JPS58184468A - Magnetic refrigerator - Google Patents

Magnetic refrigerator

Info

Publication number
JPS58184468A
JPS58184468A JP6727182A JP6727182A JPS58184468A JP S58184468 A JPS58184468 A JP S58184468A JP 6727182 A JP6727182 A JP 6727182A JP 6727182 A JP6727182 A JP 6727182A JP S58184468 A JPS58184468 A JP S58184468A
Authority
JP
Japan
Prior art keywords
magnetic
rotating disk
refrigerator
disk
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6727182A
Other languages
Japanese (ja)
Other versions
JPH0256579B2 (en
Inventor
久直 尾形
善則 白楽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6727182A priority Critical patent/JPS58184468A/en
Publication of JPS58184468A publication Critical patent/JPS58184468A/en
Publication of JPH0256579B2 publication Critical patent/JPH0256579B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/002Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects
    • F25B2321/0021Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects with a static fixed magnet

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Superconductive Dynamoelectric Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は磁性体の断熱消磁によって冷凍を発生する磁気
冷凍機に係り、特に超流動ヘリワムの発生に好適な磁気
冷凍機に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic refrigerator that generates refrigeration by adiabatic demagnetization of a magnetic material, and particularly to a magnetic refrigerator suitable for generating superfluid heliwaum.

従来の磁気冷凍機としては往復動型および回転型のもの
が知られている。往復動型のものは磁性体を高磁界中に
往復動によって出し入れするものであるが、磁性体をモ
ータで駆、動する場合、回転運動を直線運動に変換する
機構を安し、かつストロータが大きくなるため駆tjI
JJ(fI1分が複雑かつ大形になる。また、回転型の
ものは、回転体中に作動流体を流すが、気密性に大きな
問題があ)、流体の循環手段を要してきわめて複雑なも
のになっていた。
Reciprocating type and rotary type types are known as conventional magnetic refrigerators. The reciprocating type moves the magnetic material in and out of the high magnetic field by reciprocating motion, but when the magnetic material is driven and moved by a motor, the mechanism that converts rotational motion into linear motion is inexpensive, and the strator is I want to grow bigger
JJ (fI1 minute is complicated and large.Also, in the rotary type, the working fluid flows through the rotating body, but there is a big problem with airtightness), which requires a fluid circulation means and is extremely complicated. It had become a thing.

本発明の目的は、このような問題点を解決するために、
磁性棒金内蔵する円板を回転させることによって冷凍サ
イクルを構成する磁気冷凍機を提供することにある。
The purpose of the present invention is to solve such problems,
An object of the present invention is to provide a magnetic refrigerator that constitutes a refrigeration cycle by rotating a disc containing a magnetic bar.

この磁気冷凍機は少なくとも一面が露出した状態で円板
に磁性体を埋めこみ、こnが静止高磁界部と寒冷取出部
を交互に通過するように回転させ、かつ円板との間に極
めて小さい間隙を保持するように静止板を対向させ、高
温部全4.2 Kの液体へり9ムに浸して、低温部で2
に以下の超流動ヘリワムを発生妊せるものである。
This magnetic refrigerator has a magnetic material embedded in a disk with at least one side exposed, and is rotated so that it passes alternately through a stationary high magnetic field section and a cold extraction section. The stationary plates were placed opposite each other so as to maintain a gap, and the high temperature part was immersed in 9 μm of liquid at 4.2 K, and the low temperature part was heated for 2
The following superfluid heliwams can be generated.

以下、本開明の実施例を第1図により説明する。An embodiment of the present invention will be described below with reference to FIG.

1a及び1bは磁性体で例えばG d a ・G as
 ’ 0tt(ガドニリワム・ガリウム・カーネット)
単結晶などを円筒状に加工したもので、厚さ20w位の
円板2に接着剤等で固定さnている。この日板2として
は、アルミナセラミック、結晶化カラス。
1a and 1b are magnetic materials, for example, G da ・Gas
'0tt (Gadoniliwam Gallium Carnet)
It is made by processing a single crystal or the like into a cylindrical shape, and is fixed to a disk 2 with a thickness of about 20W using an adhesive or the like. This date board 2 is made of alumina ceramic and crystallized glass.

