a signal having a positive temperature coefficient of lVi, and a negative temperature If as a feedback resistor to an operational amplifier.
This is a known circuit using a temperature sensitive element RT, such as a thermistor. 2ij This is a %2 degree compensation circuit for temperature compensating a signal having a negative temperature coefficient, and has the same circuit configuration as the first temperature compensation circuit 1. However, the temperature sensing element RT'
For example, a large semiconductor resistance element using a metal foil resistor and majority carriers is used, which has a positive temperature characteristic 71'j. 3 is a switching signal generation circuit that generates a switching signal Sc at the temperature at the inflection point where the test signal Si changes from a positive temperature coefficient to a negative temperature coefficient, and uses a sensor such as a thermistor to detect the temperature at the inflection point. A hot element Th is used. 4.4 is a connection switching means for selectively connecting the two temperature compensation circuits 1.2 to the test signal detection circuit 5 in accordance with the switching signal Sc.

前記各感温素子RT%RT’、Th#iNa I (T
/)シンチレーション或いはPMTの側近に設けられる
。ま念被検信号Siの温度特性は予じめ測定され、その
結果から被検信号の変曲点の温度を求めてその温度にお
いて切替信号を発するよう切替信号発生回路3が調整さ
れている。冑、賢曲点とは第2図の実線で示す温度特性
を有している信号を例にとって示すなら点Pがこれに該
当する。
Each temperature sensing element RT%RT', Th#iNa I (T
/) Provided near scintillation or PMT. The temperature characteristics of the test signal Si are measured in advance, and the switching signal generating circuit 3 is adjusted to determine the temperature of the inflection point of the test signal from the measurement results and to issue the switching signal at that temperature. The point P corresponds to the point P, taking as an example a signal having the temperature characteristics shown by the solid line in FIG. 2.

従ってこの構成によると、切替信号発生回路3が被検信
号Siの変曲点に相当する温度で切替信号Scを発生し
、接続切替手段4.4を切替えて被検信号Siの温度係
数を補償する温度補償回路l又は2を被検信号検出回路
5に選択的に接続するので、正の温度係数から負の温度
係数の全ての範囲にわたって被検信号Siの温度補償が
行なわれる。淘、感温素子RT、RT’と被検信号Si
との@寂係数を一致させるためには温度補償回路1゜2
の入力抵抗R1、R1や感温素子RT、  RT’に直
列、並列に可変抵抗を入れてそれらの値t−調整すれば
、良い。
Therefore, according to this configuration, the switching signal generation circuit 3 generates the switching signal Sc at a temperature corresponding to the inflection point of the signal under test Si, and switches the connection switching means 4.4 to compensate for the temperature coefficient of the signal under test Si. Since the temperature compensation circuit 1 or 2 is selectively connected to the test signal detection circuit 5, the temperature compensation of the test signal Si is performed over the entire range from a positive temperature coefficient to a negative temperature coefficient. Temperature sensing elements RT, RT' and test signal Si
Temperature compensation circuit 1゜2
It is sufficient to insert a variable resistor in series or parallel to the input resistors R1, R1 and the temperature sensing elements RT, RT' and adjust their values t-.

上記第3図の構成は原理的なものであり、従って部品数
が多くなり勝ちである。このため演算増幅器A1.〜を
共用して部品数の削減を図ったのが第4図に示す回路で
ある。(図中、Aが演算増幅器である。)そして、この
第4図に示す回路を実際の放射線検出器に組込んだ具体
的回路が1g5図に示す回路である。第5図において、
切替信号発生回路3けサーミスタThと、比較器^と、
被検信号Siの変曲点の温度に相当する電圧を発生する
基準電圧Eとからなっている。前記比較器Aidサーミ
スタThが検出する温暖が被検信号Siの変曲点の温度
より低いとき正の出力を、高いとき零の出力を発する。
The configuration shown in FIG. 3 is based on the principle, and therefore requires a large number of parts. For this reason, the operational amplifier A1. The circuit shown in FIG. 4 is designed to reduce the number of parts by sharing . (In the figure, A is an operational amplifier.) A specific circuit in which the circuit shown in FIG. 4 is incorporated into an actual radiation detector is the circuit shown in FIG. 1g5. In Figure 5,
Switching signal generation circuit 3-piece thermistor Th, comparator ^,
It consists of a reference voltage E that generates a voltage corresponding to the temperature at the inflection point of the test signal Si. When the temperature detected by the comparator Aid thermistor Th is lower than the temperature at the inflection point of the test signal Si, it emits a positive output, and when it is higher, it emits a zero output.

