JPS5818174A - Equivalent test method for circuit breaker - Google Patents

Equivalent test method for circuit breaker

Info

Publication number
JPS5818174A
JPS5818174A JP56115191A JP11519181A JPS5818174A JP S5818174 A JPS5818174 A JP S5818174A JP 56115191 A JP56115191 A JP 56115191A JP 11519181 A JP11519181 A JP 11519181A JP S5818174 A JPS5818174 A JP S5818174A
Authority
JP
Japan
Prior art keywords
voltage
test
breaker
current
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56115191A
Other languages
Japanese (ja)
Inventor
Yoshimasa Kubota
久保田 善征
Minoru Sato
稔 佐藤
Katsuichi Kashimura
樫村 勝一
Kunio Hirasawa
平沢 邦夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56115191A priority Critical patent/JPS5818174A/en
Publication of JPS5818174A publication Critical patent/JPS5818174A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/333Testing of the switching capacity of high-voltage circuit-breakers ; Testing of breaking capacity or related variables, e.g. post arc current or transient recovery voltage
    • G01R31/3333Apparatus, systems or circuits therefor
    • G01R31/3336Synthetic testing, i.e. with separate current and voltage generators simulating distance fault conditions

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)

Abstract

PURPOSE:To perform an equivalent test approximating a small leading current interruption with a simple circuit constitution, by applying a commercial frequency voltage and a DC voltage to both terminals of a circuit breaker for test via a current suppressing high resistance. CONSTITUTION:An AC voltage is supplied to one side terminal of a circuit breaker 31 to be tested at the secondary winding of a transformer 7 via a current suppressing resistor 30. To another terminal, a capacitor 34 charged to a peak value of the test voltage in advance is connected in series via a current suppressing resistor 32 etc. Voltage measuring capacitors 36, 37, 38 and 39 are connected to both the terminals of the circuit breaker 31. When the circuit breaker 31 is opened, a voltage between the poles is instantly impressed. Taking the polarity of the charged capacitor 34 as negative, since the opening phase of the breaker is controlled at a point P in the earth voltage waveforms V1 and V2 of each voltage, a voltage of V3 is applied. The waveform between the poles is the same as the voltage waveform at small leading current test. Thus, an equivalent test approximating small leading current interruption can be made with a simple circuit.

Description

【発明の詳細な説明】 本発明はしゃ断器の等価試験法、特に進み小電流しゃ断
を近似する等価試験法の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an equivalent test method for circuit breakers, and more particularly to an improved equivalent test method that approximates advanced small current interruption.

しゃ断器の進み小電流しゃ断性能を検証するために、種
々の等価試験法が提案さ扛ているが、近年のように高、
電圧大容量化するしゃ断器に伴い、実負荷しゃ断試験を
課することは極めて困難となって、等価試験が課さnて
いる。しかし、従来回路では、回路の一部に高電圧が集
中することや、回路が複雑なことなどの欠点がらり、し
ゃ断器の耐圧特性を検証する良好な試験回路が望1nて
ぃた。
Various equivalent test methods have been proposed to verify the advanced small current breaking performance of circuit breakers.
With the increase in voltage capacity of circuit breakers, it has become extremely difficult to perform an actual load circuit breaker test, and an equivalent test is now required. However, conventional circuits have drawbacks such as high voltage concentration in a part of the circuit and complexity of the circuit, so there is a need for a good test circuit for verifying the withstand voltage characteristics of circuit breakers.

第1図には進み小電流試験の原理が示さ扛る。FIG. 1 shows the principle of the advanced small current test.