繊維強化樹脂など磁性体1a、lbと同程度の膨張係数
をもちかつ熱伝導率の低いものが望筐しい。
It is desirable to use a material such as fiber-reinforced resin that has an expansion coefficient comparable to that of the magnetic materials 1a and lb and has low thermal conductivity.

第1図では円柱状の磁性体1a、lbの両端面が円板2
の表面と同一面上になるよう加工δれている。3a及び
3bは、円板2に接触しない程度の微小間隙(たとえば
10μm〜20μm)を保って円板2と対向している平
板である。平板3a。
In Fig. 1, both end surfaces of the cylindrical magnetic bodies 1a and lb are disks 2.
The surface is machined so that it is flush with the surface of the surface. 3a and 3b are flat plates facing the disk 2 with a small gap (for example, 10 μm to 20 μm) that does not contact the disk 2. Flat plate 3a.

3bはステンVス鋼、セラミック、結晶化カラス。3b is stainless steel, ceramic, and crystallized glass.

繊維強化樹脂など熱伝導率の低いものからなる。Made of materials with low thermal conductivity such as fiber-reinforced resin.

間隙は円板2と同一材質のスペーサ4で設定されている
。円板2は軸5に固定され、ベアリング6a、6bを介
して平板3a、3bとの位置的関係を保持する。ベアリ
ング6a、6bとしては、極低温でも動作する無給油型
のものを用いる。7はポールピース、8はコイル(午〈
に超電導コイル)で、ポールピース7のギャップに高磁
界を発生させる。9は寒冷取出部で、断熱配管10で会
費な部署に連結さ几ている。
The gap is set by a spacer 4 made of the same material as the disc 2. Disk 2 is fixed to shaft 5 and maintains a positional relationship with flat plates 3a, 3b via bearings 6a, 6b. The bearings 6a and 6b are oil-free types that operate even at extremely low temperatures. 7 is the pole piece, 8 is the coil (hour
(superconducting coil) to generate a high magnetic field in the gap of the pole piece 7. Reference numeral 9 denotes a cold storage extraction section, which is connected to the membership department through an insulated pipe 10.

第2図は、第1図に示した実施例の上部平面図である。FIG. 2 is a top plan view of the embodiment shown in FIG.

このような構成において、ポールピース7のギャップ部
分には平板3a、3bに開口11a。
In such a configuration, the gap portion of the pole piece 7 has an opening 11a in the flat plates 3a and 3b.

11bがあけてあシ、磁性体lb中で発生した磁化熱を
周囲の液体ヘリウム12で冷却する。冷却が完了すると
、円板2は180°回転して磁性体laの位置に来ると
消磁さnて吸熱する。その結果、寒冷取出部9内の液体
ヘリウム13が冷却きれる。このようなサイクルを繰シ
返して液体ヘリウム13は2に以下に冷却さt″L超流
動ヘリクムとなる。液体ヘリウム13と液体ヘリウム1
20間は上述の如くきわめて小さな間隙に保fc、t′
しているため、超流動ヘリウムの良好な熱伝導特性が阻
害さn、両者が熱的に隔離さnている。回転の速度は磁
性体が高磁界部または寒冷発生部に滞在する時間を長く
と)、そり間を移動する時間は短くなるように制御する
11b is opened, and the heat of magnetization generated in the magnetic body lb is cooled down by the surrounding liquid helium 12. When the cooling is completed, the disk 2 rotates 180 degrees and when it comes to the position of the magnetic body la, it is demagnetized and absorbs heat. As a result, the liquid helium 13 in the cold extraction section 9 can be completely cooled. By repeating such a cycle, the liquid helium 13 is cooled down to below 2 t''L and becomes superfluid helium.Liquid helium 13 and liquid helium 1
As mentioned above, the gap between 20 fc and t' is kept extremely small.
This inhibits the good thermal conductivity properties of superfluid helium, and the two are thermally isolated. The speed of rotation is controlled so that the time the magnetic body spends in the high magnetic field area or the cold generation area becomes longer, and the time it moves between the sleds becomes shorter.

