JPS58179943A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPS58179943A
JPS58179943A JP6275882A JP6275882A JPS58179943A JP S58179943 A JPS58179943 A JP S58179943A JP 6275882 A JP6275882 A JP 6275882A JP 6275882 A JP6275882 A JP 6275882A JP S58179943 A JPS58179943 A JP S58179943A
Authority
JP
Japan
Prior art keywords
film
magnetic
controlled
vapor deposition
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6275882A
Other languages
Japanese (ja)
Inventor
Kazuo Iwaoka
和男 岩岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6275882A priority Critical patent/JPS58179943A/en
Publication of JPS58179943A publication Critical patent/JPS58179943A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • C23C14/545Controlling the film thickness or evaporation rate using measurement on deposited material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • C23C14/544Controlling the film thickness or evaporation rate using measurement in the gas phase
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/85Coating a support with a magnetic layer by vapour deposition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To obtain a magnetic recording medium with excellent characteristic in low cost by a vacuum vapor deposition process, by using a device which can control simultaneously >=2 of a heating source, an evaporating source, a film traveling system and an atmosphere gas and therefore by setting the thickness and the coercive force of a magnetic thin film within a fixed range. CONSTITUTION:A magnetic metallic thin film layer is formed by a vacuum vapor deposition process by means of an evaporating source 15 using Co, Ni, Cr or Fe singly or a mixture of these elements, a heating source 18, a traveling system of a film 4, and an atmosphere gas of O2 put into a vacuum tank 1 respectively. In this case, the rate of the evaporating element is monitored by a monitor 16 of an atomic light absorbing system for example. The thickness of the film is measured by a permeability meter 25 after vapor deposition. The feed quantity of O2 gas is controlled by a flow rate control valve B1, and the heater 18 of the source 15 is controlled by a control box C1. For this purpose, the measuring devices A1 and A2 and controllers B1 and C1 are controlled by a center control box C. Thus more than one of the film thickness and the coerive force is controlled within a fixed range. In such a way, a long magnetic tape having stabilized quantity can be produced easily with yield and a low cost.

Description

【発明の詳細な説明】 本発明は磁気記録媒体の特に磁性薄膜の製造方法に係る
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a magnetic recording medium, particularly a magnetic thin film.

近年、磁気記録媒体を用いた機器は、磁気テープを1吏
用する録音機やビデオテープレコーダー、まだ磁気ディ
スクを用いるコンピュータやフロッピーディスクなど、
さらにカード状にして使用する各種磁気カード装置等、
多方面で実用されている。これらに用いられる磁気記録
媒体としては一般的に塗布型と金属薄膜型(磁性薄膜)
が提案されている。塗布型の磁気記録媒体は多くのもの
がフィルム(高分子基板)の上に酸化鉄(γ−Fe2O
3)や、二酸化クロム(CrO2)、鉄、コバルト、ニ
ッケル系合金磁性粉などを接着剤(樹脂)、滑剤。
In recent years, devices using magnetic recording media have been developed, such as recorders and video tape recorders that use magnetic tape, computers and floppy disks that still use magnetic disks, etc.
Furthermore, various magnetic card devices that can be used in the form of cards, etc.
It is used in many fields. The magnetic recording media used for these are generally coated type and metal thin film type (magnetic thin film).
is proposed. Many coating-type magnetic recording media are coated with iron oxide (γ-Fe2O) on a film (polymer substrate).
3), chromium dioxide (CrO2), iron, cobalt, nickel alloy magnetic powder, etc. as adhesives (resins) and lubricants.

帯電防止剤などと混ぜ合せて塗布した後、配向。After mixing with antistatic agent and applying it, it is oriented.