第1図において、発電機1がら供試しゃ断器2全通して
コンデンサ3へ通電し、通電後数サイクル経過後にしゃ
断動作を行なう。この場合、第2図に示す様に、電流i
は電圧Vに対してπ/2ラジアン進んでいるので、電流
しゃ断器、コンデ/す3の端子の対地電圧は一定値V、
を保ち、一方、発電機1の電圧Voは商用周波数で時間
と供に第2図の如く変化するので、しゃ断器2の極間に
は斜線に示す電圧が印加される。この極間電圧は、電流
しゃ断器0.5サイクル時点には、発電機電圧Voの2
2倍が印加されることになる。第1図の試験回路では、
試験電圧、電流が比較的小・さい場合に有効であるが、
高電圧の場合には、電源1、コンデンサ3の設備容量が
不足するという欠点がある。また、本試験で、しゃ断器
2固有の絶縁耐圧特性を進み小電流しゃ断試験で得るに
は、数多くの試験回数を実施しなければならない欠点が
ある。
In FIG. 1, electricity is supplied from the generator 1 to the capacitor 3 through the test breaker 2, and after several cycles have elapsed, a cutoff operation is performed. In this case, as shown in FIG.
is leading the voltage V by π/2 radians, so the voltage to ground at the terminal of the current breaker and condenser 3 is a constant value V,
On the other hand, since the voltage Vo of the generator 1 changes with time as shown in FIG. 2 at the commercial frequency, a voltage shown by diagonal lines is applied between the poles of the breaker 2. This electrode voltage is 2 of the generator voltage Vo at the time of 0.5 cycles of the current breaker.
Twice as much will be applied. In the test circuit shown in Figure 1,
It is effective when the test voltage and current are relatively small, but
In the case of high voltage, there is a drawback that the installed capacity of the power supply 1 and capacitor 3 is insufficient. In addition, in this test, there is a drawback that a large number of tests must be performed in order to obtain the dielectric strength characteristics specific to the circuit breaker 2 through a small current interruption test.

第3図は改良された試験回路を示す。FIG. 3 shows an improved test circuit.

同図において、変圧器7の1次側には電源5が設けら扛
、スイッチ6の投入によって、しゃ断電流に相当する電
流が変圧器7の2次側に供給さ扛る。変圧器7の2次側
には、補助しゃ断器8を介して、供試しゃ断器9が接続
さ扛て、電流が供給さする。また、供試しゃ断器9には
、抵抗10、投入5W11’i介してあらかじめ試験電
圧まで充電さnたコンデンサ12に直列接続さnている
In the figure, a power supply 5 is provided on the primary side of the transformer 7, and when a switch 6 is turned on, a current corresponding to the cutoff current is supplied to the secondary side of the transformer 7. A test breaker 9 is connected to the secondary side of the transformer 7 via an auxiliary breaker 8 to supply current. Further, the test circuit breaker 9 is connected in series to a capacitor 12 which has been charged in advance to a test voltage through a resistor 10 and an input voltage 5W11'i.

この電圧供給回路には、カップリングコンデンサ13、
分圧コンデンサ14が接続さnて、しゃ断器9への電圧
印加波形15が検出さ扛る。以上の回路構成において、
しゃ断器8及び9をしゃ断動作させて、しゃ断面前で投
入5W11t−閉じてしや断器9に試験電圧を供給する
。コンデンサ12から高抵抗10を通じて流nる電流は
、変圧器7による電流値に比べて十分に小さくなる様回
路定数が決めらnている。
This voltage supply circuit includes a coupling capacitor 13,
When the voltage dividing capacitor 14 is connected, a voltage application waveform 15 to the breaker 9 is detected. In the above circuit configuration,
The circuit breakers 8 and 9 are operated to shut off, and the test voltage is supplied to the circuit breaker 9 by closing 5W11t before the circuit breaker. Circuit constants are determined so that the current flowing from the capacitor 12 through the high resistance 10 is sufficiently smaller than the current value from the transformer 7.

供試しゃ断器9のしゃ断後の極間に印加さ扛る電圧ハ、
コンデンサ12、カップリングコンデンサ13、分圧コ
ンデンサ14と抵抗1oの直列回路により決定さ扛る時
定数及びコンデンサ12の充電々圧で定まる放電特性を
示し、供試しゃ断器9固有の絶縁耐圧値以上になる1+
、絶縁破壊を繰り返す。この絶縁破壊はしゃ断器9の極
間距離の増加に伴い増加する。第4図に示す極間電圧の
包絡線15が、しゃ断器9の耐圧特性を示し、この特性
が商用周波電圧の22倍である回復電圧の計算値16よ
りも常に大でinば、供試しゃ断器9は所定の耐圧特性
を有すると判定さnる。
The voltage applied between the poles of the test circuit breaker 9 after disconnection is
The time constant determined by the series circuit of the capacitor 12, the coupling capacitor 13, the voltage dividing capacitor 14, and the resistor 1o, and the discharge characteristics determined by the charging and charging voltage of the capacitor 12 are shown, and the voltage is higher than the dielectric strength value inherent to the test circuit breaker 9. become 1+
, repeated dielectric breakdown. This dielectric breakdown increases as the distance between the poles of the circuit breaker 9 increases. The envelope curve 15 of the voltage between poles shown in FIG. It is determined that the circuit breaker 9 has predetermined voltage resistance characteristics.

