JPS58178194A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPS58178194A
JPS58178194A JP5959582A JP5959582A JPS58178194A JP S58178194 A JPS58178194 A JP S58178194A JP 5959582 A JP5959582 A JP 5959582A JP 5959582 A JP5959582 A JP 5959582A JP S58178194 A JPS58178194 A JP S58178194A
Authority
JP
Japan
Prior art keywords
rectangular
heat exchanger
passages
flange
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5959582A
Other languages
Japanese (ja)
Inventor
Hiroshi Kanai
金井 博志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5959582A priority Critical patent/JPS58178194A/en
Publication of JPS58178194A publication Critical patent/JPS58178194A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/14Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes molded
    • F28F2255/143Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes molded injection molded

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To contrive to improve the performance and to save the weight of the heat exchanger and at the same time enable to obtain necessary heat- exchange capacity by joining a plurality of integrally molded pieces by a structure wherein the heat exchanger suitable for heat-exchange between gases flowing at specified flow ratio is integrally molded with resin. CONSTITUTION:The heat exchanger main body is integrally molded with crystalline resin belonging to thermoplastic resin such as polypropylene or the like. A plurality of rectangular pipes 3 piercing a flange A1 and a flange B2 from the rectangular passages of one fluid. The outer surfaces of said rectangular pipes 3 form the rectangular opening passages 4, which are the respective rectangular passages of the other fluid, resulting in forming the passages which are adjacent to each other and intersecting each other at right angles. In order to integrally mold the heat exchanger 6 main body with resin such as polypropylene or the like, the ratio of the indicated lengths M and L is selected in the range of 1:1-1:3 in case that the dimensions (a) and (b) of the short sides of the respective rectangular passages, because the metal molds to mold the rectangular pipes 3 and the rectangular opening passages 4 deform due to the pressure applied during the injection molding of the heat exchanger main body.

Description

【発明の詳細な説明】 本発明は、熱交換器に係り、特にガス体とガス体とでの
熱交換に好適な、伝熱面積が大きく、さらにポリプロピ
レンのような結晶性樹脂による一体化により、性能向上
、および軽量化、低コスト化を可能とする熱交換器に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat exchanger, which is particularly suitable for heat exchange between gas bodies, has a large heat transfer area, and is integrated with a crystalline resin such as polypropylene. This invention relates to a heat exchanger that enables improved performance, weight reduction, and cost reduction.

従来の、銅パイプルアルミフィンで構成される熱交換器
は、クーラーなどの冷媒を利用する。冷凍サイクル用と
しては高性能であるが、ガス−ガフ体の流量比が1:1
〜1:3程度では、一方の銅パイプ内を通過する際の圧
力損失が大きく、ガス体を通過させるのに必要なファン
特性、流体を通過させるダクト結合部の7−ル性などを
高度に必要とするものであった。
Conventional heat exchangers made of copper pipes and aluminum fins utilize refrigerants such as coolers. Although it has high performance for refrigeration cycles, the gas-gaff body flow rate ratio is 1:1.
If the ratio is about 1:3, the pressure loss when passing through one copper pipe is large, so the fan characteristics necessary to pass the gas, the 7-rule properties of the duct joint where the fluid passes, etc. It was what I needed.

したがって、大きなファン負荷での騒音、シール性低ド
などの問題があったものである。
Therefore, there were problems such as noise under large fan loads and poor sealing performance.

本発明は、このような問題点を解消するとともに、たと
えば、ガス−ガフ体の流量比1:1〜1:3程度の熱交
換に好適で伝熱面積がほぼ1:1の、コンパクトな体積
内に最大の伝熱面積を、熱り塑性樹脂に係る結晶性樹脂
の一体成形で得られ、軽量、低コスト化を図れるように
し、なお、その必要な熱交換能力は、当該一体成形品を
複数個結合して得られるようにした熱交換器の提供を、
その目的とするものである。
The present invention solves these problems, and also provides a compact volume suitable for heat exchange with a gas-gaff flow rate ratio of about 1:1 to 1:3, and a heat transfer area of approximately 1:1. The maximum heat transfer area can be obtained by integral molding of crystalline resin related to thermoplastic resin, making it possible to reduce weight and cost. Providing a heat exchanger that can be obtained by combining multiple pieces,
That is the purpose.

