JPS58179289A - Process for liquefying coal - Google Patents

Process for liquefying coal

Info

Publication number
JPS58179289A
JPS58179289A JP6216582A JP6216582A JPS58179289A JP S58179289 A JPS58179289 A JP S58179289A JP 6216582 A JP6216582 A JP 6216582A JP 6216582 A JP6216582 A JP 6216582A JP S58179289 A JPS58179289 A JP S58179289A
Authority
JP
Japan
Prior art keywords
coal
fraction
boiling point
solvent
liquefaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6216582A
Other languages
Japanese (ja)
Inventor
Takafumi Shimada
嶋田 隆文
Masahito Kaneko
雅人 金子
Hikokusu Kajimoto
梶本 彦久寿
Haruyoshi Fujita
藤田 晴義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP6216582A priority Critical patent/JPS58179289A/en
Publication of JPS58179289A publication Critical patent/JPS58179289A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To shorten liquefaction time, to reduce the consumption of hydrogen, and to liquefy coal in high conversion inexpensively, by fractionating liquefied coal into fractions having specific boiling point ranges, blending a hydrogenated fraction having a high-boiling point with a fraction having a relatively low-boiling point, using it as a solvent for liquefying coal. CONSTITUTION:The coal 1 and the liquefying solvent 2 are fed to the tank 5 for blending raw materials, to prepare raw material slurry. The solvent 3 fed from the outside is used as the liquefying solvent 2 at the early stage of the operation, and afterwards the circulating liquefying solvent 4 is used. The raw material slurry is passed through the furnace 7, subjected to liquefying reaction by the liquefaction reactor 8, the reaction product 9 is sent to the first vapor-liquid separator 10, the gaseous phase 11 is separated from it, and the slurry 12 sent to the solid-liquid separator 13 so that it is separated into the residue 14 and the liquid phase 15. The liquid phase 15 is subjected to hydrogenolysis by the hydrogenolysis reactor 18, fractionated by a vacuum distillation device into the fraction 21 having <=179 deg.C boiling point, the fraction 22 having 180-270 deg.C boiling point, the fraction 23 having 271-299 deg.C boiling point, and the fraction 24 having >=300 deg.C boiling point. The fraction having >=300 deg.C boiling point is hydrogenated by the hydrogenation reactor 32 give a component, which is mixed with the fraction having 180-270 deg.C boiling point and used as the solvent 4 for liquefying coal.

Description

【発明の詳細な説明】 化率を向上させるだめの液化反応方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a liquefaction reaction method that improves the conversion rate.

石炭の液化法は既に多数の方法が試みられており、それ
らの大部分は基本的には石炭と溶剤を混合し高温高圧下
で分子状水素を供給し石炭の組織を熱的に分解し低分子
化させ、しかる後に溶剤を経由した水素により安定化さ
せる方法で・ある。この方法は古くはバージヤス法(B
ergius法)に端を発しており、いくつかの特殊な
事情↑−に於ける例を除いては未だ実用化には達してお
らず現在もなお研究開発の段階にある。
Many coal liquefaction methods have already been attempted, and most of them basically mix coal and a solvent, supply molecular hydrogen under high temperature and high pressure, and thermally decompose the coal structure. This is a method of molecularizing it and then stabilizing it with hydrogen via a solvent. This method was used in ancient times as the Burgess method (B
ergius method), and except in some special circumstances, it has not yet reached practical use and is still in the research and development stage.

高圧、高温条件下で触媒を用い、多量の水素を用いれば
石炭は軽質化し、常温で液状の燃料油を取得しうろこと
は前述のパージヤス法以来知られていることであるが、
高温、高圧下に於けるスラリーの供給2反応器材質1反
応熱の除去および高圧からのスラリー抜出等の装置上の
問題、さらに触媒、水素の使用に係る経済上の課題が実
用化の妨げとなっている。
It has been known since the above-mentioned purge method that coal can be made lighter by using a catalyst under high pressure and high temperature conditions and a large amount of hydrogen, and it is possible to obtain liquid fuel oil at room temperature.
Problems with equipment such as slurry supply under high temperature and high pressure 2. Reactor material 1. Removal of reaction heat and extraction of slurry from high pressure, as well as economic issues related to the use of catalysts and hydrogen hinder practical application. It becomes.

これに対し、近年、水素供与性溶剤を用いて前記のバー
ジヤス法での数百に97m Oという高圧条件を、数十
Kf/cd Gないし200Kf/cJGまで低トさせ
る方法としてエクソン社(Exxon社) +7) p
、DS法、  コンノリディジ四ンコール社((:On
s+)lidatio’n Coal托現Conoco
 Coal Develepment社)のC8F法が
試みられており、水素供与性溶剤の使用により1分子状
水素を直接供給する場合よりも低圧で鳥い液化率を得る
結果が得られている。
On the other hand, in recent years, Exxon has developed a method of using hydrogen-donating solvents to lower the high pressure conditions of several hundred to 97 mO in the above-mentioned Vergess method to several tens of Kf/cd G to 200 Kf/cJG. ) +7) p
, DS Law, Konnoli Digi-Shinkoru Co., Ltd. ((:On
s+)lidatio'n CoalTakugenConoco
The C8F method of Coal Development Co., Ltd. has been attempted, and the use of a hydrogen-donating solvent has resulted in a higher liquefaction rate at a lower pressure than when monomolecular hydrogen is directly supplied.

