JPS58183904A - Novel separative concentration method of organic solvent - Google Patents

Novel separative concentration method of organic solvent

Info

Publication number
JPS58183904A
JPS58183904A JP6639782A JP6639782A JPS58183904A JP S58183904 A JPS58183904 A JP S58183904A JP 6639782 A JP6639782 A JP 6639782A JP 6639782 A JP6639782 A JP 6639782A JP S58183904 A JPS58183904 A JP S58183904A
Authority
JP
Japan
Prior art keywords
solvent
membrane
porous
solution
porous membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6639782A
Other languages
Japanese (ja)
Other versions
JPH0211292B2 (en
Inventor
Hideki Iijima
秀樹 飯島
Seiichi Manabe
征一 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP6639782A priority Critical patent/JPS58183904A/en
Priority to EP82110792A priority patent/EP0080684B1/en
Priority to DE8282110792T priority patent/DE3265896D1/en
Priority to CA000416253A priority patent/CA1195254A/en
Priority to DK523182A priority patent/DK158706C/en
Publication of JPS58183904A publication Critical patent/JPS58183904A/en
Priority to US06/712,491 priority patent/US4770786A/en
Publication of JPH0211292B2 publication Critical patent/JPH0211292B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To contrive to enhance coefficient of separation and a permeation speed, by a method wherein a porous membrane with specific average pore radius is used in the separative concn. of an org. solvent and one surface thereof is contacted with a solvent with specific properties. CONSTITUTION:Cellulose acetate porous membranes 1, 3 each of which has a membrane thickness of 3.1X10<-3>cm, an average pore diameter (2ra) is 1.2X10<-5> and a void ratio is 68% are mounted to a filter apparatus so as to interpose a packing 8 therebetween. A solution 4 comprising methylcyclohexane and ethanol is supplied to the side of the membrane 1 which is in turn pressurized to be loaded with pressure of DELTAPt. In addition, a solvent 2 comprising water is supplied to the gap between the membranes 1, 3 from a cylinder 7 to adjust pressure to DELTAPt/2 by a weight 9. When coefficient Pe of permeation and coefficient alpha of separation are calculated from the elution amount and the composition of a filtrate from a filtrate outlet port 6, alpha is 20 or more while Pe is 10<-7>-10<-8> (cm<2>/sec cm Hg) when formula DELTAPt<=2X10<-5>/ra is satisfied and 10<3>-10<4> times of values are shown as compared to a conventional pervaporization method.

Description

【発明の詳細な説明】 本発明は、有機溶媒管少なくとも1種以上含む均一溶液
(以下、溶液人と略称)より、有機溶媒を分離嬢縮する
方法に関する。さらに、詳しくは、平均孔径(以下、2
〒aで表示、7」は平均孔半径で、単位は5+)が10
−6御上の多孔膜(以下、多孔膜Xと略称)を介して、
該多孔lXXの一面(以下、Xa面と略称)Fi溶液ム
に接し、他の一面(以下、xb@と略称)は該多孔膜の
非溶媒であり、溶液ム中の少表〈とt11種成について
は良溶媒であるが、#!掖液中の少なくとも1種成分に
ついては非溶媒で、かつ溶液ムに相分離を起こさせる溶
媒(以下、溶#lBと略称)K接し、かつ溶媒BFi2
71が1o−’a11以上の多孔j[(以下、多孔JA
Yと略称)KljlL、、多孔膜XおよびYに負荷され
る有効圧力差ΔP(単位t*cmHg )が下記11)
式を満足する条件下で溶液ムを限外濾過し、有機溶媒を
分離娘縮する膜分離方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for separating and condensing an organic solvent from a homogeneous solution (hereinafter abbreviated as "solution person") containing at least one type of organic solvent. Furthermore, in detail, the average pore diameter (hereinafter referred to as 2
〒Denoted as a, 7'' is the average hole radius, the unit is 5+) is 10
-6 Through the superior porous membrane (hereinafter abbreviated as porous membrane X),
One surface of the porous lXX (hereinafter abbreviated as Xa surface) is in contact with the Fi solution, and the other surface (hereinafter abbreviated as It is a good solvent for formation, but #! At least one component in the solution is a non-solvent and is in contact with a solvent (hereinafter referred to as solution #1B) that causes phase separation in the solution, and is a solvent BFi2.
71 is 1o-'a11 or more porous j [(hereinafter referred to as porous JA
The effective pressure difference ΔP (unit: t*cmHg) applied to the porous membranes X and Y is as follows 11)
The present invention relates to a membrane separation method in which a solution is ultrafiltered under conditions satisfying the following formula to separate and condense an organic solvent.

ΔP≦2 X 10−’/ rll    (11本発
明において多孔膜とは、電子顕微鏡などで孔の存在が確
かめられ、かつ貫通孔が存在する膜を意味し、従来の逆
滲透用膜あるいは透析型人工腎臓に用いられている膜は
含まれていない。また、本多孔膜では多孔膜中の最大孔
径がバブルポイント法で明確に定めることができる。し
たがって、本発明中での多孔膜は、膜平面内て被濾過粒
子を捕集する機能を持つ、いわゆるスクリーンフィルこ
こで均一溶液(溶液ム)とは、2成分以上の低分子化合
物で構成され、かつ各成分間が分子状に混合した熱力学
的に一相の液体を意味する。また、本発明において低分
子化合物とは、分子量1000以下の化合物であシ、高
分子多孔膜とは分子量1o、o a o以上の重合体で
構成される多孔膜であシ、共重合体(ブロック共重合、
う/ダム共重合、グラフト共重合など)あるいは高分子
混合物で構成されるH4含む。
ΔP≦2×10-'/rll (11) In the present invention, a porous membrane means a membrane in which the presence of pores has been confirmed using an electron microscope, etc., and in which through-holes are present, and a conventional reverse permeation membrane or a dialysis-type membrane is used. It does not include membranes used in artificial kidneys.In addition, in this porous membrane, the maximum pore diameter in the porous membrane can be clearly determined by the bubble point method.Therefore, the porous membrane in the present invention A so-called screen filter has the function of collecting particles to be filtered in a flat plane.A homogeneous solution (solution) is a heat-generating solution that is composed of two or more low-molecular-weight compounds, and each component is mixed in molecular form. Dynamically, it means a one-phase liquid.In addition, in the present invention, a low-molecular compound is a compound with a molecular weight of 1000 or less, and a porous polymer membrane is a compound composed of a polymer with a molecular weight of 10, 0 or more. porous membrane, copolymer (block copolymerization,
Contains H4, which is composed of polymer mixtures (such as polymer/dumb copolymerization, graft copolymerization, etc.) or polymer mixtures.