カンノダー9表面処理などを経て磁性層を形成するもの
である。従って磁性層内に含まれる磁性粉は60〜70
チであり、磁性層の厚さも概ね2〜3μmとなってしま
う。このだめ反磁界等により短波長記録が制限されてし
まう。これに対して、本発明が提案する金属薄膜による
磁性層においては、磁性材料を原子状にして蒸発させ、
フィルム上に薄膜を形成するものであり、磁性層は10
0チ磁性材料で構成されるものである。また磁性層の厚
さも数汀オングストロームへの単位で均一に形成するこ
とが可能であり、磁性層の磁束密度は塗布型のものに比
べて10倍程度までに高められる特徴を有すると共に、
磁性層を薄く出来る特徴と合せて短波長記録媒体向きで
あり、高密度磁気記録媒体となり得るものである。この
ような金属薄膜の磁性層の形成方法としては、メッキ法
、スパッタ法、蒸着法など多くの方法が提案されている
が、本発明においては比較的簡単であり、工業的に量産
性に富む真空蒸着法において、磁気記録媒体として鑞気
的特性、磁気特性、物理特性、量産性、コスト等につい
て十分満足し得る製造方法を提供するものである。
A magnetic layer is formed through surface treatment such as Kannodar 9. Therefore, the magnetic powder contained in the magnetic layer is 60 to 70
Therefore, the thickness of the magnetic layer is approximately 2 to 3 μm. Short wavelength recording is limited by this demagnetizing field and the like. In contrast, in the magnetic layer made of a metal thin film proposed by the present invention, the magnetic material is evaporated into atoms,
A thin film is formed on the film, and the magnetic layer has a thickness of 10
It is made of 0% magnetic material. In addition, the thickness of the magnetic layer can be uniformly formed in units of several angstroms, and the magnetic flux density of the magnetic layer can be increased to about 10 times that of the coating type.
Combined with the feature that the magnetic layer can be made thin, it is suitable for short wavelength recording media and can be used as high-density magnetic recording media. Many methods have been proposed for forming the magnetic layer of such a thin metal film, such as plating, sputtering, and vapor deposition, but the present invention is relatively simple and has high industrial mass productivity. In the vacuum evaporation method, it is an object of the present invention to provide a manufacturing method that satisfies the mechanical properties, magnetic properties, physical properties, mass productivity, cost, etc. of a magnetic recording medium.

以下実施例を掲げて本発明の詳細な説明する。The present invention will be described in detail below with reference to Examples.

第1図に製造装置の一例を示す。真空槽1は排気#12
で接続された真空排気装置13により約10−4〜10
−6To r rに排気される。真空槽1内にはフィル
ム(高分子基板)4の巻出部2と巻取部3に走行される
。なお、フィルム4の巻出9巻取はクーリングキャン6
が矢印入方向に回転されるときは2が巻出部、3が巻取
部であり、クーリングキャン6が矢印B方向に回転され
るときは巻出部と巻取部が逆になる。また真空槽1は防
着板7により上室と王室に分離しである。
FIG. 1 shows an example of a manufacturing apparatus. Vacuum chamber 1 is exhaust #12
Approximately 10-4 to 10
Exhausted to -6 Torr. In the vacuum chamber 1, a film (polymer substrate) 4 is transported to an unwinding section 2 and a winding section 3. Note that the unwinding and winding of film 4 is performed using cooling can 6.
When the cooling can 6 is rotated in the direction of the arrow B, 2 is an unwinding part and 3 is a winding part, and when the cooling can 6 is rotated in the direction of the arrow B, the unwinding part and the winding part are reversed. Further, the vacuum chamber 1 is separated into an upper chamber and a royal chamber by an anti-adhesion plate 7.

クーリングキャン6の下部には金属原子のフィルム4へ
の蒸着を制御するだめのシャッター8が・設けられてい
る。このシャッター8が閉のときはフィルム4への蒸着
はなされず、開のときに蒸着が行なわれる。さらにシャ
ッター8の下部には金属原子のフーイルム4への入射角
を制限するだめのマスク9.防着板10.ルツボを置く
だめのコモンベース11が設けられている。蒸発源15
はコモンベース11の上に置かれたルツボ14に入れた
金属であり、本発明ではコバルト、ニッケル。
A shutter 8 is provided at the bottom of the cooling can 6 to control the deposition of metal atoms onto the film 4. When this shutter 8 is closed, no vapor deposition is performed on the film 4, and when it is open, vapor deposition is performed. Furthermore, a mask 9 is provided below the shutter 8 to limit the angle of incidence of metal atoms onto the film 4. Anti-adhesion plate 10. A common base 11 is provided on which to place the crucible. Evaporation source 15
are the metals placed in the crucible 14 placed on the common base 11, and in the present invention they are cobalt and nickel.