本発明の特徴は、それぞれの通路を流れる流体が直交で
きるように、複数個の開口した矩形通路を互いに隣接し
て直交するごとく、熱可塑性樹脂に係る結晶性樹脂によ
り一体に成形してなる直交流形熱交換器において、その
互いに直交する矩形通路の短辺側寸法をほぼ同じにする
とともに、当該矩形通路の流れ方向の長さの比が1:1
ないし1:3の間となるように形成した熱交換器にある
A feature of the present invention is that the rectangular passages are integrally molded from a crystalline resin related to thermoplastic resin so that a plurality of open rectangular passages are adjacent to each other and orthogonal so that the fluids flowing through the respective passages can cross at right angles. In an AC heat exchanger, the short side dimensions of the rectangular passages that are orthogonal to each other are approximately the same, and the length ratio of the rectangular passages in the flow direction is 1:1.
It is found in a heat exchanger formed to have a ratio between 1:3 and 1:3.

なお詳しくは、一体成形が可能なように、複数個の中空
の矩形通路を互いに直交するように配置し、各々の矩形
通路の流体の流れ方向の長さの比を1:1〜1: 3と
することで、一体成形でも、小さな間隔での矩形通路に
係る矩形管の配置を可能とし、また、互いに直交する矩
形通路の一方の出入口にフランジ部を設けて、フランジ
部上ニ設けた凸部で、複数個の一体成形品を接合一体化
して、気密性を保持し、所要の熱交換能力を有する伝熱
面積を確保できるようにしたものである。
More specifically, in order to enable integral molding, a plurality of hollow rectangular passages are arranged perpendicularly to each other, and the length ratio of each rectangular passage in the fluid flow direction is set to 1:1 to 1:3. By doing so, it is possible to arrange rectangular tubes related to rectangular passages at small intervals even when integrally molded, and by providing a flange portion at one entrance and exit of the rectangular passages that are orthogonal to each other, a convex portion provided on the flange portion is provided. In this section, a plurality of integrally molded products are joined and integrated to maintain airtightness and secure a heat transfer area with the required heat exchange ability.

次に、本発明に係る実施例を、各図を参照して説明する
Next, embodiments according to the present invention will be described with reference to the respective figures.

まず、第1図は、本発明の一実施例に係る熱交換器の斜
視図である。
First, FIG. 1 is a perspective view of a heat exchanger according to an embodiment of the present invention.

図で、1は、フランジ部に係るフランジA、 2は、同
様にフランジB、3は矩形通路に係る矩形管、4は、同
様に矩形通路に係る矩形開口通路、5は凸部であり、6
は熱交換器を示すものである。
In the figure, 1 is a flange A related to a flange portion, 2 is a flange B similarly, 3 is a rectangular tube related to a rectangular passage, 4 is a rectangular opening passage similarly related to a rectangular passage, and 5 is a convex portion. 6
indicates a heat exchanger.

なお、上記のフランジ部は、流路に係る両矩形通路にお
ける出入口のいずれにも設けることがあるもので、図示
のものは、その少なくとも一方の矩形通路側に設けるよ
うにしたものである。
Note that the above-mentioned flange portion may be provided at either of the entrances and exits of both rectangular passages related to the flow path, and the one shown is provided on at least one of the rectangular passages.

すなわち、熱交換器6の本体は、ポリプロピレンなどの
熱可塑性樹脂に係る結晶性樹脂で一体成形されるもので
あり、フランジAt、フランジB2を貫通する複数個の
矩形管3は、一方の流体の矩形通路となっており、この
矩形管3の外表面は、それぞれ他方の流体の矩形通路で
ある矩形開口通路4となっているものであって、矩形管
3の矩形通路は、図の左右方向の通路、また矩形開口通
路4の矩形通路は、図の上下方向の通路、を形成し、互
いに隣接して直交する通路となっているものである。
That is, the main body of the heat exchanger 6 is integrally molded from a crystalline resin related to thermoplastic resin such as polypropylene, and the plurality of rectangular pipes 3 passing through the flange At and flange B2 are connected to one fluid. The outer surface of each rectangular tube 3 is a rectangular opening passage 4, which is a rectangular passage for the other fluid. The passage 4 and the rectangular passage of the rectangular opening passage 4 form a passage in the vertical direction in the figure, and are adjacent to each other and orthogonal to each other.