溶液中の溶媒の分離濃#あるいは溶液中の溶質の分離濃
縮あるいは溶液中の不溶物の分離濃縮を行うための膜分
離技術としては、■逆滲透膜による膜分離技術、■Pe
rvaporation法による膜分離技術、■限外p
過膜による膜分離技術が知られている。
Membrane separation technologies for separating and concentrating solvents in solutions, separating and concentrating solutes in solutions, or separating and concentrating insoluble matters in solutions include: ■Membrane separation technology using reverse osmosis membranes, ■Pembrane separation technology
Membrane separation technology using rvaporation method, ■ultrap
Membrane separation technology using permeable membranes is known.

逆参透膜による海水の脱塩などは一部実用化されている
。この方法で採用される膜の平均孔径は通常5oX(0
,00−54m)以下である。一般に逆滲透J[Kよる
分離は、操作圧力が°20〜50気圧と高圧であシ、透
過係数Peが10”(c11/戚。
Seawater desalination using reverse membranes has been partially put into practical use. The average pore size of the membranes employed in this method is usually 5oX (0
,00-54m) or less. In general, separation by reverse permeation J[K requires a high operating pressure of 20 to 50 atm, and a permeability coefficient Pe of 10'' (c11/relative).

cmHg )と非常に小さいために効率が急く、ま友装
置を大型化しな妙ればならないという欠点がわる。
Since it is very small (cmHg), the efficiency increases rapidly, and the drawback is that the Mahyu device must be made larger.

Pervaporationで採用される膜の平均孔径
は、逆滲aIl[と同11Kj[s aX4るいH1o
 o1以下である。この方法において杜、膜の片側を真
空状1iKして溶媒を蒸気状態として膜を透過させ、冷
却凝結させる方法であシ、溶液中の溶媒の分離濃縮方法
として数多くの研究がなされている。圧力差#1通常1
気圧であシ、分離係数αは高くともα=25付近が現状
の限界である。透過係数PeFi、10−” (cII
/sa:0cmHg )と非常に低いうえK、真空状線
の維持や冷却のために多大のエネルギーを必要とするた
め、未だ実用化にはほど遠い技術と盲わなければならな
い。なお、分離係数αは次式で定義される。
The average pore size of the membrane used in pervaporation is
o1 or less. In this method, one side of the membrane is evacuated to 1 iK to allow the solvent to pass through the membrane in a vapor state, and then cooled and condensed. Many studies have been conducted as a method for separating and concentrating solvents in solutions. Pressure difference #1 Normal 1
At atmospheric pressure, the current limit of the separation coefficient α is around α=25 at most. Transmission coefficient PeFi, 10-” (cII
/sa:0cmHg), which is very low, and requires a large amount of energy to maintain and cool the vacuum line, so we have to be blind to the technology, which is still far from practical use. Note that the separation coefficient α is defined by the following equation.

平均孔径が10−1以上の膜を用いた限外針通では、通
常の加圧操作条件下で均一溶液中の溶媒を分離濃縮する
ことはできないため、溶媒の分離濃縮方法としては、こ
れまで考鳳されることはなかった。また、学問的にも平
均孔径が10−・国以上の膜では、溶液中の溶媒の分離
濃縮が不可能と考えられた。
Ultra-needle penetration using a membrane with an average pore size of 10-1 or more cannot separate and concentrate the solvent in a homogeneous solution under normal pressurized operating conditions. It was never considered. Furthermore, academically, it has been considered that it is impossible to separate and concentrate the solvent in a solution with a membrane having an average pore diameter of 10 mm or more.

以上のように、現在、一般に知られている膜分離技術に
おいては、浄嘩液中帽媒の分離濃縮に際して、透過係数
pe 、分離係数αともに大きな膜分離技術は存在しな
いのが現状である。
As described above, in the currently generally known membrane separation technologies, there is currently no membrane separation technology that has a large permeability coefficient pe and a large separation coefficient α when separating and concentrating the cap medium in the purification solution.

本発明者らは、現状の膜分離技術の限界を打ち破るべく
、鋭意検討した結果、驚くべきことに均−g液中からの
溶媒の分離濃縮において、透過係数peが充分に大きく
、かつ、分離係数αに?いては、α〉10または−〉1
0という一期的な溶α 媒の膜分離方法を完成し、本発明に至った。
The inventors of the present invention have conducted intensive studies to overcome the limitations of current membrane separation technology, and have surprisingly found that the permeability coefficient pe is sufficiently large in separating and concentrating a solvent from a homogeneous liquid. To the coefficient α? α〉10 or −〉1
We have completed a temporary membrane separation method for solvent α of 0, leading to the present invention.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

□膜の単位面積当りの透過速[Jを上げるには、空孔率
Pr 、平均孔径27a、圧力差ΔPを上けるか、また
Fi襄厚dを薄くすればよいと一般に言われている。し
かし、通常の加圧fたは減圧操作条件下では、透過速度
Jと分離係数αとの間には、α〉1ては負の相関性が、
αS1では正の相関性が成りたっており、Jを大きくす
るとαは例外なくIK接近する。J、αともに増大させ
ながら高効率の分離を行うことは、限外濾過では不可能
と考えられていた。
□It is generally said that in order to increase the permeation rate [J per unit area of the membrane, it is sufficient to increase the porosity Pr, the average pore diameter 27a, and the pressure difference ΔP, or to decrease the Fi thickness d. However, under normal pressurization f or depressurization operating conditions, there is a negative correlation between the permeation rate J and the separation coefficient α, where α>1.
There is a positive correlation in αS1, and when J is increased, α approaches IK without exception. It was thought that it was impossible to perform highly efficient separation while increasing both J and α using ultrafiltration.