第3図の従来例の回路では、しゃ断器の等価試験を可能
とするが、しゃ断器9の端子には試験電圧波高値の2倍
の電圧を印加する必要がメリ、このため、供試しゃ断器
の一端子には対地的に絶縁耐圧特性が問題となる。また
、試験回路の設備についても同様である。試験電圧が比
較的低い場合には、本回路も適用できるが、高電圧の場
合には試験電圧の不゛足が生じる欠点がある。
In the conventional example circuit shown in Fig. 3, it is possible to perform an equivalence test on the breaker, but it is necessary to apply a voltage twice the peak value of the test voltage to the terminals of the breaker 9. The dielectric strength of one terminal of the device to ground is a problem. The same applies to test circuit equipment. Although this circuit can be applied when the test voltage is relatively low, it has the disadvantage that the test voltage is insufficient when the test voltage is high.

さらに、本回路を改良したものに、第5図に示す回路が
ある。同図において、変圧器7の2次側に第1の補助し
ゃ断20、供試しや器21、第2の補助しゃ断器22が
直列接続さn1短絡電流を供給する様構成さ扛る。また
変圧器7の2次側には、抵抗27、コンデンサ28から
なる振動抑制手段が接続さn、1fC1変圧器7の2次
側には抵抗23を介して供試しゃ断器21の端子すに接
続して交流電圧を供給し、供試しゃ断器21の他方の端
子aにはコンデンサ26、放電ギャップ25、抵抗24
を介して直流電圧を供給さnるように構成されている。
Furthermore, an improved version of this circuit is the circuit shown in FIG. In the figure, a first auxiliary breaker 20, a test circuit 21, and a second auxiliary breaker 22 are connected in series on the secondary side of a transformer 7, and are configured to supply an n1 short-circuit current. Further, a vibration suppressing means consisting of a resistor 27 and a capacitor 28 is connected to the secondary side of the transformer 7, and a terminal of the test breaker 21 is connected to the secondary side of the 1fC1 transformer 7 via a resistor 23. A capacitor 26, a discharge gap 25, and a resistor 24 are connected to the other terminal a of the breaker 21 under test.
It is configured to be supplied with a direct current voltage via the.

本回路での試験法は、第1の補助しゃ断器20、供試し
ゃ断器21、第2の補助しゃ断器22が閉路の時、発電
機5、スイッチ6によって、あらかじめ設定さnた電圧
が変圧器7を介して供給さnて、進み小電流と等しい電
流が供試しゃ断器に流れる。電流しゃ断後、進み小電流
の試験電圧と一致する様に設定さn1変圧器7の2次側
にあられれる回復電圧は、抵抗27、コンデンサ28で
振動成分が抑制さnw状態で、抵抗23を介して供試し
ゃ断器21の端子すに印加さnる。この時の波形は第6
図のVbで示さnる。これと同時に、供試しゃ断器21
の他方の端子aには、予じめ回復電圧の波高値とほぼ等
しい電圧まで充電さnたコンデンサ26から放電ギャッ
プ25、抵抗24を介して直流電圧が印加さ扛る。この
時の電圧波形は第6図のv、(直流電圧)で示さnる。
The test method for this circuit is that when the first auxiliary breaker 20, the test breaker 21, and the second auxiliary breaker 22 are closed, the generator 5 and switch 6 convert the preset voltage into a transformer. A current equal to the leading small current flows through the test breaker through the circuit 7. After the current is cut off, the recovery voltage that appears on the secondary side of the n1 transformer 7, which is set to match the test voltage of the small advancing current, is determined by the resistor 23 in the nw state where the vibration component is suppressed by the resistor 27 and capacitor 28. A voltage is applied to the terminal of the test circuit breaker 21 through the terminal. The waveform at this time is the 6th waveform.
It is indicated by Vb in the figure. At the same time, the test disconnector 21
A DC voltage is applied to the other terminal a of the capacitor 26, which has been charged in advance to a voltage substantially equal to the peak value of the recovery voltage, via the discharge gap 25 and the resistor 24. The voltage waveform at this time is indicated by v and n (DC voltage) in FIG.

