JPS58184373A - Temperature-type expansion valve - Google Patents

Temperature-type expansion valve

Info

Publication number
JPS58184373A
JPS58184373A JP57065310A JP6531082A JPS58184373A JP S58184373 A JPS58184373 A JP S58184373A JP 57065310 A JP57065310 A JP 57065310A JP 6531082 A JP6531082 A JP 6531082A JP S58184373 A JPS58184373 A JP S58184373A
Authority
JP
Japan
Prior art keywords
valve
valve seat
temperature
shape memory
memory alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57065310A
Other languages
Japanese (ja)
Inventor
Shigeaki Kuroda
黒田 重昭
Toshio Hatada
畑田 敏夫
Taketoshi Mochizuki
望月 武利
Takao Chiaki
千秋 隆雄
Akira Atsumi
晃 渥美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57065310A priority Critical patent/JPS58184373A/en
Publication of JPS58184373A publication Critical patent/JPS58184373A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • F16K17/36Safety valves; Equalising valves, e.g. pressure relief valves actuated in consequence of extraneous circumstances, e.g. shock, change of position
    • F16K17/38Safety valves; Equalising valves, e.g. pressure relief valves actuated in consequence of extraneous circumstances, e.g. shock, change of position of excessive temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/33Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant
    • F25B41/335Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant via diaphragms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/36Expansion valves with the valve member being actuated by bimetal elements or shape-memory elements influenced by fluids, e.g. by the refrigerant

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Temperature-Responsive Valves (AREA)

Abstract

PURPOSE:To expand the usage range of flow control by using a bar member made of a shape memory alloy as a valve rod or by fitting a valve seat to a coil member made of the shape memory alloy so as to form the valve seat movably. CONSTITUTION:A bar member 12a made of a shape memory alloy is inserted in the middle of a valve rod 12. A refrigerant enters from below an expansion valve and flows in an arrow direction through a clearance between the lower section of a valve body 6 and a valve seat 3. At this time, if the temperature of a heat sensitive section 4 is elevated, the pressure of a space 1a is raised, the center of a diaphragm 1 is moved downward, this movement forces the valve body 6 to move through the valve rod 12, the clearance between the lower section of the valve body 6 and the valve seat 3 is made larger, and the refrigerant flow is increased. If the temperature of the heat sensitive section 4 is lowered, the clearance between the valve body and valve seat is made smaller on the contrary, and the flow is decreased.

Description

【発明の詳細な説明】 本発明は空調機等の温度式膨張弁に係り、特にその作動
流量範囲を拡大した温度式膨張弁に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a temperature-type expansion valve for an air conditioner or the like, and particularly to a temperature-type expansion valve with an expanded operating flow range.

従来の温度式膨張弁は第1図に示すように、弁筒5内に
設けたダイヤフラム1にてダイヤフラム室1aを形成し
、該室1aは細通路を介し−C感熱部4を連通している
。上記ダイヤフラム1には弁棒2を連設し、升#2先端
には弁体6を設け、弁座3に対向している。ダイヤフラ
ム1の変位によQ弁棒2を介し弁体が移動し、弁座3と
の間隙を制御し、該間隙を流通する冷媒を減圧すると共
に流量を制御する。この温度式膨張弁の特性を第2図に
示す。一般の空調機にお^て室内空気温度を一定とする
と、空調機の冷媒流量は外気温度により変化する。この
流量変化は冷媒温度変化を感熱部4にて感知して膨張弁
のダイヤフラム1を移動させ、弁棒2が上下し弁座3と
の間隙を変化させ−C行う。このためダイヤフラム1の
構造により、実線で示す理想的な流産調整に対し破線で
示すようにGW、 −GW、の範囲が使用範囲となる。
As shown in FIG. 1, a conventional thermostatic expansion valve has a diaphragm 1 provided in a valve cylinder 5 to form a diaphragm chamber 1a, and the chamber 1a communicates with a -C heat-sensitive section 4 through a narrow passage. There is. A valve rod 2 is connected to the diaphragm 1, and a valve body 6 is provided at the tip of square #2, facing the valve seat 3. The displacement of the diaphragm 1 causes the valve body to move via the Q-valve rod 2, controlling the gap with the valve seat 3, reducing the pressure of the refrigerant flowing through the gap, and controlling the flow rate. The characteristics of this thermostatic expansion valve are shown in FIG. In a general air conditioner, if the indoor air temperature is constant, the refrigerant flow rate of the air conditioner changes depending on the outside air temperature. This change in flow rate is achieved by sensing the temperature change of the refrigerant with the heat sensing section 4, moving the diaphragm 1 of the expansion valve, and moving the valve stem 2 up and down to change the gap between it and the valve seat 3. Therefore, due to the structure of the diaphragm 1, the usable range is GW, -GW, as shown by the broken line, compared to the ideal miscarriage adjustment shown by the solid line.