しかし、本発明者らは、平均孔径が10−’crn以上
の多孔膜(多孔1jX)を介して、濾過すべき均−m液
(#!液A)と他の特定溶媒(溶媒B)とが接触し、さ
らに溶媒Bが多孔膜Yに接し、多孔膜XおよびYに負荷
される有効圧力差ΔPがil1式を満足する場合には、
溶液Aから特定成分が分離濃縮することを見出し、本発
明を構成するに至った。
However, the present inventors have discovered that the homogeneous liquid to be filtered (#!Liquid A) and another specific solvent (solvent B) can be mixed through a porous membrane (porous 1jX) with an average pore diameter of 10-'crn or more. When the solvent B is in contact with the porous membrane Y and the effective pressure difference ΔP loaded on the porous membranes X and Y satisfies the formula il1,
It was discovered that a specific component can be separated and concentrated from solution A, and the present invention has been completed.

す々わち、本発明の第1の特1kFi、平均孔径が10
−・α以上の多孔膜を利用する点にある。平均孔径が従
来の逆滲透用膜にくらべて2倍以上であるために、多孔
膜の単位面積当りの透過速度Jは、本発明方法では逆滲
透用膜の10倍以上である。
That is, the first feature of the present invention is that the pore size is 1 kFi and the average pore diameter is 10
The point lies in the use of a porous membrane of -.alpha. or more. Since the average pore diameter is more than twice that of conventional membranes for reverse permeation, the permeation rate J per unit area of the porous membrane is ten times or more that of membranes for reverse permeation in the method of the present invention.

平均孔径が大きければ大きい#1ど透過係数Peは大き
くなるが、後述するように、膜へ負荷される有効圧力差
△Pを小さくせざるをえない。したがって、この場合、
結果的にJが小さくなり実用的でなくなる。本発明方法
で採用される孔径範囲の最大値は、分離対象と多孔膜の
材質にも依存するが、通常10−”cIR以下、望まし
くは1G−’51以下である。平均孔径がto−@z以
下では、Jは着しく低下し、ま次驚くべきことに、分離
係数αは逆に減少する。2raおよび空孔率prがほは
同一の値を持つ多孔膜の相互間においては、△Pしたが
ってJを大睡くするKFi、孔の形を円形に近づけるの
が望ましい。
The larger the average pore diameter, the larger the permeability coefficient Pe of #1, but as will be described later, the effective pressure difference ΔP applied to the membrane must be reduced. Therefore, in this case,
As a result, J becomes small and becomes impractical. The maximum value of the pore diameter range adopted in the method of the present invention depends on the separation target and the material of the porous membrane, but is usually 10-"cIR or less, preferably 1G-'51 or less. The average pore diameter is to-@ Below z, J decreases steadily and, surprisingly, the separation coefficient α decreases inversely. Therefore, it is desirable that the hole shape be close to a circular shape.

本発明の第2の特徴は、多孔mxt介して、Xa向は分
離対象の均一溶液(溶液ム)に接し、XbrkJは該多
孔膜の非溶媒であるが溶液A中の少なくとも1種の成分
の良溶媒であり、かつ少なくとも1種の成分については
貧溶媒が非溶媒である溶媒(溶媒B)K接する点にある
。溶媒Bの典型的な作用として、これを溶液A中に添加
し続けると、添加後の溶液は2相に分離するなどの相分
離を生起させる作用がある。多孔膜を通過する成分は、
使用する多孔膜の素材の化学構造の影響を強く受ける。
The second feature of the present invention is that the Xa direction is in contact with the homogeneous solution to be separated (solution membrane) through the porous membrane mxt, and XbrkJ is a non-solvent of the porous membrane, but it is also The solvent (solvent B) which is a good solvent and a poor solvent for at least one component is in contact with the non-solvent (solvent B). A typical effect of solvent B is that if it continues to be added to solution A, the solution after addition will cause phase separation, such as separation into two phases. The components that pass through the porous membrane are
It is strongly influenced by the chemical structure of the porous membrane material used.