以上の結果、供試しゃ断器21の端子a、b間には第6
図に示す(V−vb)の電圧が印加さ扛、その最大電圧
は交流電圧の波高値において異極性とすることで得らn
lそして、供試しゃ断器21の一端子のみに過大な絶縁
性能を要求する必要がないなどの利点を有する。
As a result of the above, the sixth
The voltage (V-vb) shown in the figure is applied, and the maximum voltage can be obtained by making the peak value of the AC voltage different in polarity.
Furthermore, there is an advantage that it is not necessary to require excessive insulation performance from only one terminal of the test circuit breaker 21.

しかしながら、補助しゃ断器として供試しゃ断器釜み以
上の性能を有し、さらに2台を要しζ供試しや断器を含
めると回路構成が複雑となる。また、第1.第2の補助
しゃ断器は確実にしゃ断するには、供試しゃ断器よりも
早く開極することが望ましり、シたがって、制御が複雑
となる。さらに、直流電圧を印加する放電ギャップの制
御が加わnば、こnらの制御は非常に複雑で、また、試
験ジ−タンス上困難となって実用的でない等の欠点があ
る。
However, as an auxiliary breaker, it has better performance than the test circuit breaker, requires two additional circuit breakers, and the circuit configuration becomes complicated if the test circuit breaker and the test circuit breaker are included. Also, 1st. In order for the second auxiliary breaker to shut off reliably, it is desirable to open it earlier than the test breaker, and therefore the control becomes complicated. Furthermore, if the control of the discharge gap to which the DC voltage is applied is added, this control becomes extremely complicated, and also has drawbacks such as being difficult in terms of test resistance and impractical.

また、開極後0.5サイクル時点で回復電圧の最大電圧
を印加できるのはアーク時間がほぼ零の時でめる。この
友めには開極位相を制御する必要がある。筐た、短絡電
流は電流位相が零点でないとしゃ断できないので、AC
側電圧波形に対して開極瞬時の位相を変えることができ
ず、したがって、極間に印加する回復電圧の最大値を時
間的に制御することができないという欠点がある。
Furthermore, the maximum recovery voltage can be applied at 0.5 cycles after opening when the arc time is approximately zero. For this friend, it is necessary to control the opening phase. However, the short circuit current cannot be cut off unless the current phase is at the zero point, so AC
There is a drawback that the phase of the moment of contact opening cannot be changed with respect to the side voltage waveform, and therefore the maximum value of the recovery voltage applied between the electrodes cannot be temporally controlled.

本発明は次の点に着目している。The present invention focuses on the following points.

対地絶縁特性に基く試験容量の制約を受けず、進み小電
流試験時の極間電圧と等価的に印加すると共に、供試し
ゃ断器の両端子間に電流抑制用高抵抗を介することによ
って、しゃ断電流は抑制されるので、電流通電回路との
分離用の補助しゃ断器が不要となる。このため回路構成
が非常に簡単で、また、試験シーケンス上も交流および
直流電圧も供試しゃ断器が閉路中に印加しても、直流電
圧は短時間で放電することもないので、制御が容易とな
る。さらに、電流無視できる位に抑制しているので、A
C側電圧波形に対して、どの位相でもしゃ断可能となる
ので、その瞬時に電圧を印加でき開極位相を変えれば、
開極瞬時の回復電圧の値を変えることができるので、極
間長に対して印加電圧値を変えらnる。よって、しゃ断
器固有の絶縁回復特性を得ることができる利点がある。
It is not limited by the test capacity based on the ground insulation characteristics, and is applied equivalently to the voltage between electrodes during a small lead current test. Since the current is suppressed, there is no need for an auxiliary breaker for separation from the current-carrying circuit. Therefore, the circuit configuration is very simple, and in the test sequence, even if AC and DC voltages are applied while the test breaker is closed, the DC voltage does not discharge in a short time, making it easy to control. becomes. Furthermore, since the current is suppressed to a negligible level, A
Since it is possible to cut off the C side voltage waveform at any phase, voltage can be applied at that moment and if the opening phase is changed,
Since the value of the recovery voltage at the instant of electrode opening can be changed, the applied voltage value can be changed with respect to the distance between electrodes. Therefore, there is an advantage that insulation recovery characteristics unique to the circuit breaker can be obtained.

本゛発明の目的は、上述の如く、絶縁回復特性が確保で
きる様な試験回路を提供するにある。
As mentioned above, an object of the present invention is to provide a test circuit that can ensure insulation recovery characteristics.