接続切替手段4I/′!トランジスタTrl 、  T
ry 、  Trs 、  Tr4とインバータINと
から成っており、前記比較器九が正の出力を発し念とき
トランジスタTr、、  Tr、が導通駆動され、感温
素子RTを演算増幅器〜のフィードバック回路に接続す
る。これによって第1の温1補償回路が構成され、正の
温度係数を有する被検信号Siの温度補償がなされる。
Connection switching means 4I/'! Transistor Trl, T
ry, Trs, Tr4 and an inverter IN, and in case the comparator 9 issues a positive output, the transistors Tr,, Tr, are driven into conduction, and the temperature sensing element RT is connected to the feedback circuit of the operational amplifier ~. do. As a result, a first temperature 1 compensation circuit is configured, and temperature compensation of the test signal Si having a positive temperature coefficient is performed.

一方、比較器〜が零の出方を発するとインバータINに
よって反転され、今度はトランジスタTry、  Tr
aを導通駆動し、感温素子RT’を演算増幅器〜のフィ
ードバック回路に  4接続する。これによって、第2
の温度補償回路が構成され、負の温度係数を有する被検
信号の温度補償がなされる。被検信号検出回路5#iP
MTと高速電流、電圧変換回路6とからなっている。ま
た温度補償回路1.2の後方に接続され丸目路7はケー
ブルドライブ回路である。
On the other hand, when the comparator ~ generates a zero output, it is inverted by the inverter IN, and this time the transistors Try, Tr
A is driven to conduct, and the temperature sensing element RT' is connected to the feedback circuit of the operational amplifier. This allows the second
A temperature compensation circuit is configured to perform temperature compensation for a test signal having a negative temperature coefficient. Test signal detection circuit 5#iP
It consists of an MT and a high-speed current/voltage conversion circuit 6. Further, the round loop 7 connected to the rear of the temperature compensation circuit 1.2 is a cable drive circuit.

本発明に係る放射線検出器は以上の如く構成し念ので、
被検信号がPMTやプリアンプ等の温度特性の影響を受
けて・五の温度係数か:)ら負の温度係数へと変化して
も、被検信号の温度係数の変曲点を境にして第1の温度
補償回路と第2の温度補償回路とを切替えて接続するの
で、被検信号の温度係数が正、負いずれであっても確実
に温度補償することができる。よって本発明によれば、
温度依存性を消去され念被検信号を得るこ七がで〜正確
な放射線量等の測定が可能となるのである。尚、実施例
では便宜上Na I (Tr)シンチレーション検出器
で説明したが、半導体検出器等の放射検出器にも本発明
を適用することは可能である。
Since the radiation detector according to the present invention is configured as described above,
Even if the signal under test changes from a temperature coefficient of Since the first temperature compensation circuit and the second temperature compensation circuit are switched and connected, temperature compensation can be reliably performed regardless of whether the temperature coefficient of the signal under test is positive or negative. Therefore, according to the present invention,
By eliminating the temperature dependence and obtaining a test signal, it becomes possible to accurately measure radiation doses, etc. Although the embodiments have been described using Na I (Tr) scintillation detectors for convenience, the present invention can also be applied to radiation detectors such as semiconductor detectors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来考えられていた被検信号の温度特性を示す
図、第2図は本発明者が測定した被検信号の温度特性を
示す図、第3図は本発明の原理的な回路図、第4図は第
3図の回路をより簡素化し友回路図、第S図は第4図の
回路を具体化した実際的な回路図である。 1・・第1の温度補償回路、2・・・gg2の温度補償
回路、3・・・切替信号発生回路、4・・・接続切替手
段1、′。 5・・・被検信号検出回路。 自発手続補正書 昭和57年7月ノア日 特許庁長官     殿 1 事件の表示 昭和57年 特 許 願第66497  号2 発明の
名称  放射線検出器 3、 補正をする者 事件との関係  特許出願人 4 代  理  人 8?118正の内ビf 本願願書に添付の図面中、第5
図を添付別紙の通り訂正致します。
Fig. 1 is a diagram showing the temperature characteristics of the test signal as conventionally considered, Fig. 2 is a diagram showing the temperature characteristics of the test signal measured by the present inventor, and Fig. 3 is the principle circuit of the present invention. 4 is a simplified circuit diagram of the circuit in FIG. 3, and FIG. S is a practical circuit diagram embodying the circuit in FIG. 4. 1...first temperature compensation circuit, 2...temperature compensation circuit of gg2, 3...switching signal generation circuit, 4...connection switching means 1,'. 5...Test signal detection circuit. Spontaneous procedural amendment July 1980 Noah Day Commissioner of the Patent Office 1 Indication of the case 1982 Patent Application No. 66497 2 Title of the invention Radiation detector 3 Relationship to the amended person case Patent applicant 4th generation Person 8?118 Correct internal bif No. 5 in the drawings attached to the application form
The diagram has been corrected as shown in the attached document.