たとえば、再生セルロース等の農水性高分子多孔膜を利
用した場合、多孔膜Xを通過し、溶媒B中に混入する成
分は溶液A中の親水性成分であり、逆に四フフ化エチレ
ン、ポリエチレンtたはポリプロピレンなどの疎水性高
分子多孔mを利用し友場合には、疎水性成分が戸田する
。溶媒Bが多孔膜Xの良溶媒あるいは貧溶媒あるいは非
溶媒であるが、膨潤作用を示す溶媒であれば、溶媒Bが
分離すべき溶液A中に逆流し、ある特定成分の分離濃縮
が困難となる。ただし、溶IBの密度が分離すべき溶液
ムの密度より大きい場合には、溶媒Bとしては多孔11
1X(D#lA剤であるのが望ましい場合4ある。たと
えば、第2図の濾過装置による限外濾過の場合がその例
である。溶媒Bが溶QAを構成する成分のすべてに良溶
媒であれば、限外濾過による分離濃縮Fi特殊な例を除
き不可能である0例外的な特殊な例としては、溶液Aと
しとアセトンとフェノールとの混合物、溶媒Bとして水
で、温度が60℃以上での分離の場合がある。
For example, when using a porous agricultural water polymer membrane such as regenerated cellulose, the components that pass through porous membrane X and mix into solvent B are the hydrophilic components in solution A; If the pores of a hydrophobic polymer such as polypropylene are used, the hydrophobic component will be removed. Solvent B is a good solvent, a poor solvent, or a non-solvent for the porous membrane Become. However, if the density of the solution IB is higher than the density of the solution to be separated, the solvent B should be
There are 4 cases in which it is desirable to use a 1X (D#lA agent). An example is the case of ultrafiltration using the filtration device shown in Figure 2. If so, separation and concentration by ultrafiltration is not possible except in special cases.An exceptional special case is a mixture of acetone and phenol as solution A, water as solvent B, and a temperature of 60°C. There may be cases where the above is the case.

一方、逆に溶媒Bが溶液ムの成分すべてについての非溶
媒であれば、限外濾過による分離濃縮はできない。第1
図の濾過装置の場合には、溶媒Bとしては、その化学構
造が多孔aXの素材物質の化学構造と異なれば異なるほ
ど望ましい。嬉2図の濾過の場合には、溶媒Bの化学構
造が多孔膜Xの素材物質の化学構造が類似してもかまわ
ない。
On the other hand, if the solvent B is a non-solvent for all the components of the solution, separation and concentration by ultrafiltration is not possible. 1st
In the case of the filtration device shown in the figure, it is preferable that the chemical structure of the solvent B differs from that of the material of the porous aX. In the case of the filtration shown in Figure 2, the chemical structure of the solvent B may be similar to that of the material of the porous membrane X.

第1図は本発明の方法に使用する横型の限外濾過装置、
第2図は同じく献呈の限外濾過装置の態様を示すもので
、図面において、(11は多孔JIIX、(2)は溶媒
B、(3)は多孔膜Y、(41は溶液A1(5ン#ip
液、(6)は戸液取出口、(7)は溶媒Bの補充シリン
ダー、(B>はバッキング、(9)は圧力調製用分銅、
QIは加圧装置である。
Figure 1 shows a horizontal ultrafiltration device used in the method of the present invention;
FIG. 2 shows an embodiment of the ultrafiltration device that was also dedicated. #ip
liquid, (6) is the door liquid outlet, (7) is the replenishment cylinder for solvent B, (B> is the backing, (9) is the pressure adjustment weight,
QI is a pressurizing device.

本発明の第3の特徴は、平均孔径が10−@3以上の多
孔膜(多孔膜Y)と溶媒Bとが接している点にある。平
均孔径の最大値は、溶媒Bの化学構造と多孔膜の材質に
も依存するが、通常1 G−’Ql以下、望ましくはi
 o−’i:m以下である。2’Faが10−・国以下
になるとJが著しく小さくなシ、また分離係数αも減少
する。多孔NYによって、最終的に炉出したp液中での
溶媒Bの比率を著しく低下させることが可能とな)、分
離濃縮すべき特定成分のF液中での濃度が増大する。多
孔NYの材質は必ずしも多孔膜Xの材質と一致する必要
はない。しかし、溶媒Bは多孔膜Yに関して非溶媒であ
シ、ま・たj11濶剤であってはならない。多孔膜Yと
多孔膜Xとの空間的な間隔は、狭まければ狭−まいほど
望ましく、通常1露1以下である。溶媒Bt糸外よシ僅
かづつ補給することが、分離係数α紫高く保持するため
Kは必要である。溶媒Bは、たとえtfF紙等に含浸さ
せたり、あるいは徽粒子状物質問の空隙部に浸潤させた
状態であってもが”まわない。
The third feature of the present invention is that the solvent B is in contact with a porous membrane (porous membrane Y) having an average pore diameter of 10-@3 or more. The maximum value of the average pore diameter depends on the chemical structure of solvent B and the material of the porous membrane, but is usually 1 G-'Ql or less, preferably i
o-'i: less than or equal to m. When 2'Fa becomes less than 10-.country, J becomes significantly smaller and the separation coefficient α also decreases. The porous NY makes it possible to significantly reduce the ratio of solvent B in the final p-liquid discharged from the furnace), thereby increasing the concentration of the specific component to be separated and concentrated in the F-liquid. The material of the porous NY does not necessarily have to match the material of the porous membrane X. However, the solvent B must not be a non-solvent with respect to the porous membrane Y, or an adsorbing agent. The spatial distance between the porous membrane Y and the porous membrane X is preferably as narrow as possible, and is usually 1 dew or less. K is necessary to keep the separation coefficient α high by replenishing the solvent Bt little by little on the outside of the yarn. Solvent B can be used even if it is impregnated into tff paper or the like or into the voids of the particulate matter.

多孔@X、Yの素材高分子の溶解度パラメーターが10
0m/d)h以下か、あるいは13(d/d)3″以上
であれば、溶媒Bの選択可能な範囲は広がるので好まし
い、さらに好ましくは、る物質の溶解度パラメーターが
上記範囲内に入る場合には、当然この膜を用いた限外濾
過によシ、有機溶媒の分離濃縮が可能である。溶解度パ
ラメーターが15 (m/cII)号以上の素材から構
成される多孔膜の場合、溶媒Bとしては溶解度パラメー
ターが9(aJt/m)”以下の疎水性溶媒を用いると
、分離濃縮可能な溶液Aの対象は広範囲となる。
The solubility parameter of the material polymer for porous @X and Y is 10
0m/d)h or less or 13(d/d)3'' or more is preferable because the selectable range of solvent B is widened.More preferably, the solubility parameter of the substance falls within the above range. Of course, it is possible to separate and concentrate organic solvents by ultrafiltration using this membrane.In the case of a porous membrane made of a material with a solubility parameter of 15 (m/cII) or higher, solvent B If a hydrophobic solvent with a solubility parameter of 9 (aJt/m) or less is used, the solution A that can be separated and concentrated will have a wide range of targets.