本発明は供試しゃ断器の両端子に商用周波電圧と直流電
圧との試験電圧を電流抑制用高抵抗を介して印加するこ
とにより、供試しゃ断器の両端子の対地電圧と電流を抑
制しながら、商用周波電圧に対して開極位相を制御して
しゃ断器固有の絶縁回復特性を得る様にし、かつ、回復
電圧を進み/J%電流の試験電圧と等価的に印加したこ
とを特徴とする。
The present invention suppresses the ground voltage and current at both terminals of the breaker under test by applying test voltages of commercial frequency voltage and DC voltage to both terminals of the breaker under test via a high resistance for current suppression. However, it is characterized by controlling the opening phase with respect to the commercial frequency voltage to obtain the insulation recovery characteristics unique to the circuit breaker, and applying the recovery voltage equivalently to the test voltage of lead/J% current. do.

本発明の好適な実施例を説明する。第7図に本発明の実
施例を示した。符号が第3.5図の従来回路と同一符号
の場合は説明を省略する。
A preferred embodiment of the present invention will be described. FIG. 7 shows an embodiment of the present invention. If the reference numerals are the same as those of the conventional circuit shown in FIG. 3.5, the explanation will be omitted.

第7図において、スイッチ6の投入によって、変圧器7
の2次側には電流抑制用抵抗30を介して供試しゃ断器
31の片側端子に交流電圧が供給さnる。他端子には電
流抑制用抵抗32と投入5W33vi−介してあらかじ
め試験電圧の波高値1て充電さn*コンデンサ34が直
列接続されている。そして、供試しゃ断器31の両端子
には、電圧測定用コンデンサ36と37.38と39が
接続さnて、供試しゃ断器31への印加電圧波形40、
”41が検出される。
In FIG. 7, when switch 6 is turned on, transformer 7
An alternating current voltage is supplied to one terminal of the test breaker 31 on the secondary side of the test circuit breaker 31 via a current suppressing resistor 30. An n* capacitor 34 previously charged with the peak value 1 of the test voltage is connected in series to the other terminal via the current suppressing resistor 32 and the input voltage 5W 33vi. Voltage measuring capacitors 36, 37, 38 and 39 are connected to both terminals of the test circuit breaker 31, and voltage waveforms 40, 38 and 39 are applied to the test circuit breaker 31,
"41 is detected.

このような回路構成において、しゃ断電流は電流抑制用
抵抗32.30のために無視できる位の電流であるので
、供試しゃ断器31を開極すると、極間電圧は瞬時に印
加さnる。今、充電さn友コンデンサ34の極性を−と
した場合、第8図の示す如き各電圧の対地電圧波形V、
(=40)。
In such a circuit configuration, the breaking current is a negligible current due to the current suppressing resistor 32, 30, so when the test breaker 31 is opened, the voltage between the electrodes is instantaneously applied. Now, if the polarity of the charging capacitor 34 is -, the ground voltage waveform V of each voltage as shown in FIG.
(=40).

V、(=41)において、P点でしゃ断器の開極位相を
制御するめで、極間には斜線に示すV。
V, (=41), the purpose is to control the opening phase of the breaker at point P, and there is a V shown by diagonal lines between the poles.

(”Vt   Vg)の電圧が印加さ扛る。この極間波
形は、進み小電流試験時の電圧波形と同様である。
A voltage of ("Vt Vg) is applied. This inter-electrode waveform is similar to the voltage waveform during the small lead current test.

開極位相の制御法は、例えば、発電機5と同期して回転
している図示しないパイロット発電機の電圧を基準にし
て、こtと図示しない移相器によって、発電機電圧の位
相と同期したパルス電圧をサイラトロンのグリッドに加
え、この瞬間にサイラトロンが導通し、操作電圧が供試
しゃ断器の引外しコイルに印加して、励磁し開極するこ
とができる。発電機電圧と変圧器の2次側電圧を同相と
なる様に設定しておけば、パルス電圧の位相を制御する
ことにより、変圧器の2次側電圧波形に対して、開極位
相を変えることができる。
The opening phase can be controlled, for example, by using the voltage of a pilot generator (not shown) rotating in synchronization with the generator 5 as a reference, and by using a phase shifter (not shown) to synchronize with the phase of the generator voltage. A pulsed voltage is applied to the thyratron grid, at which point the thyratron becomes conductive, and an operating voltage is applied to the tripping coil of the breaker under test, allowing it to be energized and opened. If you set the generator voltage and the transformer's secondary voltage to be in phase, you can change the opening phase with respect to the transformer's secondary voltage waveform by controlling the phase of the pulse voltage. be able to.