使用水素置は石炭液化プロセスの経済性に大きく影響す
る因fであり、その低減は極めて重要な課題である。石
炭液化プロセスに供給する水素は石炭もしくは液化残渣
の部分酸化により製造する方法が最も得策と考えられて
おり1石炭1001on(無水、無灰規準)を液化する
に委する水素消費量を11onとした場合、その水素を
供給するに要する石炭、もしくは液化残渣箪(無水、無
灰規準)は5〜61on(但し、水素製造部の熱効率を
70%とした場合)である。
The hydrogen station used is a factor that greatly affects the economic efficiency of the coal liquefaction process, and its reduction is an extremely important issue. Hydrogen to be supplied to the coal liquefaction process is considered to be best produced by partial oxidation of coal or liquefaction residue, and the hydrogen consumption for liquefying 1001 tons of coal (anhydrous, ash-free standard) was set at 11 tons. In this case, the amount of coal or liquefied residue (anhydrous, ashless standard) required to supply the hydrogen is 5 to 61 on (provided that the thermal efficiency of the hydrogen production section is 70%).

この様に少数の水素の添加でも多量の石炭もしくは液化
残渣を必要とし、更に水素製造装置もその門に比例して
大きくなる。このため、水素の消費量をわずかでも抑え
る事は石炭液化プロセスの経済性向上に対j〜極めて大
きく貢献する。
In this way, even the addition of a small amount of hydrogen requires a large amount of coal or liquefied residue, and furthermore, the hydrogen production equipment also becomes proportionally larger. Therefore, reducing hydrogen consumption even slightly will greatly contribute to improving the economic efficiency of the coal liquefaction process.

ここで石炭液化時に消費される水素量についてふれると
供給された水素は大別して。
Now, regarding the amount of hydrogen consumed during coal liquefaction, the hydrogen supplied can be broadly classified.

(a)石炭のH/C比を上げ液状油にするだめの水素 (b)石炭中のへテロ原子(N、S、O)を各々N1.
(、、H,S、 11.0の形態に転換し、除去するた
めの水素 (c)石炭中のCと結合し、メタン、エタ/、グロバン
、ブタン(C2〜C1)等のガス状物質となる水素 として消費される。(a)は石炭の液化のために本来望
むべきものであり、(b)も良質な燃料油を取得するた
めには欠くべからざる反応である。しかしながら、(C
)は高価な水素を用いる割には生成物のカロリーが極め
て少なく2石炭の液化反応に望ましい水素消費形態では
ない。従って(C)で表わされる水素の消費即ち、液化
反応時のC1〜C4の発生を抑える事が石炭液化プロセ
スの経済性を向上する上で重要な課題となっている。
(a) Hydrogen to increase the H/C ratio of coal and turn it into liquid oil. (b) Add heteroatoms (N, S, O) in coal to N1.
(, H, S, 11.0 Hydrogen (c) Combines with C in coal to remove gaseous substances such as methane, ethane/, globan, butane (C2-C1) It is consumed as hydrogen. (a) is originally desired for coal liquefaction, and (b) is also an indispensable reaction to obtain high-quality fuel oil. However, (C
) is not a desirable form of hydrogen consumption for the 2-coal liquefaction reaction because the product has very few calories even though it uses expensive hydrogen. Therefore, suppressing the consumption of hydrogen represented by (C), that is, the generation of C1 to C4 during the liquefaction reaction, is an important issue in improving the economic efficiency of the coal liquefaction process.

今2石炭液化の反応機構に立ち返ってガスの生成の抑制
について述べる。石炭は高温条件Fで熱分解され、ごく
短時間(430℃以上では5分以内)でプレアスファル
テン、アスファルテンと呼ばれる高分子成分に転換され
る。この時2分解時に生成するグレアスフアルテン、ア
スファルテ/の前駆体であるラジカルは、水素供与性溶
剤2分子状水素が溶剤と反応し水素供与性溶剤に類する
溶剤となったもの、もしくは石炭中の水素を与えられ他
に容易に水素を渡しそうになった溶剤等の溶剤から水素
を受は取り。
Now we will return to the reaction mechanism of coal liquefaction and discuss the suppression of gas production. Coal is thermally decomposed under high-temperature conditions F, and is converted into polymeric components called pre-asphaltenes and asphaltenes in a very short time (within 5 minutes at temperatures above 430°C). At this time, the radicals that are the precursors of glare sphaltene and asphaltene produced during 2 decomposition are either the hydrogen-donating solvent bimolecular hydrogen that reacts with the solvent and becomes a solvent similar to the hydrogen-donating solvent, or the radical that is the precursor of asphaltene and asphaltene. Receives and removes hydrogen from solvents that are given hydrogen and are likely to easily pass it on to others.