本発明の第4の特徴は、特定の有効圧力差△Pの範囲内
の圧力で限外濾過がなされる点に参る。
A fourth feature of the present invention is that ultrafiltration is performed at a pressure within a specific effective pressure difference ΔP.

すなわち、多孔膜XおよびYに負荷される有効圧力差Δ
P(単位titOWIHg )が111式を満足する範
囲内で限外濾過がなされる。
That is, the effective pressure difference Δ applied to the porous membranes X and Y
Ultrafiltration is performed within a range where P (unit: titOWIHg) satisfies formula 111.

△P≦2X10−’/rJ1    illここで△P
は、多孔MXについては「溶液Aの土カー溶媒Bの圧力
」、多孔膜YKついては[溶媒Bの圧力−回収されるF
allの圧力」を意味する。したがって、溶液A中の分
離濃縮すべき成分、または溶液A中から分離除去すべき
成分の流れは、多孔aX→溶媒B→多孔膜Yである。1
11式の範囲外の濾過では分離係数αが1に近くなり、
実質的に特定物質の分離濃縮性不可能となる。分離濃縮
に有効な△Pの値は、孔の形にも依存し、27aとPr
のそれぞれが同一の多孔膜については、孔の形が円形に
近いほど△Pの値は大きい、(1)式は円形孔について
の範囲を示す。
△P≦2X10-'/rJ1 ill where △P
is the "pressure of solution A's solvent B" for porous MX, and [pressure of solvent B - recovered F] for porous membrane YK.
It means "all pressure". Therefore, the flow of components to be separated and concentrated in solution A or components to be separated and removed from solution A is as follows: porous aX→solvent B→porous membrane Y. 1
For filtration outside the range of Equation 11, the separation coefficient α becomes close to 1,
It becomes virtually impossible to separate and concentrate specific substances. The value of △P that is effective for separation and concentration also depends on the shape of the pores, and 27a and Pr
For porous membranes in which each of the pores is the same, the closer the shape of the pores is to a circle, the larger the value of ΔP is. Equation (1) shows the range for circular pores.

なお、本発明では、F液側の成分数は少なくと吃3成分
であるので、分離係数αを次式で定義する。
In the present invention, since the number of components on the F liquid side is at least three components, the separation coefficient α is defined by the following equation.

α三〔F液中の目的物質の重量濃度/(JP液液中成分
iの重量濃度−p液中の目的物質の重量濃度)/〔溶液
A中の目的物質の重量11[/(1−溶液A中の目的物
質の重量一度)〕 ここで成分iとは、溶液A中のすべての成分を意味する
。多孔膜面に直角方向から超音波を発生させて、膜表面
近傍の溶媒Bi良は溶液A中に疎密波を発生させると、
透過係数および分離係数は共に10〜3〇−増大する。
α3 [weight concentration of target substance in solution F/(weight concentration of component i in JP liquid − weight concentration of target substance in liquid p)/[weight concentration of target substance in solution A 11[/(1− Weight of target substance in solution A)] Here, component i means all components in solution A. When ultrasonic waves are generated from a direction perpendicular to the porous membrane surface, the solvent Biyang near the membrane surface generates compressional waves in solution A.
Both the permeability and separation coefficients increase by 10-30.

これはおそらくは、両液Aと溶媒Bとの膜中における攪
拌効果に原因しているものと考えられる。
This is probably due to the stirring effect of both liquids A and solvent B in the film.

以上述べたごとく、本発明によれば、溶媒の分離濃縮に
おいて分離係数αを大きくしながら、しかも、透過係数
Peも大きく保つことができ、均一溶液中から迅速に、
目的とする溶媒を高濃度で分離することができる。tた
、本発明においては、膜の平均孔径が10−61以上と
大きいにもががゎらず、膜厚d、圧力差ΔP1空孔率P
r、平均孔径2raの関に〜定の条件が満たされれば、
高効率分離が可能である。
As described above, according to the present invention, in separating and concentrating a solvent, it is possible to increase the separation coefficient α while also keeping the permeability coefficient Pe large, and to quickly extract from a homogeneous solution.
The target solvent can be separated at high concentration. In addition, in the present invention, the membrane has a large average pore diameter of 10-61 or more and does not struggle, and the membrane thickness d, pressure difference ΔP1 porosity P
If the following conditions are satisfied regarding r and average pore diameter 2ra,
Highly efficient separation is possible.

次に、本発明の実施例を挙げて説明するが、実施例に先
立ち、各物性値の御1定方法を以下に示す。
Next, the present invention will be described with reference to examples. Prior to the examples, a method for determining each physical property value will be described below.

〈平均孔径27a〉 25℃の純水金0.2μmの孔径を持つポリヵーボ享−
ト多孔$ (General Jalectric社製
、四品名nuclepore )で濾過し、微粒子の存
在しない純水(f−調製する。この純水を用いて、一定
の圧力差△f(cH4ug)での、試料多孔膜の単位面
積当りの濾過速fJ(国/1)を測定すれば、27為(
cm )は次ここで、ηWは純水の粘度で、通常1セン
チボイズである。dは膜の厚さく Ct−)で、マイク
ロメーターで測定される。
<Average pore diameter 27a> Pure water gold at 25°C with a pore diameter of 0.2 μm.
The sample is filtered through a porous pore (manufactured by General Jelectric, product name: Nuclepore) to prepare pure water (f-) free of fine particles. If you measure the filtration rate fJ (country/1) per unit area of the membrane, it will be 27 (
cm) is where: ηW is the viscosity of pure water, which is usually 1 centivoise. d is the film thickness (Ct-), measured with a micrometer.