試験電圧を所定電圧より高めに整定すると、しゃ断器3
1の固有の絶縁耐圧値以上になるまで、7i!電を繰り
返す。第9図に示す如く極間に表わ扛る放電々圧の包絡
線42が所定の進み小電流しゃ断時の極間電圧波形43
より常に大きい場合には、供試しゃ断器18は所定の耐
圧特性を有することになる。
When the test voltage is set higher than the specified voltage, the circuit breaker 3
7i! until it exceeds the inherent dielectric strength value of 1! Repeat electricity. As shown in FIG. 9, the envelope 42 of the discharge voltage appearing between the electrodes advances to a predetermined value, and the voltage waveform 43 between the electrodes when a small current is cut off.
If it is always larger than that, the test breaker 18 has predetermined voltage resistance characteristics.

以上のとおり、供試しゃ断器の開極位相のP点を左右に
制御することにより、進み小電流しゃ断時の電圧波形的
にも近似でき、かつ、極間距離に対して印加電圧時点も
変えることが可能であるので、この結果耐圧特性をも把
握できるなどの特徴がある。
As described above, by controlling the P point of the opening phase of the test breaker to the left and right, it is possible to approximate the voltage waveform during advanced small current interruption, and also change the applied voltage point with respect to the distance between poles. As a result, it is possible to understand the breakdown voltage characteristics.

1次、本回路は回路が非常に簡単であり、試験シーケン
スも簡単である。対地絶縁的に進み小電流試験と同様で
、かつ試験電圧の制約を受けない特徴がある。
First, this circuit has a very simple circuit, and the test sequence is also simple. It is similar to a small current test because it conducts ground insulation, and it has the characteristic that it is not limited by the test voltage.

−また、電流抑制用抵抗を介して、電圧印加するので、
電極部を含むしゃ断部を損傷することがない。
-Also, since voltage is applied via the current suppression resistor,
The breaking section including the electrode section will not be damaged.

第7図において、抵抗30および32のいずnか一方で
も、特性上は同様である。
In FIG. 7, either one of the resistors 30 and 32 has the same characteristics.

本発明によnば、商用周波電源からの交流電圧とあらか
じめ充電さn;iコンデンサによる直流電圧とを供試し
ゃ断器の両端に電流抑制用抵抗を介して印加し、かつ、
AC側電圧位相に対してしゃ断器の開極位相を制御する
ことによす、シゃ断器極間の印加電圧をその最大値で異
極性とすることもできる。また、電流が無視できる位な
ので、電極を含むしゃ断部を損傷することもなく、試験
回数も多くできる。試験回路の一部、または特定部に大
きな対地絶縁を施こす必要がないので、通常の設備で構
成できる。また、試験回路も極めて簡単で、試験法□も
特殊技術を要しないなどの効果がある。
According to the present invention, an AC voltage from a commercial frequency power source and a DC voltage from a pre-charged capacitor are applied to both ends of a test breaker via a current suppression resistor, and
By controlling the opening phase of the breaker with respect to the AC side voltage phase, the voltage applied between the breaker poles can be made to have a different polarity at its maximum value. Furthermore, since the current is negligible, the breaking section including the electrodes is not damaged, and the number of tests can be increased. Since there is no need to provide large ground insulation to a part or specific part of the test circuit, it can be constructed using normal equipment. In addition, the test circuit is extremely simple, and test method □ does not require any special technology.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の実負荷試験による進み小電流試験回路の
原理を示す回路図、第2図は第1図における電圧電流波
形図、第3図は従来の等価試験回路図、第4図は第3図
の作用を説明する特性図、第5図は第3図の改良さlr
した等価試験回路図、第6図は第5図の波形図、第7図
は本発明の一実施例に係る等価試験回路図、第8図およ
び第9図は第7図の電圧特性図でるる。 7・・・変圧器、11・・・スイッチ、30.32・・
・電流抑制用抵抗、31・・・供試しゃ断器、34・・
・コンテ第1の 茗3目 第5の vJG図 篤7の 第 80 ■ 篤90 ′−尤
Fig. 1 is a circuit diagram showing the principle of a leading small current test circuit using a conventional actual load test, Fig. 2 is a voltage and current waveform diagram in Fig. 1, Fig. 3 is a conventional equivalent test circuit diagram, and Fig. 4 is Figure 3 is a characteristic diagram explaining the action, Figure 5 is an improved version of Figure 3.
6 is a waveform diagram of FIG. 5, FIG. 7 is an equivalent test circuit diagram according to an embodiment of the present invention, and FIGS. 8 and 9 are voltage characteristic diagrams of FIG. 7. Ruru. 7...Transformer, 11...Switch, 30.32...
・Current suppression resistor, 31... Test breaker, 34...
・Conte 1st Myo 3rd vJG Zu Atsushi 7th 80th ■ Atsushi 90'-Yu