安定化すると考えられている。このように安定化したグ
レアスフアルテンおよびアスファルテ/は、史に鳥(l
iA条件下にさらされると熱分解(これはAfl記のプ
レアスファルテン化およびアスファルテ/化よりも長い
時間を要する)シ。
It is thought that it will stabilize. Glacial asphaltene and asphalte/ stabilized in this way were
Thermal decomposition (which takes longer than the pre-asphaltenization and asphaltization of Afl) when exposed to iA conditions.

蒸留可能な油分に転換すると同時にその一部は。At the same time, some of it is converted into distillable oil.

重縮合を起こし、巨大分子化する。またそれと共に、メ
タン等のガスが発生する。このようにして発生したメタ
ン等のガスは前記の如く石炭の液化反応に対して経済上
不利である事は勿論のこと1重縮合で生成した巨大分子
はコークス化の傾向にあり、液化プラントの随所で閉塞
等↓ の問題を生じさせるため1重縮合反応は好しくなく、極
力避けるべき反応と云える。従って、メタン等のガス状
物質の生成を抑えることによって水素消費量を抑屋、コ
ークス化を抑えて石炭の液化収率を向上させる方法とし
ては、2〜10分の反応時間で石炭をグレアスフアルテ
ンおよびアスファルテン主体の生成物に転換するいわゆ
る短時間液化法が有利である。
It causes polycondensation and becomes a macromolecule. At the same time, gases such as methane are generated. Gases such as methane generated in this way are not only economically disadvantageous to the coal liquefaction reaction as described above, but also the large molecules produced by single polycondensation tend to turn into coke, and are used in liquefaction plants. A single polycondensation reaction is not preferable because it causes problems such as blockage at various places, and it can be said that it is a reaction that should be avoided as much as possible. Therefore, as a method of suppressing the production of gaseous substances such as methane to reduce hydrogen consumption and suppress coking and improve the liquefaction yield of coal, it is possible to convert coal into glare sulfur with a reaction time of 2 to 10 minutes. Preference is given to so-called short-time liquefaction processes, which convert to products based on artene and asphaltene.

このような石炭の短時間液化反応を行なわせ↓ るために、液化溶剤が具備すべき条件は■石炭もしくは
石炭が熱分解して生じたラジカルと相溶性が良好である
こと、■石炭をグレアスファルチン捷かはアスファルテ
ンに転換するに必要な水素量を充分に供給しうる水素量
を持っていること、および■水素供与速度が大きいこと
が挙げられる。
In order to carry out such a short-time liquefaction reaction of coal, the liquefaction solvent must meet the following conditions: ■ It must have good compatibility with the coal or the radicals generated by thermal decomposition of the coal; The asphaltine extract has a sufficient amount of hydrogen to supply the amount of hydrogen required for conversion to asphaltene, and (2) has a high hydrogen donation rate.

第1の条件は1石炭が熱分解され1石炭構造が大分子敏
のグレアスフアルテン、アスファルデ/までに達した時
にそれらを溶剤中に分散しうる能力であり、化学的な一
般通念からこれら。
The first condition is the ability to disperse them in a solvent when the coal is pyrolyzed and the coal structure reaches the large molecules of glacial asphaltene and asphalde.

プレアスファルテン、アスファルテンに近い化学構造を
持つことが望ましく2石炭から生成した芳香性に富む物
質が適しており、更に石炭特有の含酸素基を持つ溶剤が
適している。
It is desirable to have a chemical structure similar to pre-asphaltene or asphaltene, and a highly aromatic substance produced from coal is suitable. Furthermore, a solvent having an oxygen-containing group unique to coal is suitable.

本発明者等はメタン等のガス状物質の生成を抑えること
により、水素の消費量を低減し、がっ2石炭の転化率を
向上させることが出来る石炭の短時間液化方法を開発す
べく鋭意研究を重ねた結果1石炭液化生成物を蒸留によ
り、沸点範囲で数留分に分け、このうちの特定の留分を
水素化処理したものと、他の留分とを混合して石炭液化
溶剤として用いることにより2石炭の短時間液化反応に
おいて、高い石炭の転化率が得られることを見出し、こ
の知見に基づいて本発明をなすに至ったものである。
The present inventors are working hard to develop a short-time coal liquefaction method that can reduce hydrogen consumption and improve the conversion rate of coal by suppressing the production of gaseous substances such as methane. As a result of repeated research, 1. Coal liquefaction products are divided into several fractions based on boiling point range by distillation, and a specific fraction of these is hydrotreated and mixed with other fractions to create a coal liquefaction solvent. The inventors have discovered that a high conversion rate of coal can be obtained in a short-time liquefaction reaction of two coals by using it as a fuel, and based on this knowledge, the present invention has been made.

すなわち2本発明は1石炭を溶剤を用いて。That is, 2. The present invention uses 1. coal and a solvent.

液化する方法に於て4石炭を液化して得られる生成物か
ら沸点179℃以下の留分、同180〜270℃留分、
同271〜299℃留分および同300℃以上留分を分
別し、@記沸点300℃以−ト留分の水素化処理物と、
前記沸点180〜2.70℃留分とを混合して石炭液化
溶剤として使用することを特徴とする石炭の液化方法を
提案するものである。
In the liquefaction method, from the product obtained by liquefying 4 coal, a distillate with a boiling point of 179°C or less, a distillate of 180 to 270°C,
The 271-299°C fraction and the 300°C or higher fraction are separated, and the hydrogenated product of the boiling point 300°C or higher fraction is obtained.
The present invention proposes a coal liquefaction method characterized in that the coal liquefaction solvent is mixed with the boiling point 180-2.70°C fraction and used as a coal liquefaction solvent.