く空孔率Pr > 多孔膜の見掛けの密度ρ鳳の実ml値から、Prti。Porosity Pr> From the actual ml value of the apparent density ρ of the porous membrane, Prti.

次式で算出される。It is calculated using the following formula.

pr = (1−pa/pp)x 1oO(百分率表示
)131ここで、ρpFi多孔膜素材の密度、ρaは多
孔膜の厚さd、重量W1面積Sの測定値よpρs=W/
B・dで算出される。
pr=(1-pa/pp)
Calculated as B・d.

く分離係数α〉 溶液中およびF液中の成分濃度をガスクロマトグラフ(
島津製作所11W 、 GC4CM )を用いて測定し
、これらを本文中のαの定義式に代入して、αは算出さ
れる。
Separation coefficient α〉 Calculate the component concentrations in the solution and F solution using a gas chromatograph (
α is calculated by substituting these values into the formula for defining α in the text.

く透過係数Pg > 第1図の装置を用−1p過速度V (ol / see
 )、圧力差△Pt (cmHg ) 、有効濾過面積
S (d)、膜厚をdt(z)とすると透過係数Pe 
t;1次式で与えられる。。
Permeability coefficient Pg > Using the apparatus shown in Fig. 1, -1p overspeed V (ol/see
), pressure difference △Pt (cmHg), effective filtration area S (d), membrane thickness dt (z), permeability coefficient Pe
t; given by a linear equation. .

ただし、dtFi多孔膜x、y、溶媒Bの組み合せ金−
個の多孔膜とみなした際の膜厚(c−) 、△Ptは溶
液AとF液との圧力差である。
However, the combination of dtFi porous membrane x, y, and solvent B -
The film thickness (c-) and ΔPt when considered as individual porous films are the pressure differences between solutions A and F.

実施例1 公知の方法で得られた酢酸セルロース多孔膜(1112
)厚さd ! 3.I X 10−s、、  2″ra
 = 1.2 X10−@傭、Pr −68−)を多孔
膜Xおよび多孔膜Yとし、溶媒Bとして水を採用した。
Example 1 Cellulose acetate porous membrane (1112
) Thickness d! 3. I x 10-s, 2″ra
= 1.2

溶媒Bの液体厚さを多孔膜XおよびYのバッキングの厚
さく通常0.5■冒厚さ)で調節した。第1図O濾過装
置に多孔膜X%Y會装着して使用し、メチルシクロヘキ
サンとエタノールで構成される溶液(4:1重量比)全
溶液Aとし、溶液Aを加圧して△ptの圧力を負荷する
。溶媒Bの圧力がΔPi/2になるように荷重Wを調製
する。F液取出口からの戸田量を求め、tたテ液の組成
をガスクロマトグラフから定めて、透過係数Peおよび
分離係数αを求めた。第1表に種にのΔptについて求
めたPeおよびαをまとめて示す。
The liquid thickness of solvent B was adjusted by the thickness of the backing of porous membranes X and Y (usually 0.5 mm). Figure 1: A porous membrane X%Y is attached to an O filtration device, a solution composed of methylcyclohexane and ethanol (4:1 weight ratio) is used as the total solution A, and the solution A is pressurized to a pressure of △pt. Load. Load W is adjusted so that the pressure of solvent B becomes ΔPi/2. The amount of Toda from the F liquid outlet was determined, the composition of the F liquid was determined from a gas chromatograph, and the permeability coefficient Pe and separation coefficient α were determined. Table 1 summarizes Pe and α determined for Δpt of seeds.

ただし、分離濃縮すべき成分としてはエタノールでめる
However, the component to be separated and concentrated is ethanol.

第1表から明らかなように、Δp(−=ΔPt/2 )
の値がil1式を満足しなくなるとαHt、oとなる0
本発明範囲内の条件下では、αFi20以上、Peは1
0−フ〜10−・(a11/ sa: 、 cmHg 
)でアシ、従来のperVaporat ion法の1
08〜104倍の値を示す。さらに、p液−中の水分l
!1度は10〜20−(重量比)であり、多孔!IXY
によってV液中に混入する溶媒Bの比率が著しく低下し
ていることがやかる。
As is clear from Table 1, Δp(-=ΔPt/2)
When the value of no longer satisfies the il1 formula, αHt, o becomes 0.
Under the conditions within the scope of the present invention, αFi is 20 or more and Pe is 1
0-f~10-・(a11/sa: , cmHg
), one of the conventional perVaporation methods
It shows a value of 08 to 104 times. Furthermore, the water l in the p-liquid
! 1 degree is 10-20-(weight ratio), and porous! IXY
It can be seen that the ratio of solvent B mixed into liquid V was significantly reduced.

実施例2 公知の方法で作製したポリエチレン多孔M(・4==4
jX 1 G−”e−rR,2raz3j X 10−
” 51、Pr=47%)を多孔膜Xおよび多孔膜Yと
し、溶媒Bとして水を採用する。実施例1と同様に、メ
チルシクロヘキサンとエタノールとで構成される溶液(
4:1重量比)を限外濾過した。jlへ負荷される圧力
差△ptとして1 、0 mHgとした際、Peは8.
5 X 10−・、αは0.12となり、炉液中のメチ
ルシクロヘキサン濃度は約97嘔である。ν液中の水分
#fFi0.5−以下てあり、多孔膜Yによって溶媒B
のF液中への混入がす1ぼ完全に達成されている。
Example 2 Polyethylene porous M (・4==4
jX 1 G-”e-rR, 2raz3j X 10-
" 51, Pr = 47%) are used as porous membranes X and porous membrane Y, and water is adopted as solvent B. Similarly to Example 1, a solution (
4:1 weight ratio) was ultrafiltered. When the pressure difference △pt applied to jl is 1.0 mHg, Pe is 8.
5×10−·, α is 0.12, and the concentration of methylcyclohexane in the furnace liquid is about 97°. ν Moisture in the liquid #fFi is less than 0.5, and the porous membrane Y allows the solvent B to
The mixing of F into the F liquid was almost completely achieved.