第3図は本発明の別の実施例で磁性体を4ケ使用したも
のである。基本的な構成はすべて第1図及び第2図に示
したものと同じで、磁性体の数が2倍になった結果、ポ
ールピース7、コイル8゜寒冷取出部9といずnow成
物も2倍に増えている。
FIG. 3 shows another embodiment of the present invention in which four magnetic bodies are used. The basic configuration is all the same as shown in Figures 1 and 2, but as a result of doubling the number of magnetic materials, the pole piece 7, the coil 8°, and the cold outlet part 9 are all now available. It has doubled.

この場合、回転が90° @ざみになるので、回転数を
下げることができ、ベアリング等の耐久性を高めること
ができる。同様にして円板の径を大きくすnば多数の磁
性体を埋め込むことが可り目なので多極化した低速回転
の磁気冷凍機が侍らnる。
In this case, since the rotation is increments of 90°, the number of rotations can be lowered, and the durability of the bearing etc. can be increased. Similarly, if the diameter of the disc is increased, it becomes possible to embed a large number of magnetic substances, so a multipolar, low-speed rotating magnetic refrigerator is used.

第4図は、本発明による磁気冷凍機を超電導マグネット
に適用したシステムを示す。14が円板を内蔵する冷凍
機の本体、7はコイル8と一体化したポールピース、9
は摩冷取出用配官、15は駆動用モータで、モータを除
く冷凍機本体は液体ヘリ9ム12(温度4.2 K 、
圧力大気圧)に浸漬されている。いっぽう、16は冷却
すべき超電導マグネットで、配管9内と連通した超流動
ヘリツム13中に浸漬さnている。17は安全弁、18
は破壊板、19は電流リードである。20は成体ヘリワ
ム12と同一温度レベルのシール)”、21は液体窒素
温度ノベルのシールド、22は真空容器で、空間23は
真空である。このような構成によシ、超電導マグネット
16及びその周辺での熱負荷は高熱伝導性の超流動へり
9ム13を経由しと て冷凍機の本体14で寒冷金堂へることができる。
FIG. 4 shows a system in which the magnetic refrigerator according to the present invention is applied to a superconducting magnet. 14 is the main body of the refrigerator with a built-in disk, 7 is a pole piece integrated with the coil 8, 9
15 is a drive motor, and the refrigerator body excluding the motor is a liquid helicopter 9m 12 (temperature 4.2 K,
pressure (atmospheric pressure). On the other hand, 16 is a superconducting magnet to be cooled, which is immersed in a superfluid helium 13 communicating with the inside of the pipe 9. 17 is a safety valve, 18
is a destruction plate, and 19 is a current lead. 20 is a seal at the same temperature level as the adult Heliwam 12), 21 is a liquid nitrogen temperature shield, 22 is a vacuum container, and space 23 is a vacuum.With this configuration, the superconducting magnet 16 and its surroundings The heat load can be transferred to the cooling chamber via the highly thermally conductive superfluid edge 9m 13 at the main body 14 of the refrigerator.

冷凍発生に要するエネルギー(磁化熱9回転にともなう
摩擦熱等)は液体へリワム12が沸騰して吸収する。こ
のために要する液体の補給、および気化ガスの回収は別
の冷凍システムで行う。
The energy required to generate refrigeration (frictional heat due to nine rotations of magnetization heat, etc.) is absorbed by the liquid by the refrigeration 12 being boiled. Replenishment of the liquid required for this purpose and collection of vaporized gas are performed in a separate refrigeration system.

第5図は本発明の他の実施例を示す断面図で、高温の液
体へリワム12と超流動性の液体へリワム13とを仕切
)板24で隔離したものである。
FIG. 5 is a sectional view showing another embodiment of the present invention, in which a high-temperature liquid rewam 12 and a superfluid liquid rewam 13 are separated by a partition plate 24.

磁性体1a、l+は円板2に埋め込1れ、平板25aと
25bに囲まれている。円板2はs5゜ベアリング6a
、6be介して平板25a、25bとの位置関係を保っ
ている。8はソレノイド超電導コイルで、磁性体lb部
に高磁界を発生させる。
The magnetic bodies 1a and l+ are embedded in the disk 2 and surrounded by flat plates 25a and 25b. Disc 2 is s5° bearing 6a
, 6be maintains the positional relationship with the flat plates 25a and 25b. 8 is a solenoid superconducting coil that generates a high magnetic field in the magnetic body lb section.