以下本発明の方法について詳細に説明する。The method of the present invention will be explained in detail below.

本発明の石炭の液化方法において用いられる石炭液化溶
剤は石炭液化生成物(これは、短時間液化時に生成する
ものに限定されず1例えば短時間液化反応生成物を更に
触媒存在rで水素化分解して得た液化生成物も含む)を
沸点179℃以1・の留分(以ドこの留分をL−1と称
す1、)を、沸点180〜270℃の留分(以下L −
2と称す。)、沸点271〜299℃留分(以下I、−
3と称す。)および、沸点300℃以上の留分(以1−
 t、−4と称す。)に分離し、このようにして得られ
だ1.−4の水素化処理物と前記1、−2とを混合した
ものである。石炭液化生成物から分離されだ■7−4成
分中には、3項以上の多環芳香族が多針に含まれており
これらを適当な条件Fで水素化処理することによね、液
化反応時に必要な水素を迅速に与えうる溶剤とすること
ができるもこれら多項芳香族の代表例とり、ではフロー
ランチ/、アントラセン、ツェナ/トレン、ピレン、ク
リセンがあり、これらの水素化物であるジヒドロフロー
ランテン、テトラヒトロア7トラセ/、テトラヒドロフ
ェナントレン、テトラヒドロピレン、テトラヒドロクリ
セフは、2環の芳香族の水素化物であるテトラリンに較
べ数倍以上も水素供与速度が大きく。
The coal liquefaction solvent used in the coal liquefaction method of the present invention is a coal liquefaction product (this is not limited to that produced during short-time liquefaction; for example, a short-time liquefaction reaction product is further hydrogenated in the presence of a catalyst) The fraction with a boiling point of 179°C or higher (hereinafter referred to as L-1) is converted into a fraction with a boiling point of 180 to 270°C (hereinafter referred to as L-1).
It is called 2. ), boiling point 271-299°C fraction (hereinafter referred to as I, -
It is called 3. ) and fractions with a boiling point of 300°C or higher (hereinafter referred to as 1-
It is called t, -4. ) and obtained in this way: 1. This is a mixture of the hydrogenated product of -4 and the above-mentioned products 1 and -2. Component 7-4, which is separated from the coal liquefaction product, contains polycyclic aromatics of three or more groups, and by hydrogenating them under appropriate conditions F, the liquefaction reaction can be carried out. Representative examples of these polyaromatics include fluoranthe, anthracene, zena/threne, pyrene, and chrysene, and their hydrides, dihydrofloranthe, can be used as solvents that can quickly provide the necessary hydrogen. Tetrahydrophenanthrene, tetrahydropyrene, and tetrahydrocrysef have a hydrogen donation rate several times higher than that of tetralin, which is a two-ring aromatic hydride.

短時間液化反応時間である10分以内に、供与性水素の
大部分を石炭の熱分解により生じるラジカルの安定化の
ために供与することができる。
Within a short liquefaction reaction time of 10 minutes, most of the donor hydrogen can be donated for the stabilization of the radicals produced by the thermal decomposition of the coal.

まだ、これら水素化物はその重量の凡そ1〜2チが供与
性水素であるため2石炭に対しほぼ等量添加することに
より1石炭がグレアスフアルテンやアスファルテンに転
換するに必要な水素量はまかなえる。
However, since approximately 1 to 2 grams of these hydrides by weight are donor hydrogen, adding approximately the same amount to two coals can cover the amount of hydrogen necessary for converting one coal to glacephaltenes or asphaltenes. .

次に17−2成分中には、水酸基を有する化合物が多量
に含まれており、これらが液化に対し重要な役割を果し
ているものと考えられる。
Next, component 17-2 contains a large amount of compounds having hydroxyl groups, and these are thought to play an important role in liquefaction.

上記3項以上の多項芳香薇主体の留分であるL−4の水
素化物にL−2’i混合することにより。
By mixing L-2'i with the hydride of L-4, which is a fraction mainly composed of polynomial aromatic aromas of three or more categories.

短時間液化反応時の石炭の転ずし率が増加し力iつ同一
時間および温度での液化反応時に得られる生成物のアス
ファルテン/プレアスファルテンの比がL−2成分を添
加しない場合よりも増大する。即ち、より軽質化した生
成物となる。
The conversion rate of coal during short-time liquefaction reaction increases and the asphaltene/pre-asphaltene ratio of the product obtained during liquefaction reaction at the same time and temperature increases compared to when no L-2 component is added. do. That is, the product becomes lighter.