実施例3 セルロースリンター(平均分子t2jx 10’)倉、
公知の方法で調蓋した銅アンモニア溶液中に4〜12重
量%の各種濃度で溶解後、該溶液中にアセトンを12重
量S添加し、攪拌後、その溶液を30℃のアセトン蒸気
雰囲気濃度が飽和蒸気圧の80−の雰囲気下に置れたガ
ラス板上に、厚さ250μmのアプリケータで流嬌し、
該雰囲気下に60分間放置後、20℃硫酸水溶液に15
分間浸漬した後水洗し、水分t−F紙で吸いとり、20
℃のアセトン中に15分間浸漬して膜中の水分をアセト
ンで置換し、Pljlに挾んで30℃で風乾することに
より、平均孔径27aを異にする再生セルロース多孔膜
を調製し、これを多孔膜Xとした。
Example 3 Cellulose linter (average molecule t2jx 10') warehouse,
After dissolving various concentrations of 4 to 12% by weight in a cupric ammonia solution prepared using a known method, 12% by weight of acetone was added to the solution, and after stirring, the solution was heated to an acetone vapor atmosphere concentration of 30°C. Flow with a 250 μm thick applicator onto a glass plate placed in an atmosphere with a saturated vapor pressure of 80 −,
After being left in this atmosphere for 60 minutes, it was soaked in a 20℃ sulfuric acid aqueous solution for 15 minutes.
After soaking for a minute, wash with water, absorb moisture with t-F paper, and soak for 20 minutes.
Regenerated cellulose porous membranes with different average pore diameters of 27a were prepared by immersing them in acetone at ℃ for 15 minutes to replace the moisture in the membrane with acetone, sandwiching them between Pljl and air-drying them at 30℃. Film X was used.

多孔膜Yとして公知の方法で得られたポリプロピレン多
孔膜を採用し、その平均孔径が多孔膜Xのそれに近いも
のを選択しyt−、s12図のV過装置に多孔gx、y
を装置し、溶媒BとしてF紙に含浸サセた水を、溶液A
としてベンゼント工fi/−ルとの混合物(重量比1:
1)を用いた。圧力差は△pt表示で2.QaIIHg
とした。溶媒BC)部分の圧力Fi(M )△ptであ
る。得ら′れた溶液の成分組成および濾過速度から、α
、Pe′5r算出し友。#!2表に得られた結果をまと
めて示す。
A polypropylene porous membrane obtained by a known method was used as the porous membrane Y, and one whose average pore diameter was close to that of the porous membrane
The water impregnated into F paper as solvent B is used as solution A.
A mixture of benzene and chlorine (weight ratio 1:
1) was used. The pressure difference is 2. expressed in △pt. QaIIHg
And so. The pressure of the solvent BC) portion is Fi(M)Δpt. From the component composition and filtration rate of the obtained solution, α
, Pe'5r calculation friend. #! Table 2 summarizes the results obtained.

Peおよびαは、本発明の範囲内では孔径依存性は比較
的小さい、tた、v液中の水分濃度は5〜15チてTo
シ、エタノールが著しく濃縮されることがわかる。
Within the scope of the present invention, Pe and α have relatively small dependence on pore size;
It can be seen that ethanol is significantly concentrated.

【図面の簡単な説明】[Brief explanation of the drawing]

[1図は本発明の方法に使用する横型の限外V過装置の
態様を示す説明図% * 21%o a同じく縦型の限
外濾過装置の態様を示す説明図である。 代理人 清 水   勢。 (
[Figure 1 is an explanatory diagram showing an aspect of a horizontal ultra-V filtration apparatus used in the method of the present invention. Agent Sei Shimizu. (

Claims (1)