しかして、矩形管3の外表面が、二つの流体の伝熱面で
あり、同じ体積内であれば、この矩形管30本数が多い
程、伝熱面積が増大するわけであるが、熱交換器6本体
をポリプロピレンなどの結晶性樹脂により一体成形する
には、その射出成形時の圧力により、矩形管3.矩矩形
開通路4を形造する金型が変形するので、それ程、図示
のそれぞれの矩形通路の短辺側寸法a、bを小さくする
ことはできず、その本数には限界がある。
Therefore, the outer surface of the rectangular tube 3 is the heat transfer surface for the two fluids, and if the volume is the same, the more rectangular tubes 30, the greater the heat transfer area. In order to integrally mold the main body of the vessel 6 from a crystalline resin such as polypropylene, the pressure during injection molding is used to form the rectangular tube 3. Since the mold for forming the rectangular open passage 4 is deformed, the short side dimensions a and b of each of the rectangular passages shown in the figure cannot be reduced to that extent, and there is a limit to the number of rectangular passages.

また、図示の矩形管3の流れ方向の長さり、矩形開口通
路4の流れ方向の長さMも、同上金型の強度に関係する
ものであり、その成形時の金型の変形9強度を考慮する
と、前記の短辺側寸法a。
In addition, the length of the illustrated rectangular tube 3 in the flow direction and the length M of the rectangular opening passageway 4 in the flow direction are also related to the strength of the mold, and the deformation strength of the mold during molding is determined by the strength of the mold. Considering the short side dimension a.

bを、はぼ同じにした場合、図示の長さMとLとの比が
1:1ないし1:3が、その選択範囲である。
When b are made almost the same, the selection range is a ratio of 1:1 to 1:3 between lengths M and L shown in the figure.

これらを考え、たとえば、同じ体積内で伝熱面積を最大
にするには、短辺側寸法a、bをζはぼ同じにし、まだ
、長さLとMとを、はぼ同じになるように形成すればよ
く、この場合、矩形管3゜矩形開口通路4を作る、それ
ぞれの金型の強度がほぼ同一となるものであり、たとえ
ば、a−b−4、5ax程度、L=M=80W程度が例
示寸法である。
Considering these, for example, in order to maximize the heat transfer area within the same volume, the short side dimensions a and b should be approximately the same ζ, and the lengths L and M should be approximately the same. In this case, the strength of each mold for making the rectangular tube 3° and the rectangular opening passage 4 is almost the same, for example, about a-b-4, 5ax, L=M= An exemplary dimension is about 80W.

このようにすれば、二つの流体の流量が、はぼ等しいと
きに、圧力損失を同じにすることができるものである。
In this way, when the flow rates of the two fluids are approximately equal, the pressure loss can be made the same.

これらを総合して、図示の本実施例においては、短辺側
寸法a、bを、はぼ同じとし、上記の長さMとLとの比
を、上述の比の範囲内においての、それぞれの長さとし
たものであって、たとえばM。
Taking all of this into consideration, in the illustrated embodiment, the short side dimensions a and b are approximately the same, and the ratios of the above lengths M and L are set within the range of the above ratios. For example, M.

I7の長さ自体は5o祁がら2’ O0tran (3
倍にしたときの上限値)の間が例示寸法であり、これに
よって、金型の強度を考慮したうぇで9生産性を確保で
きるようにしたものである。
The length of I7 itself is 5o to 2' O0tran (3
The example dimensions are between the upper limit value when doubled, and this makes it possible to ensure productivity by taking into account the strength of the mold.

そして、図示のような、長さLとMとの場合を含め、一
般的に、一方が冷却用空気などで、両者の流量に差があ
るときには、第2図の斜視図に示すように、その複数個
を積層することで、すなわち、その流量の多い方を紙面
の上下方向へ通すように構成すれば、この上下方向にお
ける流入開口面積を多くすることができるので、結局、
その上下、および紙面の左右方向の流路における流速間
においては、はぼ同じ流速比とすることができ、圧力損
失を同一とすることができるものである。
In general, when one side is cooling air and there is a difference in flow rate between the two, including the case of the lengths L and M as shown in the figure, as shown in the perspective view of FIG. 2, By stacking a plurality of them, that is, by configuring the one with a higher flow rate to pass in the vertical direction of the page, the area of the inflow opening in the vertical direction can be increased.
The flow velocities in the upper and lower channels and in the left and right directions of the paper can have almost the same flow velocity ratio, and the pressure loss can be made the same.

この複数個積層することにも関連して、本実施例では、
フランジAt、フランジB2には、同じ形状の凸部5が
一体に成形されており、複数個積層する場合は、超音波
、熱板溶着などの接合手段によって、第2図に示すよう
に、凸部5同士を接合した接合部7により、気密、水密
に一体化することができるもので、これにより所要の伝
熱面積を得ることができるものである。
In this example, in connection with laminating a plurality of layers,
The flange At and the flange B2 are integrally formed with a convex portion 5 having the same shape. When stacking multiple pieces, the convex portion 5 is formed by joining means such as ultrasonic waves or hot plate welding as shown in FIG. The joint parts 7 that join the parts 5 can be integrated in an airtight and watertight manner, thereby making it possible to obtain the required heat transfer area.