Claims (1)

【特許請求の範囲】[Claims] 1、商用周波電源回路および商用周波電源の回復電圧全
供試しゃ断器の一部の端子に供給するスイッチ金倉む第
1の電圧供給装置と、一方の端子が接地さ扛てコンデン
サにあらかじめ充電さf′L7を前記回復電圧の波高値
にほぼ等しい直流電圧を前記供試しゃ断器の他方の端子
に供給するスイッチを含む第2の電圧供給装置とを、電
流抑制用抵抗を介して前記供試しゃ断器の両端子へ印加
することにより、アーク電流による影響をなくして、極
間波形奮進み小電流しゃ断時と同等な波形としたことを
特徴とするしゃ断器の等価試験法。
1. A first voltage supply device with a switch Kanakura that supplies some terminals of the commercial frequency power supply circuit and the recovery voltage of the commercial frequency power supply circuit breaker, and one terminal of which is grounded and the capacitor is charged in advance. f′L7 is connected to a second voltage supply device including a switch that supplies a DC voltage approximately equal to the peak value of the recovery voltage to the other terminal of the test breaker via a current suppression resistor. An equivalent test method for a circuit breaker, characterized in that by applying voltage to both terminals of the circuit breaker, the influence of arc current is eliminated and the waveform between the electrodes is made equal to that at the time of small current interruption.
JP56115191A 1981-07-24 1981-07-24 Equivalent test method for circuit breaker Pending JPS5818174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56115191A JPS5818174A (en) 1981-07-24 1981-07-24 Equivalent test method for circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56115191A JPS5818174A (en) 1981-07-24 1981-07-24 Equivalent test method for circuit breaker

Publications (1)

Publication Number Publication Date
JPS5818174A true JPS5818174A (en) 1983-02-02

Family

ID=14656599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56115191A Pending JPS5818174A (en) 1981-07-24 1981-07-24 Equivalent test method for circuit breaker

Country Status (1)

Country Link
JP (1) JPS5818174A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61148540U (en) * 1985-03-04 1986-09-12

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61148540U (en) * 1985-03-04 1986-09-12

Similar Documents

Publication Publication Date Title
KR890000692B1 (en) Method of testing and verifying a performance for insulation to ground of a disconnecting switch when breaking a charging current
JPS5818174A (en) Equivalent test method for circuit breaker
JP7325937B2 (en) Input test apparatus for vacuum circuit breaker and test method thereof
Van Sickle et al. Arc extinction phenomena in high voltage circuit breakers-studied with a cathode ray oscillograph
JP2675649B2 (en) Switchgear test method and device
JP2003115242A (en) Breaker testing circuit
JP3570691B2 (en) DC high voltage polarity reversal test equipment
US2205173A (en) Testing of electrical circuits
JPH04363677A (en) Synthetic test circuit for breaker
Voshall et al. An indirect test circuit for testing vacuum interrupters for capacitor switching duty
JPH06186309A (en) Interruption test circuit for switch
JPH0735831A (en) Method and apparatus for testing breaker
JPH0738014B2 (en) Step-out synthesis tester for circuit breaker
RU2306574C1 (en) Device for testing switching capacity of high voltage switches
JPS61155780A (en) Equivalence tester for small leading current of breaker
JPH0634028B2 (en) Switchgear test method and device
SU390478A1 (en)
JPS5845669B2 (en) Equivalent testing device for breaker
Gilyov Intelligent control system by synchronous vacuum circuit-breakers middle voltage
JPH03202792A (en) Combined testing apparatus for circuit breaker
JPH0782080B2 (en) Circuit breaker test equipment
GB1072982A (en) A synthetic testing installation for electric circuit breakers
JPH0449662B2 (en)
JPH0651036A (en) Short line fault testing device
JPH0461312B2 (en)