この流量調整可能な使用範囲を広げるにはダイヤフラム
等を人形にしなければならない等の問題点を有する。
In order to widen the range of use in which the flow rate can be adjusted, there are problems such as the diaphragm etc. having to be made into a doll.

本発明は上記にムみて発明されたもので、流量制御の使
用範囲を大rlJに広げ、より広いは度条件(外気等」
にも+1!I +1性のある温度式膨張弁を提供するこ
と金目的とする。
The present invention was invented in view of the above, and it expands the range of use of flow rate control to a large extent, and allows for wider conditions (such as outside air).
+1 too! It is an object of the present invention to provide a thermostatic expansion valve having I +1 characteristics.

膨張弁の流t rlif制御範囲がダイヤフラムの変化
によることに着目し、ダイヤフラムの変化に関係ないも
う一つの流電調整機構を追加することKより大巾な流量
調整範囲を潜ることができるようにした。もう一つとは
形状記憶合金を用い心棒と弁座の間隙を変化させる方式
である。
Focusing on the fact that the flow rate control range of the expansion valve depends on changes in the diaphragm, we added another current adjustment mechanism that is unrelated to changes in the diaphragm, making it possible to cover a wider flow rate adjustment range. did. The other method uses a shape memory alloy to change the gap between the mandrel and the valve seat.

不発明の一実施例を第3図、第4図に基ずき説明する。An embodiment of the invention will be described based on FIGS. 3 and 4.

この温度式膨張弁は、空調機のtf(凍サイクルに設置
され、空調機が常に最適な運転がでさるように空調機内
を流nる冷媒流tを調整するものであり、その構造を第
3図に示す。
This temperature-type expansion valve is installed in the tf (freezing cycle) of the air conditioner, and is used to adjust the refrigerant flow t flowing through the air conditioner so that the air conditioner always operates optimally. Shown in Figure 3.

本実施例が第1図の従来例と相異するところは、弁棒1
2の途中に形状記憶台金にてなる棒部材12aを挿入し
た構造であり、その池の部分は第1図の従来例と同様で
ある。冷媒は膨張弁上部から入り弁体6の上部と弁座3
との間隙を通り矢印の方向に流れる。この時弁体6の一
上部と弁座3の関fiは弁体6の上F方向の立置関係で
決まる。この弁体6の上下方向の位置は?°ツヤフラム
1の中・、、シ 1 6位It(弁棒の取付部の位置)たよって決まる。
The difference between this embodiment and the conventional example shown in FIG. 1 is that the valve stem 1
It has a structure in which a rod member 12a made of a shape memory base metal is inserted in the middle of the rod 2, and the pond part is the same as the conventional example shown in FIG. Refrigerant enters from the upper part of the expansion valve and passes through the upper part of the valve body 6 and the valve seat 3.
It flows in the direction of the arrow through the gap between the two. At this time, the relationship fi between the upper part of the valve body 6 and the valve seat 3 is determined by the vertical position of the valve body 6 in the upper F direction. What is the vertical position of this valve body 6? °In the center of the gloss flamm 1... 1 It is determined by the 6th position It (position of the valve stem attachment part).

またこのダイヤフラム1の中心位置は、ダイヤフラム上
部の空間に封入され友液(気体)状の圧力により変動し
、この圧力は感熱部4の温度によって変化する。即ち、
感熱部の温度が高くなると空間1aの圧力は高くなりダ
イヤフラム1の中心は一ド方向に動く、この動きは弁体
12を介し弁体6を移動させ、即ち弁体6を一ド方に移
動し、弁体6F部と弁座3の間隙が大きくなり、冷媒流
量は多くなる。−また感熱部4の温度が低下すると反対
に弁体と弁座との間隙が小さくなり流量は少なくなる。
Further, the center position of the diaphragm 1 changes depending on the pressure of a liquid (gas) sealed in the space above the diaphragm, and this pressure changes depending on the temperature of the heat sensitive part 4. That is,
When the temperature of the heat sensitive part increases, the pressure in the space 1a increases and the center of the diaphragm 1 moves in one direction. This movement moves the valve element 6 via the valve element 12, that is, the valve element 6 is moved in one direction. However, the gap between the valve body 6F portion and the valve seat 3 becomes larger, and the refrigerant flow rate increases. - Also, when the temperature of the heat-sensitive part 4 decreases, the gap between the valve body and the valve seat becomes smaller, and the flow rate decreases.