次に本発明の石炭の液化方法の実施態様例を図面により
説明する。第1図は2本発明の一実施態様例を示すEL
程説明図である。第1図において2石炭】および液化溶
剤2は原料調合槽5に供給され原料スラリーとして調整
される。液化溶剤2としては、運転初期には外部から供
給される溶剤3を用い、それ以後は後述の循環液化溶剤
4を用いる。石炭1.液化溶剤2の混合比は一般に重量
比で171〜115の範囲で行なわね、輸送限界および
液化溶剤が有する液化能力によりその比が決定される。
Next, embodiments of the coal liquefaction method of the present invention will be described with reference to the drawings. FIG. 1 shows an EL device showing an example of an embodiment of the present invention.
It is a process explanatory diagram. In FIG. 1, coal 2] and liquefied solvent 2 are supplied to a raw material mixing tank 5 and prepared as a raw material slurry. As the liquefied solvent 2, a solvent 3 supplied from the outside is used at the beginning of the operation, and thereafter a circulating liquefied solvent 4, which will be described later, is used. Coal 1. The mixing ratio of the liquefied solvent 2 is generally in the range of 171 to 115 by weight, and the ratio is determined by the transport limit and the liquefaction ability of the liquefied solvent.

この様にして調合された原料スラリー6は原料供給ボ/
ブ(図中に示していない)で輸送さね、原料加熱炉7で
反応温度まで昇温される。
The raw material slurry 6 prepared in this way is fed to the raw material supply bottle.
The raw material is transported by a tube (not shown in the figure), and heated to the reaction temperature in a raw material heating furnace 7.

層温後の原料スラリーは液化反応器8に供給さノ1.蝮
時間液化反応が行なわれる。短時間液化反応は、原料石
炭中の活性成分の大部分がプレブスファルテ/およびア
スファルテンに転換されるのに必要な1時間で反応を停
止させるものであり2反応源度として430〜470℃
が好ましく2反応時間は2〜10分が適当である。
The raw material slurry after the layer temperature is supplied to the liquefaction reactor 8. The liquefaction reaction takes place for a while. The short-time liquefaction reaction is one in which the reaction is stopped in one hour, which is necessary for most of the active components in the raw coal to be converted into plebosphaltene/and asphaltenes, and the reaction temperature is 430 to 470°C.
is preferred, and the appropriate reaction time is 2 to 10 minutes.

この反応時間以「であると石炭の転化率が極度に低下し
、この反応時間以上であるとアスファルテン化された成
分が更に熱分解を起こし、油分の転換と同時に重縮合物
の生成やガスの発生が起こり不適当である。
If the reaction time is longer than this, the conversion rate of coal will be extremely reduced, and if the reaction time is longer than this, the asphaltenized components will further undergo thermal decomposition, resulting in the formation of polycondensates and gas formation at the same time as the conversion of oil. Occurrence occurs and is inappropriate.

液化反応により生成した反応生成物9は、可溶性石炭生
成物、不溶性石炭生成物(未反応炭および灰分)、およ
び液化溶剤から構成される。
The reaction product 9 produced by the liquefaction reaction is composed of soluble coal product, insoluble coal product (unreacted coal and ash), and liquefaction solvent.

反応生成物9は第1気液分離器lOに導入され。The reaction product 9 is introduced into the first gas-liquid separator lO.

可溶性石炭生成物中の軽質油分およびガス成分が、気相
成分11として分離される。
Light oil and gas components in the soluble coal product are separated as gas phase components 11.

気相を分離した後の反応スラIJ −12は、固液分離
装置13に供給され、不溶性石炭生成物を主体とする残
渣分14と可溶性石炭生成物を主体とする液相15とに
分離される。固液分離装置13としては、高温操作が可
能な遠心分離機、加圧フィルター、重力沈降分離器等が
用いられる。
After the gas phase has been separated, the reaction sludge IJ-12 is supplied to a solid-liquid separator 13, where it is separated into a residue fraction 14 mainly composed of insoluble coal products and a liquid phase 15 mainly composed of soluble coal products. Ru. As the solid-liquid separator 13, a centrifugal separator capable of high temperature operation, a pressure filter, a gravity sedimentation separator, etc. are used.

液相15は、ポンプで再度昇圧された後、加圧水素ガス
16が添加され、第1加熱炉17で昇温抜水素化分解反
応器18に供給される。水素化分解反応器18でけ、液
化反応器8において石炭を液化することにより生成した
アスファルテン、グレアスフアルテンが触媒の存在下で
水素化分解され、その大部分が油分に転換される。水素
化分解用の触媒としては、Ni −Mo系。
After the liquid phase 15 is pressurized again by a pump, pressurized hydrogen gas 16 is added thereto, and the liquid phase 15 is heated in a first heating furnace 17 and supplied to a hydrocracking reactor 18 . In the hydrocracking reactor 18, asphaltenes and glayasphaltenes produced by liquefying coal in the liquefaction reactor 8 are hydrocracked in the presence of a catalyst, and most of them are converted into oil. As a catalyst for hydrogenolysis, Ni-Mo type is used.

Co −Mo系、N1−W系等が用いられるが、l’J
i’−M。
Co-Mo system, N1-W system, etc. are used, but l'J
i'-M.