平板25aには液体ヘリウム12側に、また平板25b
Kは超流動ヘリツム13側に開口がめる。
On the flat plate 25a, on the liquid helium 12 side, and on the flat plate 25b.
K has an opening on the superfluid helium 13 side.

この図の場合、磁化による発熱除去面と、消磁中の吸熱
面が第1図に示したような同一面ではないが、第1図に
示したものと全く同じ冷凍サイタルを呈する。
In the case of this figure, although the heat generation removal surface due to magnetization and the heat absorption surface during demagnetization are not the same surface as shown in FIG. 1, they exhibit exactly the same refrigeration cycle as shown in FIG.

第6図は磁性体の他の形状を示す。断面が扇形をした磁
性体1が円板2に放射状に4個埋め込まnている様子を
示す。このような形状は、磁性体単結晶の原材料が円面
状を呈し、こnより小片に切り出して使用する場合、素
材の無駄が少ない。
FIG. 6 shows another shape of the magnetic body. It shows how four magnetic bodies 1 each having a sector-shaped cross section are embedded radially in a disk 2. In such a shape, the raw material of the magnetic single crystal has a circular shape, and when the raw material is cut into smaller pieces for use, there is less waste of the material.

なお、こfらのシステムを多段に重ねて同一駆動機構で
運転すnば大きな冷凍出力を得ることができる。
Note that a large refrigerating output can be obtained by stacking these systems in multiple stages and operating them with the same drive mechanism.

本発明によnば、磁性体を回転させるだけで寒冷を発生
することが可H口であシ、構造が極めて単純化されると
いう大きな効果がある。
According to the present invention, it is possible to generate cold simply by rotating the magnetic body, and the structure is extremely simplified, which is a great effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の磁気冷凍機の一実施例を示す断面図、
第2図は第1図の平面要、第3図は本発明の別の実施例
を示す部分斜視図、第4図は本発明の実施例を適用した
例を示す概念断面図、第5図は本発明の別の実施例を示
す断面図、第6図は本発明における円板部分の他の例を
示す平面図である。 1、la、lb・・・磁性体、2 a、 2b−・−円
板、3a、3b・・・平板、8・・・コイル、9・・・
寒冷取出配管、12・・・液体ヘリウム、13・・・超
流動ヘリウム、□  15・・・駆動モータ。    
         75、代理人 弁理士 薄田オσ’
、門”i 、4′、ノ I・ 笥−1=5;ミ] ■ 3 図 第  4 反 Ns  図
FIG. 1 is a sectional view showing an embodiment of the magnetic refrigerator of the present invention;
Fig. 2 is a plan view of Fig. 1, Fig. 3 is a partial perspective view showing another embodiment of the present invention, Fig. 4 is a conceptual sectional view showing an example to which the embodiment of the present invention is applied, and Fig. 5 6 is a cross-sectional view showing another embodiment of the present invention, and FIG. 6 is a plan view showing another example of the disc portion in the present invention. 1, la, lb...magnetic material, 2 a, 2b--disk, 3a, 3b...flat plate, 8... coil, 9...
Cold extraction piping, 12...liquid helium, 13...superfluid helium, □ 15...drive motor.
75, Agent Patent Attorney Usuda O σ'
, Gate"i,4',NoI・笥-1=5;Mi] ■ 3 Figure 4 Anti-Ns diagram

Claims (1)