【特許請求の範囲】 (11有機溶媒を少なくとも1種以上含む均一溶液(溶
液ムと略称)より有機溶媒を分離濃縮するに当り、平均
孔径が10−’ ffi以上の多孔膜(多孔gxと略称
)を介して、該多孔膜Xの一面は溶液AK*L、、他の
一面は蚊多孔膜Xおよび別に設けた平均孔径が10−1
国以上の多孔N(多孔膜Yと略称)の非溶媒であり、溶
液A中の少なくとも1種の成分についてFi東溶媒であ
るが少なくとも1種の成分については非溶媒で、かつ溶
液ムに相分離を起こさせる溶1%’(溶媒Bと略称)に
接し、かつ溶媒B#′i多孔膜YK接し、多孔膜Xおよ
びYK負負荷れる有効圧力差ΔPが式(1: %式%(1) を満足する条件下で溶液ムを限外V過し、有機溶媒を分
離鏝麹することを特徴とする膜分離方法。 121  多孔MXおよびYの素材として、溶解度パラ
メルターが共K 1 G (ctIt/cd)’f以下
かあるいは13 (at/li声以上である高分子物質
から構成されている特許請求の範囲第1項記載の膜分離
方法。 (3)  多孔膜に接する液面の少なくとも一面を超音
波によって振動させる特許′請求の範囲第1項または第
213記載の膜分離方法。       。 (4)多孔膜XおよびY管構成する高分子素材として、
溶解度パラメーターが15 (m/m )3A以上の親
水性高分子多孔膜を、溶媒Bとして、溶解度パラメータ
ーが9 (m/a11)b以下の疎水性溶媒を用いる特
許請求の範囲に1項ないし第3項記載の膜分離方法。
[Claims] (11) In separating and concentrating an organic solvent from a homogeneous solution containing at least one organic solvent (abbreviated as solution membrane), a porous membrane with an average pore diameter of 10-'ffi or more (abbreviated as porous gx) is used. ), one side of the porous membrane
It is a non-solvent for porous N (abbreviated as porous membrane Y) of more than 100 ml, and is a fi-east solvent for at least one component in solution A, but is a non-solvent for at least one component and is compatible with the solution. The effective pressure difference ΔP in contact with the solution 1%' (abbreviated as solvent B) that causes separation, in contact with the solvent B#'i porous membrane YK, and under the negative load on the porous membranes X and YK is expressed by the formula (1: % formula % (1 ) A membrane separation method characterized by passing a solution through an ultraviolet V and troweling to separate an organic solvent under conditions satisfying the following. /cd)' f or less or 13 (at/li voice or more). (3) At least one surface of the liquid surface in contact with the porous membrane. The membrane separation method according to claim 1 or 213 of the patent, in which the membrane is vibrated by ultrasonic waves. (4) As a polymer material constituting the porous membrane X and Y tube,
A hydrophilic polymer porous membrane with a solubility parameter of 15 (m/m )3A or more is used as solvent B, and a hydrophobic solvent with a solubility parameter of 9 (m/a11)b or less is used in claims 1 to 3. The membrane separation method according to item 3.
JP6639782A 1981-11-30 1982-04-22 Novel separative concentration method of organic solvent Granted JPS58183904A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP6639782A JPS58183904A (en) 1982-04-22 1982-04-22 Novel separative concentration method of organic solvent
EP82110792A EP0080684B1 (en) 1981-11-30 1982-11-23 Membrane filtration using ultrafiltration membrane
DE8282110792T DE3265896D1 (en) 1981-11-30 1982-11-23 Membrane filtration using ultrafiltration membrane
CA000416253A CA1195254A (en) 1981-11-30 1982-11-24 Membrane filtration using ultrafiltration membrane
DK523182A DK158706C (en) 1981-11-30 1982-11-24 PROCEDURE FOR FILTERING USING AN ULTRAFILTRATION MEMBRANE
US06/712,491 US4770786A (en) 1981-11-30 1985-03-15 Separation of organic liquid from mixture employing porous polymeric ultrafiltration membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6639782A JPS58183904A (en) 1982-04-22 1982-04-22 Novel separative concentration method of organic solvent

Publications (2)

Publication Number Publication Date
JPS58183904A true JPS58183904A (en) 1983-10-27
JPH0211292B2 JPH0211292B2 (en) 1990-03-13

Family

ID=13314631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6639782A Granted JPS58183904A (en) 1981-11-30 1982-04-22 Novel separative concentration method of organic solvent

Country Status (1)

Country Link
JP (1) JPS58183904A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02502638A (en) * 1987-02-02 1990-08-23 エクソン ケミカル パテンツ,インコーポレイテッド Alcohol recovery method using perfluorinated ionomer membranes
JPH07116077B2 (en) * 1987-02-02 1995-12-13 エクソン ケミカル パテンツ,インコーポレイテッド Recovery method of alcohol using organic acid modified polymer membrane
JPH10147546A (en) * 1996-11-18 1998-06-02 Nippon Gosei Alcohol Kk Purification of ethanol

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2103941T3 (en) * 1991-04-19 1997-10-01 Seikisui Chemical Co Ltd TUBE BOARD MEMBER.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02502638A (en) * 1987-02-02 1990-08-23 エクソン ケミカル パテンツ,インコーポレイテッド Alcohol recovery method using perfluorinated ionomer membranes
JPH07116077B2 (en) * 1987-02-02 1995-12-13 エクソン ケミカル パテンツ,インコーポレイテッド Recovery method of alcohol using organic acid modified polymer membrane
JPH10147546A (en) * 1996-11-18 1998-06-02 Nippon Gosei Alcohol Kk Purification of ethanol

Also Published As

Publication number Publication date
JPH0211292B2 (en) 1990-03-13

Similar Documents

Publication Publication Date Title
JP2584628B2 (en) Composite ultra-low film
AU636764B2 (en) Membrane for isolating virus from solution
JP5691059B2 (en) Membrane with local asymmetry
WO2012105397A1 (en) Separation membrane for water treatment and production method for same
JP5909765B2 (en) High throughput membrane
JPS5857205B2 (en) Manufacturing method of semipermeable membrane
JP5577535B2 (en) Antimicrobial filter
JPH0317533B2 (en)
JPS59225705A (en) Composite membrane and preparation thereof
EP3162432A1 (en) Composite semipermeable membrane
JP2011173115A (en) Hollow fiber membrane and method for producing hollow fiber membrane
EP0062494A2 (en) Method and device for separating mixed liquid components
JPS58183904A (en) Novel separative concentration method of organic solvent
JPS62294403A (en) Composite film
JP2005349268A (en) Substance separation and purification process utilizing diffusion through porous film
JPS61408A (en) Hollow yarn composite membrane
JPS58183907A (en) Separative concentration of organic solvent by membrane
JPS61200805A (en) Polyether sulfone microporous hollow yarn membrane and its production
JPS6147812B2 (en)
JP7194656B2 (en) porous membrane
JPS61103505A (en) Preparation of composite semipermeable membrane
JP3489372B2 (en) Perm-selective separation membrane
JP2584011B2 (en) Degassing method of dissolved gas in liquid
Nakamae et al. Properties of ultrathin membranes prepared from ethylene—vinyl alcohol copolymers
JPS63182005A (en) Polyion complex separation membrane