系触媒が最適である。又2反応源度は380〜450℃
2反応圧力は70〜200勾/l−+JOが適している
。水素化分解生成物19は、減圧蒸留塔20に供給され
、ここで各沸点留分に分離される。なお減圧蒸留塔20
に供給される前に気液分離等の処理を行なう場合もある
。また。
A system catalyst is optimal. In addition, the source temperature of 2 reactions is 380-450℃
2. Suitable reaction pressure is 70 to 200 gradient/l-+JO. The hydrocracked product 19 is fed to a vacuum distillation column 20 where it is separated into each boiling point fraction. Note that the vacuum distillation column 20
In some cases, treatment such as gas-liquid separation may be performed before being supplied to the plant. Also.

液化反応時に生成した気相成分も減圧蒸留塔20に供給
さね、同時に分離される。減圧蒸留塔20では、8点1
79℃以下のガスおよび軽質油留分(L−1)21,1
80〜270℃留分(I。
Gas phase components generated during the liquefaction reaction are also supplied to the vacuum distillation column 20 and separated at the same time. In the vacuum distillation column 20, 8 points 1
Gas and light oil fractions below 79°C (L-1) 21,1
80-270°C fraction (I.

−2)22,271〜299℃留分(L−3)23.3
00〜450留分(r、−4−1)24゜および450
℃以上の留分(L−4−2)25に分離される。ここで
L−4−2(25)は。
-2) 22,271-299℃ fraction (L-3) 23.3
00-450 fraction (r, -4-1) 24° and 450
℃ or higher fraction (L-4-2) 25. Here, L-4-2 (25) is.

液化溶剤のバランス上必要な会だけをL−4−1(24
)と混合され水素化工程に供されるが。
L-4-1 (24
) and subjected to the hydrogenation process.

残部は改質炭26として系外に排出され製品化される。The remainder is discharged outside the system as reformed coal 26 and is turned into a product.

L−1,L−3は液化油として製゛品となる・が、  
L −2、L −4−1の一部も、液化溶剤のバランス
を保つ以外のものは系外に排出され、それぞれ軽質油2
7お4び重質油28の製品となる。
L-1 and L-3 are manufactured products as liquefied oil, but
Parts of L-2 and L-4-1 other than those for maintaining the balance of the liquefied solvent are discharged outside the system, and light oil 2
It becomes a product of 7, 4 and 28 heavy oils.

1、−4−1.  L−4−2の混合物である重質溶剤
原料29は水素化処理するために加圧水素ガス30が添
加され、第2加熱炉31で昇温された後、水素化反応器
32に供給され、Co−M。
1, -4-1. Pressurized hydrogen gas 30 is added to the heavy solvent raw material 29, which is a mixture of L-4-2, for hydrogenation treatment, and after being heated in a second heating furnace 31, it is supplied to a hydrogenation reactor 32, Co-M.

系、Ni−Mo系、N1−W系等の触媒の存在下で圧カ
フ0〜20’OV4/dG、温度320〜400℃の条
件下で水素化される。特にCo −Mo系触媒の存在ト
で、340〜380℃の温度範囲で水素化処理を行なう
と最も良好な液化溶剤が製造される。水素化生成物33
は第2気液分離器34に供給され、ガス35が分離され
た後、循m液化溶剤4として液化部に循環使用され、そ
れとともにI、−2(22)が循環液化溶剤4に混合り
され使用される。
Hydrogenation is carried out under the conditions of a pressure cuff of 0 to 20'OV4/dG and a temperature of 320 to 400° C. in the presence of a catalyst such as a Ni-Mo-based, Ni-Mo-based, or N1-W-based catalyst. In particular, the best liquefied solvent is produced when the hydrogenation treatment is carried out in the temperature range of 340 to 380° C. in the presence of a Co--Mo catalyst. Hydrogenation product 33
is supplied to the second gas-liquid separator 34, and after separating the gas 35, it is circulated and used in the liquefaction section as the circulating liquefied solvent 4, and at the same time, I, -2 (22) is mixed with the circulating liquefied solvent 4. and used.

液化反応器としては短時間液化反応である場合、管式の
反応器形式が最適である。例えば反応時間10分の場合
1石炭粒子の沈降を防止す管長は300mであり、この
長さは工業的規模で容易に達しうるものである。また、
液化反応は、一般に遂次反応と云われ9反応機構上から
もピストン流に近い管式反応器の優位性が挙げられる。
For short-time liquefaction reactions, a tubular reactor is most suitable for the liquefaction reactor. For example, when the reaction time is 10 minutes, the pipe length required to prevent one coal particle from settling is 300 m, which can be easily achieved on an industrial scale. Also,
The liquefaction reaction is generally referred to as a sequential reaction, and from the viewpoint of the reaction mechanism, a tubular reactor, which is similar to a piston flow, is advantageous.

しかしながら本発明は液化反応器の形式を限定するもの
ではなく1通常の竪形塔式。
However, the present invention does not limit the type of the liquefaction reactor, but rather a conventional vertical column type.

攪拌槽式の反応器にも適用されるものである。It is also applicable to a stirred tank type reactor.

以を詳細に説明し2だように本発明によれば。According to the present invention, the following will be described in detail.