この作動により第4図に示す実線のような制御ができる
。ここで外気温度が図に示すtoaである時の膨張弁の
弁座3を通った後の冷媒温度を感知して弁11i111
2に取付けらルている形状記憶合金の神都+28は前に
記憶させておいた形状(第3図の波線の形状)に伸びて
、その位置で弁体6を上下させることになり、第4図の
波線で示した制御が行なわルる。また外気温度が低ドし
冷媒温度7“1′1″t″′・ 2閾57′″8a勤酊
料61部の面積の力が形状記憶合金が圧縮さnているた
め再び元の位If(第3図の実線)に戻ることになりそ
の位置での上下動作を行う。このように弁体=3− 6に形状記憶合金を用いることができる。また作動温度
が違う形状記憶合金を211!以上用いることによりさ
らに膨張弁の作動範囲を大きくすることができる。
This operation allows control as shown by the solid line in FIG. 4. Here, when the outside air temperature is toa shown in the figure, the temperature of the refrigerant after passing through the valve seat 3 of the expansion valve is sensed, and the valve 11i111
The shape-memory alloy Shinto+28 attached to 2 will stretch to the previously memorized shape (the shape of the wavy line in Figure 3), and will move the valve body 6 up and down at that position. The control shown by the dotted line in FIG. 4 is performed. In addition, the outside air temperature is low and the area force of the refrigerant temperature 7"1'1"t"' 2 threshold 57'"8a 61 parts of the stimulant is compressed, so the shape memory alloy is compressed, so the area force returns to its original level If (solid line in Fig. 3) and performs up and down movements at that position. In this way, shape memory alloy can be used for the valve body =3-6. In addition, 211 shape memory alloys with different operating temperatures! By using the above, the operating range of the expansion valve can be further enlarged.

ま之第5図に示したようにコイルバネ形状とした形状記
憶合金9を閉じ、弁座3aを可動させても同様な効果を
得ることができる。10は弁座3aの動きをスムースに
行なわしめるコイルバネを示す。
As shown in FIG. 5, the same effect can be obtained by closing the shape memory alloy 9 shaped like a coil spring and moving the valve seat 3a. 10 indicates a coil spring that allows the valve seat 3a to move smoothly.

以上説明したように本発明によルば、温度式膨張弁によ
り冷媒流を調整範囲が大巾に広くなるため、広範囲の運
転条件におjて最適な運転状況を与えることができる。
As explained above, according to the present invention, the adjustment range of the refrigerant flow is widened by the thermostatic expansion valve, so that the optimum operating situation can be provided under a wide range of operating conditions.

し比がって、効率よい運転ができる。Comparatively, more efficient driving is possible.

また流量調整範囲の拡大により、従来膨張弁を211!
、又は大形の膨張弁を用いていた空調機に本発明の膨張
弁を用いることにより、安価でシンプルな空調機を提供
することができる。
In addition, by expanding the flow rate adjustment range, the conventional expansion valve is now 211!
Alternatively, by using the expansion valve of the present invention in an air conditioner that uses a large expansion valve, an inexpensive and simple air conditioner can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来技術の膨張弁の縦断面構造図、第4− 2図は従来技術の膨張弁の作動範囲の説明線図、第3図
は本発明の一実施例を示す膨張弁の縦断面構造図、第4
図は、第3図をこ示を膨張弁の作動範囲の説明線図、第
5図は、曲の実施例を示す膨張弁の縦断構造図である。 1・・・ダイヤフラム  2・・・心棒  3川弁座4
・・・tdA熱部  5・・・形状記憶合金  6・・
・ダイヤフラム上部空間  7・・・弁座前の空間  
8・・・弁座後の空間  9・・・形状記憶合金バネ 
 10・・・バネ
Fig. 1 is a longitudinal cross-sectional structural diagram of a conventional expansion valve, Fig. 4-2 is an explanatory diagram of the operating range of the conventional expansion valve, and Fig. 3 is a longitudinal cross-sectional view of an expansion valve showing an embodiment of the present invention. Surface structure diagram, 4th
FIG. 3 is an explanatory diagram of the operating range of the expansion valve, and FIG. 5 is a longitudinal structural diagram of the expansion valve showing an embodiment of the curve. 1... Diaphragm 2... Mandrel 3 River valve seat 4
...tdA hot part 5...Shape memory alloy 6...
・Diaphragm upper space 7... Space in front of the valve seat
8... Space behind the valve seat 9... Shape memory alloy spring
10...Spring