上記に加え、本実施例においては、既述のように、熱交
換器6を一体成形する材料゛として、熱可塑性樹脂で結
晶性樹脂であるポリプロピレン、ポリエチレンなどの樹
脂を使用するようにしたので、ガス−ガフ体の熱交換の
うちで、特に一方の流体が高温高湿で、冷却除湿されて
水分が熱交換面で析出分離される場合に、水分が水滴と
して析出後、熱交換面への吸着力が弱いので、速かに排
出されるから、その熱交換性能を向上させることができ
るものである。
In addition to the above, in this embodiment, as mentioned above, resins such as polypropylene and polyethylene, which are thermoplastic and crystalline resins, are used as the material for integrally molding the heat exchanger 6. In heat exchange between a gas and a gaff body, especially when one of the fluids is at high temperature and high humidity and is cooled and dehumidified, moisture is precipitated and separated on the heat exchange surface. Because its adsorption power is weak, it can be discharged quickly, and its heat exchange performance can be improved.

以上のように、本実施例によれば、一体成形できる範囲
内で、同一体積で最大の伝熱面積が得られるようにした
から、高性能化、低コスト化、軽酸化などの効果を所期
することができるものである。
As described above, according to this example, the maximum heat transfer area can be obtained with the same volume within the range that can be integrally molded. It is something that can be expected.

また、所要の伝熱面積を、複数個の積層により侍る場合
は、フランジ部上の凸部同士を溶着ンールで接合できる
ので、気密の信頼性および生産性が高く、接合部では隣
り合う熱交換器の矩形管同士に多少の隙間があくので、
乱流発生による熱交換効率の増加も期待できるものであ
る。
In addition, when the required heat transfer area is achieved by laminating multiple layers, the convex parts on the flange can be joined with a welding ring, resulting in high airtight reliability and productivity. There will be some gaps between the rectangular tubes of the container, so
An increase in heat exchange efficiency due to the generation of turbulent flow can also be expected.

しかして、矩形通路については、両矩形通路に係るもの
を、共に矩形管として形成することができるものである
As for the rectangular passages, both rectangular passages can be formed as rectangular tubes.

以上に述べたところをも総合して、本発明によるときは
、同一体積内で最大の伝熱面積を、ポリプロピレンなど
の結晶性樹脂の一体成形で得られ、高性能化、低コスト
化2軽量化などの効果を奏するものであり、寸だ、必要
な熱交換能力を得るには、その複数個を積層すればよく
、種々の熱交換能力に簡単に対応できるとともに、気密
の信頼性および生産性も高いものを供しうるものであっ
て、すぐれた実用的効果を所期することができる発明と
いうことができる。
Taking all of the above into account, the present invention allows the maximum heat transfer area within the same volume to be obtained by integral molding of crystalline resin such as polypropylene, resulting in higher performance, lower cost, and lighter weight. In order to obtain the necessary heat exchange capacity, it is sufficient to stack multiple pieces together, which makes it easy to adapt to various heat exchange capacities, and also improves airtight reliability and productivity. It can be said that the invention can provide highly functional properties and can be expected to have excellent practical effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例に係る熱交換器の斜視図、
第2図は、その複数個を積層し接合したものの斜視図で
ある。 1・・フランジA、2・・・フランジB、3・・・矩形
管、4・・・矩形開口通路、5・・・凸部、6・・・熱
交換器1.7・・・接合部。 代理人 弁理士 福田幸作 (ほか1名)
FIG. 1 is a perspective view of a heat exchanger according to an embodiment of the present invention;
FIG. 2 is a perspective view of a plurality of them stacked and joined together. 1... Flange A, 2... Flange B, 3... Rectangular tube, 4... Rectangular opening passage, 5... Convex part, 6... Heat exchanger 1.7... Joint part . Agent: Patent attorney Kosaku Fukuda (and one other person)

Claims (1)