石炭の短時間液化反応を行なうために不可欠な液化溶剤
を工業的な規模で製造することができる。また石炭の短
時間液化反応に適した優れた液化溶剤が得られるため石
炭の転化率を向上させることができるとともにガス状物
質の生成を抑え水素の消費量を低減させることができる
The liquefaction solvent essential for carrying out the short-time liquefaction reaction of coal can be produced on an industrial scale. Furthermore, since an excellent liquefaction solvent suitable for a short-time liquefaction reaction of coal can be obtained, the conversion rate of coal can be improved, and the production of gaseous substances can be suppressed and the amount of hydrogen consumed can be reduced.

また2石炭の短時間液化反応が可能であるため反応器形
式も極めて簡単となる。
Furthermore, since the liquefaction reaction of two coals can be carried out in a short time, the reactor type is also extremely simple.

次に実施例により本発明についてさらに詳細に説明する
。なお本発明は要旨を超えない限り。
Next, the present invention will be explained in more detail with reference to Examples. It should be noted that the present invention does not go beyond the gist.

これにより限定されるものではない。It is not limited to this.

実施例1 管式液化反応器、カゴ型遠心分離機、および水添反応器
を主要機器とする連続式石炭液化装置を用いて液化溶剤
の製造を行なった。第1表に示す石炭を2〜/hr(乾
量基準)、液化溶剤を6〜/hrを混合し、このスラリ
ーを内径6閣の管式加熱炉及び管式反応器が一体となっ
た反応器に供給し、445℃、5分で短時間液化反応を
行なわせた後、ガスと液の分離を行なった。
Example 1 A liquefied solvent was produced using a continuous coal liquefaction apparatus whose main equipment was a tubular liquefaction reactor, a cage-type centrifugal separator, and a hydrogenation reactor. The coal shown in Table 1 was mixed at 2~/hr (dry basis) and the liquefied solvent at 6~/hr, and this slurry was reacted in a tube heating furnace with an inner diameter of 6 mm and a tube reactor integrated. After a short liquefaction reaction at 445° C. for 5 minutes, gas and liquid were separated.

液側Id、 +300ツノ’/zのカゴ型遠心分離器で
800(]で固液分離し、未反応石炭、灰分を除去分離
し液化生成物を回収した。この回収液相を水素化分解反
応器に供給し、NiMo系触媒の存在下で410℃、 
 1s Ox9/yoの条件下で水素化分解し、油分を
得、これら油分のうちプロセスバラメスに見合う址だけ
を沸点にかかわりなく分取し、液化溶剤として循環使用
した。この様な循環試験を士数回実施し1石炭から自生
した溶剤を取得した。
Liquid side Id, solid-liquid separation was carried out at 800 (] using a cage-type centrifuge with +300 horn'/z, unreacted coal and ash were removed and separated, and the liquefied product was recovered. This recovered liquid phase was subjected to a hydrocracking reaction. and heated at 410°C in the presence of a NiMo-based catalyst.
Hydrocracking was carried out under the conditions of 1s Ox9/yo to obtain oil components, and from these oil components, only the amount suitable for the process parameters was fractionated regardless of the boiling point and recycled as a liquefaction solvent. Such a circulation test was conducted several times and a solvent naturally produced from one coal was obtained.

第 1 表 実施例2 実施例1によって得られた自生溶剤を用いて停市させた
。その時の石炭1oor  (無水無灰基準)に対する
収率を第2表に示す。
Table 1 Example 2 The autogenous solvent obtained in Example 1 was used for suspension. Table 2 shows the yield per 1 oor of coal (dry and ash-free standard) at that time.

比較例 自生溶剤の沸点200〜450℃留分を蒸留分離し液化
溶剤とした。次に第1表に示す石炭(乾燥済)2009
と前記、の液化溶剤600tとを混合し原料スラリーと
して用いて実施例2と同様の試験を実施した。その結果
を第2表に示す。
Comparative Example A boiling point fraction of 200 to 450° C. of an autogenous solvent was separated by distillation to obtain a liquefied solvent. Next, the coal (dried) 2009 shown in Table 1
The same test as in Example 2 was carried out using the mixture of 600 tons of the above-mentioned liquefied solvent and used as a raw material slurry. The results are shown in Table 2.

以上の試験から明らかな様に2本発明に基づいた液化溶
剤を使用した場合、未反ノモ割合力少なく、シたがって
石炭の転換率が向上し、また、得られた生成物の構成か
られかるように軽質化が進んでいることがわかる。
As is clear from the above tests, when the liquefied solvent according to the present invention is used, the proportion of unreacted coal is reduced, thus the conversion rate of coal is improved, and the composition of the obtained product is It can be seen that weight reduction is progressing.

第 −2−宍−−−−−−− 以上詳細に説明したように本発明は産業上非常に有用な
石炭の液化方法を提供するものである。
Chapter -2 - As explained in detail above, the present invention provides a method for liquefying coal that is very useful industrially.