クロム、鉄から選んだ磁性材料を単一や合金としく て加熱源18により加熱蒸発する。蒸発原子のレートを
監視する測定器として原子吸光式のモニター6が設けら
れ、そして必要とされる磁気特性を得るために蒸着条件
を制御するだめのガス供給口17が設けられている。さ
らに蒸着後にフィルム4に蒸着された膜厚を監視するた
めに透過率計26が備えられている。
A single magnetic material or an alloy of magnetic materials selected from chromium and iron is heated and evaporated by a heating source 18. An atomic absorption type monitor 6 is provided as a measuring device for monitoring the rate of evaporated atoms, and a gas supply port 17 is provided for controlling the deposition conditions to obtain the required magnetic properties. Further, a transmittance meter 26 is provided to monitor the thickness of the film 4 after vapor deposition.

E述の叩く磁気記録媒体を真空蒸着法で得るだめには、
複数の条件設定や監視が必要であり、第2図〜第4図に
示す複数の条件を変化させるだめの要因の制御が必要で
ある。従って本発明による製造方法は、透過率計25は
ライン2oにより測定器A1 を経て、中央制御ボック
スCに接続され、壕だレートモニタ16はライン21に
より測定器A2を経て中央制御ボックスCへ接続され、
さらにガス供給口17のガス供給量はガスノくイブ22
の途中に設けられた流量調整弁B、を中央制御ボックス
Cにより制御する。また蒸発源からのレートは加熱源の
電源を中央制御ボックスCとライン24で結ばれた制御
ボックスC1により制御することにより調整するように
している。従って本発明の製造方法は、あらかじめ設定
された磁気記録媒体としての特性を得るため、膜厚、蒸
発レート。
In order to obtain the magnetic recording medium described in E using the vacuum evaporation method,
It is necessary to set and monitor a plurality of conditions, and it is necessary to control the factors that cause the plurality of conditions shown in FIGS. 2 to 4 to change. Therefore, in the manufacturing method according to the present invention, the transmittance meter 25 is connected to the central control box C via the measuring device A1 by the line 2o, and the rate monitor 16 is connected to the central control box C via the measuring device A2 by the line 21. is,
Furthermore, the gas supply amount of the gas supply port 17 is
A central control box C controls a flow rate adjustment valve B provided in the middle of the flow rate adjustment valve B. Further, the rate from the evaporation source is adjusted by controlling the power source of the heating source by a control box C1 connected to the central control box C by a line 24. Therefore, in the manufacturing method of the present invention, in order to obtain predetermined characteristics as a magnetic recording medium, the film thickness and evaporation rate are adjusted.

ガス供給量を中央制御ボックスCにデータを集め、条件
設定要因を制御して必要な特性を均一に得るようにした
ものである。
Data on the amount of gas supplied is collected in a central control box C, and condition setting factors are controlled to uniformly obtain the required characteristics.

つぎに、本製造方法を開発するに当って得だ条件を提示
し、本製造方法の優秀さを説明する。第2図にいわゆる
斜方蒸着における最少入射角(最大入射角は9o0)と
抗磁力の関係を示す。最少入射角が50’以上になると
抗磁力の増加が大となるのが分かる。しかし第2図の特
性はガス(本発明では酸素02)の供給がない場合であ
り、この条件では量産性、コストに少々問題がある。従
って一般的には雰囲気ガスとして酸素を供給することに
より低入射角で大きな抗磁力を得ている。第3図に酸素
供給量と抗磁力の関係を示す。横軸に酸素供給量を、縦
軸に抗磁力をとっている。酸素供給量が0  /min
から0.8β/m i nまではほぼ酸怠 素置に対して抗磁力は比例して増減する。0.8″’/
rn i n以上はやや酸素供給量の増加に対する抗磁
力の増加は低減するが、依然として抗磁力は増加する。
Next, we will present the advantageous conditions for developing this manufacturing method and explain the excellence of this manufacturing method. FIG. 2 shows the relationship between the minimum incident angle (maximum incident angle is 9o0) and coercive force in so-called oblique evaporation. It can be seen that when the minimum incident angle is 50' or more, the coercive force increases greatly. However, the characteristics shown in FIG. 2 are for the case where no gas (oxygen 02 in the present invention) is supplied, and under this condition there are some problems in mass productivity and cost. Therefore, generally a large coercive force is obtained at a low incident angle by supplying oxygen as an atmospheric gas. Figure 3 shows the relationship between oxygen supply amount and coercive force. The horizontal axis shows the amount of oxygen supplied, and the vertical axis shows the coercive force. Oxygen supply rate is 0/min
From 0.8β/min to 0.8β/min, the coercive force increases or decreases in proportion to the oxygen-depleted condition. 0.8″'/
Above rn i n , the increase in coercive force with respect to the increase in oxygen supply is somewhat reduced, but the coercive force still increases.