【特許請求の範囲】[Claims] 11面ないし複数個の磁性体が、少なくともその一面が
露出するように埋めこまれた回転円板と、前記磁性体が
露出している側に小さな間隙を保って前記回転円板に対
向すると共にこの回転円板を回転自在に支持する静止平
板と、前記回転円板の7iiij部に高磁界を作用さぜ
るための靜止磁界発生都と、前記静止平板の局部に開口
をもつ寒冷取出部とを有する磁気冷凍機。
A rotating disk in which 11 or a plurality of magnetic bodies are embedded so that at least one side thereof is exposed, and a rotating disk facing the rotating disk with a small gap maintained on the side where the magnetic bodies are exposed, and A stationary flat plate that rotatably supports the rotating disk, a static magnetic field generator for applying a high magnetic field to the 7iiij portion of the rotating disk, and a cold extraction section having an opening in a local part of the stationary flat plate. Magnetic refrigerator with.
JP6727182A 1982-04-23 1982-04-23 Magnetic refrigerator Granted JPS58184468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6727182A JPS58184468A (en) 1982-04-23 1982-04-23 Magnetic refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6727182A JPS58184468A (en) 1982-04-23 1982-04-23 Magnetic refrigerator

Publications (2)

Publication Number Publication Date
JPS58184468A true JPS58184468A (en) 1983-10-27
JPH0256579B2 JPH0256579B2 (en) 1990-11-30

Family

ID=13340124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6727182A Granted JPS58184468A (en) 1982-04-23 1982-04-23 Magnetic refrigerator

Country Status (1)

Country Link
JP (1) JPS58184468A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007005552A (en) * 2005-06-23 2007-01-11 Hitachi Ltd Cryostat for superconducting magnet
EP1957890A1 (en) * 2005-11-10 2008-08-20 Daewoo Electronics Corporation Magnetic refrigerator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3393526A (en) * 1966-06-29 1968-07-23 Rca Corp Cryogenic heat pump including magnetic means for moving a normal zone along a superconductive rod
JPS53113355A (en) * 1977-03-10 1978-10-03 Us Energy Magnetic refrigerator
JPS5610266U (en) * 1979-07-02 1981-01-28

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2706507C3 (en) * 1977-02-16 1981-09-24 Wilhelmstal Ernst & Sohn GmbH & Co KG, 5600 Radevormwald Self-adhesive closure for mailers, envelopes, bags, or the like.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3393526A (en) * 1966-06-29 1968-07-23 Rca Corp Cryogenic heat pump including magnetic means for moving a normal zone along a superconductive rod
JPS53113355A (en) * 1977-03-10 1978-10-03 Us Energy Magnetic refrigerator
JPS5610266U (en) * 1979-07-02 1981-01-28

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007005552A (en) * 2005-06-23 2007-01-11 Hitachi Ltd Cryostat for superconducting magnet
JP4537270B2 (en) * 2005-06-23 2010-09-01 株式会社日立製作所 Cryostat for superconducting magnet
EP1957890A1 (en) * 2005-11-10 2008-08-20 Daewoo Electronics Corporation Magnetic refrigerator
EP1957890A4 (en) * 2005-11-10 2013-05-01 Daewoo Electronics Corp Magnetic refrigerator

Also Published As

Publication number Publication date
JPH0256579B2 (en) 1990-11-30

Similar Documents

Publication Publication Date Title
JPH0332710B2 (en)
JPH0481099B2 (en)
US7552592B2 (en) Magnetic refrigerator
US4033734A (en) Continuous, noncyclic magnetic refrigerator and method
US4507927A (en) Low-temperature magnetic refrigerator
JPS63148061A (en) Magnetic refrigerator and method thereof
JP2008544200A (en) Continuous rotating magnetic refrigerator or heat pump
JPS58184468A (en) Magnetic refrigerator
CN211011986U (en) Rotary magnetic refrigeration cooler
JPS61282766A (en) Rotary type magnetic refrigerator
Patlach Design considerations for a magneto-optic cryogenic film memory
JPS60220270A (en) Sealing device
Barclay et al. Performance results of a low-temperature magnetic refrigerator
JPS61213453A (en) Cryogenic refrigerator
JPS61265464A (en) Magnetic refrigerator
JP2887022B2 (en) Cooler regenerator
JPS61114061A (en) Magnetic refrigerator
JPS6294771A (en) Magnetic refrigerator
JPS61234282A (en) Magnetic refrigerating cryo pump
JPH0428985B2 (en)
SU1719815A1 (en) Cryostatting system
JPH0371626B2 (en)
JPH0332711B2 (en)
JPS608672A (en) Cascade type magnetic refrigerator
JPS63129267A (en) Rotary type magnetic refrigerator