【図面の簡単な説明】 第1図は本発明の実施態様例の工程説明図である。 5・・原料調合槽、7・・原料加熱炉、8・・・i、化
反応器、10・・・第1気液分離器、13・・同液分離
装置、17・・第1加熱炉、18・・・水素化分解反応
器、20・・・減圧蒸留塔、3・1・・第2加熱炉。 ;う2・・・水素化反応器、34・・・第2気液分離器
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a process explanatory diagram of an embodiment of the present invention. 5... Raw material mixing tank, 7... Raw material heating furnace, 8... i, Chemical reactor, 10... First gas-liquid separator, 13... Liquid separation device, 17... First heating furnace , 18... Hydrocracking reactor, 20... Vacuum distillation column, 3.1... Second heating furnace. ; U2... Hydrogenation reactor; 34... Second gas-liquid separator.

Claims (1)

【特許請求の範囲】 石炭を溶剤を用いて、液化す多方法に於て。 石炭ヲ液化して得られる生成物から沸点179℃以Fの
留分180〜270℃留分、同271〜299℃留分お
よび同300℃以上留分を分別し、前記沸点300℃以
上留分の水素化処理物と、前記沸点180〜270℃留
分とを混合して石炭液化溶剤として使用することを特徴
とする石炭の液化方法。
[Claims] Various methods for liquefying coal using a solvent. From the product obtained by liquefying coal, a fraction with a boiling point of 179°C or higher, a 180-270°C fraction, a 271-299°C fraction, and a 300°C or higher fraction are separated, and the boiling point is 300°C or higher. A method for liquefying coal, characterized in that the hydrotreated product is mixed with the fraction having a boiling point of 180 to 270° C. and used as a coal liquefaction solvent.
JP6216582A 1982-04-14 1982-04-14 Process for liquefying coal Pending JPS58179289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6216582A JPS58179289A (en) 1982-04-14 1982-04-14 Process for liquefying coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6216582A JPS58179289A (en) 1982-04-14 1982-04-14 Process for liquefying coal

Publications (1)

Publication Number Publication Date
JPS58179289A true JPS58179289A (en) 1983-10-20

Family

ID=13192228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6216582A Pending JPS58179289A (en) 1982-04-14 1982-04-14 Process for liquefying coal

Country Status (1)

Country Link
JP (1) JPS58179289A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5956488A (en) * 1982-09-27 1984-03-31 Mitsubishi Heavy Ind Ltd Two-step liquefaction of coal
JPS60258287A (en) * 1984-05-30 1985-12-20 ルールコーレ・アクチエンゲゼルシヤフト Manufacture of diesel fuel from coal middle oil
US5094315A (en) * 1989-06-22 1992-03-10 Yamaha Hatsudoki Kabushiki Kaisha Fuel tank arrangement for scooter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5956488A (en) * 1982-09-27 1984-03-31 Mitsubishi Heavy Ind Ltd Two-step liquefaction of coal
JPS60258287A (en) * 1984-05-30 1985-12-20 ルールコーレ・アクチエンゲゼルシヤフト Manufacture of diesel fuel from coal middle oil
US5094315A (en) * 1989-06-22 1992-03-10 Yamaha Hatsudoki Kabushiki Kaisha Fuel tank arrangement for scooter

Similar Documents

Publication Publication Date Title
US4251346A (en) Process for coal liquefaction
JPS6230189A (en) Improvement in yield of distillable component in cracking ofhydrogen donating diluent
RU2005117790A (en) METHOD FOR PROCESSING HEAVY RAW MATERIALS, SUCH AS HEAVY RAW OIL AND CUBE RESIDUES
US4374015A (en) Process for the liquefaction of coal
JPS59164390A (en) Hydrogenation liquefaction of heavy hydrocarbon oil and residual oil
US4332666A (en) Coal liquefaction process wherein jet fuel, diesel fuel and/or ASTM No. 2 fuel oil is recovered
EP0005589B1 (en) Integrated coal liquefaction-gasification process
US4211631A (en) Coal liquefaction process employing multiple recycle streams
EP0018998B1 (en) Integrated coal liquefaction-gasification-naphtha reforming process
US4203823A (en) Combined coal liquefaction-gasification process
US4328088A (en) Controlled short residence time coal liquefaction process
US4283267A (en) Staged temperature hydrogen-donor coal liquefaction process
US4331531A (en) Three-stage coal liquefaction process
FR2516932A1 (en) PROCESS FOR CONVERTING HEAVY OILS OR PETROLEUM RESIDUES IN GASEOUS AND DISTILLABLE HYDROCARBONS
JPS58179289A (en) Process for liquefying coal
EP0035864B1 (en) Process for upgrading heavy hydrocarbonaceous oils
US4222846A (en) Coal liquefaction-gasification process including reforming of naphtha product
US4330388A (en) Short residence time coal liquefaction process including catalytic hydrogenation
GB1584306A (en) Coal liquefaction
US4264430A (en) Three-stage coal liquefaction process
US20140296595A1 (en) Methods And Apparatus For Producing Aromatics From Coal
RU2470985C2 (en) Treatment of recirculating gas for immediate thermochemical conversion of high-molecular organic substances to low-viscosity liquid raw material, combustible materials and fuel
US1921477A (en) Production of valuable hydrocarbons
US20150191657A1 (en) Direct coal liquefaction process
AU638836B2 (en) Coal extract hydroconversion process comprising solvent enhanced carbon monoxide pretreatment