しかし2.0”/min以上では抗磁力はほぼ飽和する
。第4図に蒸着膜厚と抗磁力の関係を示す。蒸着膜厚が
厚くなれば抗磁力が低下することが示されている。上記
真空蒸着装置においては蒸発レートを1000人/se
c程度が確保できるので、フィルム4の走行速度を一定
にすれば加熱源の制御により蒸着膜厚を制御することは
容易である。
However, at 2.0"/min or more, the coercive force is almost saturated. FIG. 4 shows the relationship between the deposited film thickness and the coercive force. It is shown that as the deposited film thickness increases, the coercive force decreases. In the above vacuum evaporation equipment, the evaporation rate is 1000 people/se.
Since approximately c can be secured, it is easy to control the deposited film thickness by controlling the heating source if the traveling speed of the film 4 is kept constant.

以上のような製造方法によれば磁気記録媒体に必要とさ
れる特性の一部、蒸着膜厚(磁束密度)、抗磁力は酸素
供給量、蒸発レートを制御することにより、長尺フィル
ムでも均一な製品ができるものである。従って本発明で
は第1図に示すように蒸着膜厚、蒸発レートを監視し、
各データを中央制御ボックスに入力して集中管理し、前
もって設定された蒸着条件を維持するように、中央制御
ボックスから出力として加熱源、酸素供給用流量調節弁
に制御信号を送り、予め設定された蒸着膜厚と抗磁力を
得るようにしたものである。
According to the above manufacturing method, some of the characteristics required for magnetic recording media, such as the deposited film thickness (magnetic flux density) and coercive force, can be made uniform even in long films by controlling the oxygen supply amount and evaporation rate. It is possible to create a product that is unique. Therefore, in the present invention, the deposited film thickness and evaporation rate are monitored as shown in FIG.
Each data is input into the central control box for central management, and the central control box sends control signals as output to the heating source and oxygen supply flow control valve to maintain the preset deposition conditions. It is designed to obtain a deposited film thickness and coercive force.

このように本発明方法は、複数のデータを中央管理して
複数の制御系を同時制御することにより、(1)フィル
ム基板が2000m以上の長尺ものでも安定した蒸着膜
厚と抗磁力が得られる。
In this way, the method of the present invention centrally manages multiple pieces of data and simultaneously controls multiple control systems, thereby achieving (1) stable deposited film thickness and coercive force even when the film substrate is long, 2,000 m or more; It will be done.

(2)蒸着による磁気記録媒体の製造が容易になり、量
産性が向上する。
(2) Manufacture of magnetic recording media by vapor deposition is facilitated, and mass productivity is improved.

(3)品質の安定化により、コストダウンが可能である
(3) Cost reduction is possible by stabilizing quality.

(4)蒸着作業が簡単となる。(4) Vapor deposition work becomes easier.

等の効果があり、蒸着による磁気記録媒体の供給に安定
性を持たせることができる。したがって磁性薄膜が持つ
短波長記録による高記録密度化が容易に達成できるもの
である。
As a result, it is possible to stabilize the supply of magnetic recording media by vapor deposition. Therefore, high recording density can be easily achieved by the short wavelength recording of the magnetic thin film.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施するだめの蒸着装置の一例を
示す概略構成図、第2図、第3図、第4図はそれぞれ蒸
着特性を示す図である。 1 ・・・真空槽、4−・フィルム、6・・・・・クー
リンクキャン、8−・・シャッター、9・・・・・・マ
スク、15−・蒸発源、16・ モニタ、17・−ガス
供給口、18− 加熱源、26−・・−透過率計、A、
。 A2 ・・測定器、B、・・・・流量調整弁、C−中央
制御ボックス、C4・・・・・・制御ボックス。 581図 第2図 最ン入l)!を角(事) 11g3  図
FIG. 1 is a schematic diagram showing an example of a vapor deposition apparatus for carrying out the method of the present invention, and FIGS. 2, 3, and 4 are diagrams showing vapor deposition characteristics, respectively. 1...Vacuum chamber, 4--Film, 6--Cooling scan, 8--Shutter, 9--Mask, 15--Evaporation source, 16--Monitor, 17-- Gas supply port, 18- heating source, 26-...- transmittance meter, A,
. A2...Measuring instrument, B...Flow rate adjustment valve, C-Central control box, C4...Control box. 581 Figure 2 Last entry l)! Angle (thing) 11g3 Figure