Claims (1)

【特許請求の範囲】[Claims] 正の温度係数をもつ信号を温度補償する第1の温度補償
回路と、負の温度係数をもつ信号を温度補償する第2の
温度補償回路と、被検信号が・正の温度係数から負の温
度係数へ変化する変曲点の温度で切替信号を発する切替
信号発生回路と、この切替信号によって前記第1、第2
の温度補償回路を被検信号検出回路に選択的に接続する
接続切替手段とを有してなる放射線検出器。
A first temperature compensation circuit that temperature compensates a signal with a positive temperature coefficient, a second temperature compensation circuit that temperature compensates a signal with a negative temperature coefficient, and a second temperature compensation circuit that temperature compensates a signal with a negative temperature coefficient; a switching signal generation circuit that generates a switching signal at an inflection point temperature where the temperature coefficient changes;
A radiation detector comprising connection switching means for selectively connecting the temperature compensation circuit of the above to the test signal detection circuit.
JP6649782A 1982-04-21 1982-04-21 Radiation detector Granted JPS58184565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6649782A JPS58184565A (en) 1982-04-21 1982-04-21 Radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6649782A JPS58184565A (en) 1982-04-21 1982-04-21 Radiation detector

Publications (2)

Publication Number Publication Date
JPS58184565A true JPS58184565A (en) 1983-10-28
JPS6341499B2 JPS6341499B2 (en) 1988-08-17

Family

ID=13317504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6649782A Granted JPS58184565A (en) 1982-04-21 1982-04-21 Radiation detector

Country Status (1)

Country Link
JP (1) JPS58184565A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06138236A (en) * 1992-10-27 1994-05-20 Toshiba Glass Co Ltd Glass dosimeter
JP2004347368A (en) * 2003-05-20 2004-12-09 Mitsubishi Electric Corp Radiation monitor
CN102365562A (en) * 2009-03-26 2012-02-29 皇家飞利浦电子股份有限公司 Data acquisition
JP2014092447A (en) * 2012-11-02 2014-05-19 Hamamatsu Photonics Kk Radiation detector

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5550178A (en) * 1978-10-06 1980-04-11 Oyo Koken Kogyo Kk Scintillation detector
JPS55142261A (en) * 1979-04-24 1980-11-06 Fuji Electric Co Ltd Scintillation counter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5550178A (en) * 1978-10-06 1980-04-11 Oyo Koken Kogyo Kk Scintillation detector
JPS55142261A (en) * 1979-04-24 1980-11-06 Fuji Electric Co Ltd Scintillation counter

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06138236A (en) * 1992-10-27 1994-05-20 Toshiba Glass Co Ltd Glass dosimeter
JP2004347368A (en) * 2003-05-20 2004-12-09 Mitsubishi Electric Corp Radiation monitor
JP4540301B2 (en) * 2003-05-20 2010-09-08 三菱電機株式会社 Radiation monitor
CN102365562A (en) * 2009-03-26 2012-02-29 皇家飞利浦电子股份有限公司 Data acquisition
JP2012521554A (en) * 2009-03-26 2012-09-13 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Data acquisition
JP2015158501A (en) * 2009-03-26 2015-09-03 コーニンクレッカ フィリップス エヌ ヴェ data acquisition
JP2014092447A (en) * 2012-11-02 2014-05-19 Hamamatsu Photonics Kk Radiation detector

Also Published As

Publication number Publication date
JPS6341499B2 (en) 1988-08-17

Similar Documents

Publication Publication Date Title
JP4258430B2 (en) Current sensor
US3688581A (en) Device for correcting the non-linear variation of a signal as a function of a measured magnitude
KR20000028396A (en) Temperature sensing circuit using thermopile sensor
US6430403B1 (en) Temperature compensated, zero bias RF detector circuit
JPS58184565A (en) Radiation detector
US20040079888A1 (en) Infrared detection device
US5929448A (en) Redundant transistor dose monitor circuit using two ICs
US7249516B2 (en) Method of operating a resistive heat-loss pressure sensor
EP0618452B1 (en) An average power detector circuit
US20060021444A1 (en) Method of operating a resistive heat-loss pressure sensor
CN111089609A (en) Sensor circuit with offset compensation
Grno Thermal wattmeter with direct power conversion
JPH0564762U (en) Gas detector
US6879919B2 (en) DSP assisted peak capture circuit and method
JPS62195580A (en) Measuring instrument for generation quantity of radiation
US20180120166A1 (en) Multi-level temperature detection with offset-free input sampling
KR0145591B1 (en) Method and apparatus of temperature detecting by using thermofile sensor
JP3260533B2 (en) Current detector
JP2009300293A (en) Logarithmic conversion circuit
SU1557458A1 (en) Device for measuring temperature
Şanlı et al. Low-cost and miniaturized temperature compensation system for nuclear applications
SU1167450A1 (en) Pulsed thermal noise thermometer
JPH0518391B2 (en)
SU1659745A1 (en) Digital thermometer
SU1134888A1 (en) Thermal flowmeter