【特許請求の範囲】 1、それぞれの通路を流れる流体が直交できるように、
複数個の開口した矩形通路を互いに隣接して直交するご
とく、熱可塑性樹脂に係る結晶性樹脂により一体に成形
してなる直交流形熱交換器において、その互いに直交す
る矩形通路の短辺側寸法をほぼ同じにするとともに、当
該矩形通路の流れ方向の長さの比が1:1ないし1:3
の間となるように形成したことを特徴とする熱交換器。 2、特許請求の範囲第1項記載のものにおいて、互いに
直交する矩形通路で形成される流路の、少々くとも一方
の流路における出入口にフランジ部を一体に形成するよ
うにするとともに、当該7ランジ部に、超音波、熱板溶
着などの接合手段により相互に接合一体化するのに供さ
れる、そのフランジ部から突出しだシール接合用の凸部
を設けるようにしたものである熱交換器。
[Claims] 1. So that the fluids flowing through the respective passages can cross each other at right angles,
In a cross-flow heat exchanger formed by integrally molding a crystalline resin related to a thermoplastic resin so that a plurality of open rectangular passages are adjacent to each other and are orthogonal to each other, the short side dimension of the rectangular passages that are orthogonal to each other. are approximately the same, and the length ratio of the rectangular passage in the flow direction is 1:1 to 1:3.
A heat exchanger characterized in that the heat exchanger is formed so as to be between the two. 2. In the product described in claim 1, a flange portion is integrally formed at the entrance and exit of at least one of the flow paths formed by mutually orthogonal rectangular passages, and 7. A heat exchanger in which the flange portion is provided with a convex portion for seal bonding that protrudes from the flange portion and is used for mutually bonding and integrating by bonding means such as ultrasonic waves and hot plate welding. vessel.
JP5959582A 1982-04-12 1982-04-12 Heat exchanger Pending JPS58178194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5959582A JPS58178194A (en) 1982-04-12 1982-04-12 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5959582A JPS58178194A (en) 1982-04-12 1982-04-12 Heat exchanger

Publications (1)

Publication Number Publication Date
JPS58178194A true JPS58178194A (en) 1983-10-19

Family

ID=13117747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5959582A Pending JPS58178194A (en) 1982-04-12 1982-04-12 Heat exchanger

Country Status (1)

Country Link
JP (1) JPS58178194A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4923004A (en) * 1987-05-14 1990-05-08 Du Pont Canada, Inc. Comfort heat exchanger
DE102013222128A1 (en) 2013-10-30 2015-04-30 MAHLE Behr GmbH & Co. KG Tube heat exchangers
EP3121545A4 (en) * 2014-03-19 2017-11-29 Samsung Electronics Co., Ltd. Heat exchanger and method for manufacturing same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4923004A (en) * 1987-05-14 1990-05-08 Du Pont Canada, Inc. Comfort heat exchanger
US5078946A (en) * 1987-05-14 1992-01-07 Du Pont Canada Inc. Method for the manufacture of a comfort heat exchanger
DE102013222128A1 (en) 2013-10-30 2015-04-30 MAHLE Behr GmbH & Co. KG Tube heat exchangers
WO2015063169A1 (en) 2013-10-30 2015-05-07 MAHLE Behr GmbH & Co. KG Tubular heat exchanger
EP3121545A4 (en) * 2014-03-19 2017-11-29 Samsung Electronics Co., Ltd. Heat exchanger and method for manufacturing same
US10048010B2 (en) 2014-03-19 2018-08-14 Samsung Electronics Co., Ltd. Heat exchanger and method for manufacturing same

Similar Documents

Publication Publication Date Title
US6170568B1 (en) Radial flow heat exchanger
US7406998B2 (en) Heat storing device
US5303771A (en) Double cross counterflow plate type heat exchanger
US6742577B2 (en) Laminate type evaporator
JP2006506600A (en) High pressure heat exchanger
JP2006010130A (en) Multi-fluid heat exchanger
JPH08110076A (en) Heat exchanging element
JPS58178194A (en) Heat exchanger
JP3966134B2 (en) Heat exchanger
JP4328425B2 (en) Stacked heat exchanger
CN110530190A (en) Header and heat exchanger
JPH05215474A (en) Heat exchanger
JPH0583838B2 (en)
JPH0459425A (en) Heat exchanger
JPH1047884A (en) Heat exchanger
JP2005531747A (en) Automotive heat exchangers, especially supply air coolers
JPS6155565A (en) Horizontal system laminating type evaporator
JPS6149995A (en) Lamination type heat exchanger
JPS5928218Y2 (en) Heat exchanger for high pressure fluid
JPH0443739Y2 (en)
JPS629182A (en) Heat exchanger
JPH09196590A (en) Manufacture of plate fin heat exchanger and plate fin heat exchanger
JP2741950B2 (en) Stacked heat exchanger
JPH03207969A (en) Laminating refrigerant evaporator
JPS59125391A (en) Heat exchanger