Claims (1)

【特許請求の範囲】 (1)真空蒸着により磁性薄膜を形成する磁気記録媒体
の製造方法であって、加熱源、蒸発源、フィルム走行系
、雰囲気ガスのうちいずれかの2種類以上を同時に制御
し得る制御装置を有し、磁性薄膜の膜厚もしくは抗磁力
の少なくとも1つを一定範囲内の値に制御しながら磁性
薄膜を形成することを特徴とする磁気記録媒体の製造方
法。 費)蒸発源にコバルト、ニッケル、クロム、鉄の単一も
しくは混合物を用いることを特徴とする特許請求の範囲
第1項記載の磁気記録媒体の製造方法。 (3)雰囲気ガスが酸素であることを特徴とする特許請
求の範囲第1項または第2項記載の磁気記録媒体の製造
方法。
[Scope of Claims] (1) A method for manufacturing a magnetic recording medium in which a magnetic thin film is formed by vacuum deposition, wherein two or more of a heating source, an evaporation source, a film running system, and an atmospheric gas are controlled simultaneously. 1. A method of manufacturing a magnetic recording medium, the method comprising: forming a magnetic thin film while controlling at least one of the thickness or coercive force of the magnetic thin film to a value within a certain range. 2. The method of manufacturing a magnetic recording medium according to claim 1, wherein cobalt, nickel, chromium, and iron are used alone or as a mixture as the evaporation source. (3) The method for manufacturing a magnetic recording medium according to claim 1 or 2, wherein the atmospheric gas is oxygen.
JP6275882A 1982-04-14 1982-04-14 Production of magnetic recording medium Pending JPS58179943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6275882A JPS58179943A (en) 1982-04-14 1982-04-14 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6275882A JPS58179943A (en) 1982-04-14 1982-04-14 Production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS58179943A true JPS58179943A (en) 1983-10-21

Family

ID=13209613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6275882A Pending JPS58179943A (en) 1982-04-14 1982-04-14 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS58179943A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6069834A (en) * 1983-09-24 1985-04-20 Konishiroku Photo Ind Co Ltd Method and device for production of magnetic recording medium
EP0236310A1 (en) * 1985-09-12 1987-09-16 Dennison Manufacturing Company Metallization of substrates

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6069834A (en) * 1983-09-24 1985-04-20 Konishiroku Photo Ind Co Ltd Method and device for production of magnetic recording medium
EP0236310A1 (en) * 1985-09-12 1987-09-16 Dennison Manufacturing Company Metallization of substrates

Similar Documents

Publication Publication Date Title
US4387136A (en) Magnetic recording medium and apparatus for preparing the same
JPS5961105A (en) Magnetic recording medium
US4343834A (en) Process for preparing magnetic recording medium
JPS58179943A (en) Production of magnetic recording medium
JPS6194242A (en) Manufacture of magnetic recording medium
JPS6148128A (en) Manufacture of magnetic recording medium
JPS61236025A (en) Production of magnetic recording medium
JPS61280027A (en) Production of magnetic recording medium
JPH083902B2 (en) Method for manufacturing thin film magnetic recording medium
JPS5814329A (en) Production of magnetic recording medium
JPS60163233A (en) Magnetic recording medium and its production
JPH0227732B2 (en)
JPS5936329A (en) Manufacture of magnetic recording medium
JPS621121A (en) Production of magnetic recording medium
JPS59117738A (en) Manufacture of vertical magnetic recording medium
JPS6262431A (en) Production of magnetic recording medium
JPH01303623A (en) Magnetic recording medium
JPS6069834A (en) Method and device for production of magnetic recording medium
JPS6079532A (en) Manufacture of magnetic recording medium
JPS58199440A (en) Manufacture of magnetic recording medium
JPH0334615B2 (en)
JPS619823A (en) Magnetic recording medium
JPS58105433A (en) Producing device of magnetic recording medium
JPH0925576A (en) Film forming method and film forming device
JPH04328325A (en) Manufacture of magnetic recording medium