Claims (1)

【特許請求の範囲】[Claims] 弁筒内にダイヤフラムを設け、ダイヤフラム室を検出部
に連通1−1上記ダイヤフラムに弁棒を介在して弁体を
連設してなる温度式膨張弁において、弁棒に形状記憶合
金の棒部材を用いてなり、または形状記憶合金のコイル
部材に弁座を取付は弁座を可動に形成してなることを特
徴とする温度式
A diaphragm is provided in the valve cylinder, and the diaphragm chamber is communicated with the detection unit 1-1 In a temperature-type expansion valve in which a valve body is connected to the diaphragm with a valve stem interposed therebetween, the valve stem is a rod member made of a shape memory alloy. Temperature type, characterized in that the valve seat is made movable by attaching the valve seat to a coil member made of a shape memory alloy.
JP57065310A 1982-04-21 1982-04-21 Temperature-type expansion valve Pending JPS58184373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57065310A JPS58184373A (en) 1982-04-21 1982-04-21 Temperature-type expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57065310A JPS58184373A (en) 1982-04-21 1982-04-21 Temperature-type expansion valve

Publications (1)

Publication Number Publication Date
JPS58184373A true JPS58184373A (en) 1983-10-27

Family

ID=13283200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57065310A Pending JPS58184373A (en) 1982-04-21 1982-04-21 Temperature-type expansion valve

Country Status (1)

Country Link
JP (1) JPS58184373A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61184178U (en) * 1986-05-09 1986-11-17
JPS63246580A (en) * 1987-03-31 1988-10-13 Tokieda Naomitsu Valve
JP2008051439A (en) * 2006-08-25 2008-03-06 Tgk Co Ltd Expansion device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61184178U (en) * 1986-05-09 1986-11-17
JPH045973Y2 (en) * 1986-05-09 1992-02-19
JPS63246580A (en) * 1987-03-31 1988-10-13 Tokieda Naomitsu Valve
JP2008051439A (en) * 2006-08-25 2008-03-06 Tgk Co Ltd Expansion device

Similar Documents

Publication Publication Date Title
JP5246736B2 (en) Temperature expansion valve
JPS61105066A (en) Expansion valve
US4500035A (en) Expansion valve
JPS58184373A (en) Temperature-type expansion valve
JPS6170355A (en) Expansion valve for refrigerator
US5417367A (en) Device for opening a pipe and an application of said device
JPH048292Y2 (en)
US3152554A (en) Thermal power mechanism
JP2006283837A (en) Damping force variable hydraulic damper
JP2006266568A (en) Expansion valve
US2255543A (en) Thermostat
JPS63158372A (en) Expansion valve of refrigerating cycle for air conductor
US5931377A (en) Air conditioning system for a vehicle incorporating therein a block type expansion valve
US2000294A (en) Thermostatic structure
JP2001280721A (en) High pressure control valve for supercritical steam compression refrigerating cycle device
JPS6353379A (en) Fluid mixing valve
JPH0325105Y2 (en)
JP3716378B2 (en) Hunting prevention method for temperature expansion valve
WO1993022591A1 (en) A method and a device for driving a remote temperature adjusting valve
JPH08114397A (en) Heat exchanger using temperature sensitive valve
US2719674A (en) Refrigeration expansion valves
JPH0213828Y2 (en)
JPS6029035B2 (en) Control valves that open and close proportionally in response to temperature
KR100445150B1 (en) The expansive valve for reducing bubble of air- conditioner
JPH11223426A (en) Expansion valve for automotive air conditioner