JPS5817713A - Switch driving type high-accuracy integration electric charge amplifier - Google Patents

Switch driving type high-accuracy integration electric charge amplifier

Info

Publication number
JPS5817713A
JPS5817713A JP11448881A JP11448881A JPS5817713A JP S5817713 A JPS5817713 A JP S5817713A JP 11448881 A JP11448881 A JP 11448881A JP 11448881 A JP11448881 A JP 11448881A JP S5817713 A JPS5817713 A JP S5817713A
Authority
JP
Japan
Prior art keywords
charge
alpha
ionized
rays
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11448881A
Other languages
Japanese (ja)
Other versions
JPH0359605B2 (en
Inventor
Katashi Sasaki
佐々木 確
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP11448881A priority Critical patent/JPS5817713A/en
Publication of JPS5817713A publication Critical patent/JPS5817713A/en
Publication of JPH0359605B2 publication Critical patent/JPH0359605B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Amplifiers (AREA)
  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To obtain an output signal without loss of full ionized electric charges due to alpha-rays, by connecting a relay switch in parallel with a feedback capacitor of electric charge so that the measuring time of the total amount of input ionized charges can be specified. CONSTITUTION:In an alpha-ray measuring ionization box 1, spools A and B existing along the range of emitted alpha-rays with equal energy are formed with an alpha-ray source III. When a relay switch 4 is turned on, the charging voltage of a feedback capacitor 3 of an amplifier 2 rises with ionized charge of the A and B . Next, when the switch 4 is closed, the charging voltage of the capacitor 3 is discharged. The time ts while the switch 4 is opened is selected longer than an average rising time of the charging voltage to each alpha-ray. Thus, an equal output signal can be picked up even with different emission angles, if the energy is equal and all the ionized charges caused by the alpha-rays can be outputted as signals without loss.

Description

【発明の詳細な説明】 本発明はα線測定用電離箱に接続する電荷増幅器に係わ
り、特にα線によって生ずる微小電離電荷の総量のみを
直接に定量し得る電荷増幅器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a charge amplifier connected to an ionization chamber for measuring α-rays, and more particularly to a charge amplifier that can directly quantify only the total amount of minute ionized charges generated by α-rays.

微弱α放射能を含む試料の測定には、その統計的確度を
向上する条件として、試料面積金、状況に応じて自由な
形状に拡大し得ることが要請される。電離箱型α線検出
器(以下:電離箱)は、その目的に適合した検出器であ
るが、電離箱の持つ微弱な放射能検出能力を充分に引き
出し得る増幅器が無く、従って微弱なα線の数量及びそ
の放出エネルギー分布の直接的定量法が確立出来なかっ
た。
In order to improve the statistical accuracy of measurements of samples containing weak α-radioactivity, it is required that the sample area can be expanded to any shape depending on the situation. The ionization chamber type α-ray detector (hereinafter referred to as ionization chamber) is a detector that is suitable for this purpose, but it does not have an amplifier that can fully utilize the weak radioactivity detection ability of the ionization chamber, so it cannot detect weak α-rays. A direct method for quantifying the quantity and the distribution of its emitted energy could not be established.

以下に従来技術が適用できない理由を述べる。The reason why the conventional technology cannot be applied will be described below.

α線のエネルギー分布を測定し得る電離箱にはグリッド
付電離箱がある。グリッド電離箱は放出α線の電離量に
比例した出力パルス波高を分析することでエネルギー弁
別を行なうものである。即ち電離箱内グリッドによって
、電峠電荷の内移動度の大きい負電荷(電子)のみによ
って誘起するパルス信号を得てエネルギー弁別能力を高
めようとしたものである。従って、パルス波高分布は得
られるが、この分布より測定されたα線の全電離電荷量
、即ちそのエネル、ギーを直接的に知ることは不可能で
、例えばエネルギー標準線源を利用した校正などの補正
過程が必要である。
Ionization chambers that can measure the energy distribution of alpha rays include gridded ionization chambers. The grid ionization chamber performs energy discrimination by analyzing the output pulse height, which is proportional to the amount of ionization of the emitted alpha rays. That is, an attempt was made to improve the energy discrimination ability by obtaining a pulse signal induced only by negative charges (electrons) with high mobility in the electric charge by using a grid in the ionization chamber. Therefore, although a pulse height distribution can be obtained, it is impossible to directly know the total ionized charge of the α-ray measured from this distribution, that is, its energy, and it is impossible to directly know the total ionized charge of the α-ray measured from this distribution. A correction process is necessary.

更に実際にはグリッドが繊細な構造を有するので、マイ
クロッオニツクなどの機械的な影響によっ(擬似信号を
発生し易く、微弱α放射能の測定には誤差が大きくなる
。又測定条件にあっては、電離箱内を真空としてから電
離ガスに置換するなどの過程が必要となるため、試料又
換等実施に当って著るしく不便である。グリッド電離箱
は以上の理由で、α線電離量の直接的測定という要請に
対しては使用できない。一方、通常の電離箱では放出α
線の運動エネルギーによって決まる全電離電荷量Qaを
電離箱の出力端に誘起させて信号とする積分型動作が可
能であって、グリッド電離箱に比較して全電離電荷を直
接的に定量できる能力を有する。ここで図1゜1)に各
放出α線毎に対応する発生Qaの時間的推移を示す。図
において1個のα線に対応する全電離電荷がひとつの階
段を構成して層り、α線の放出に供って信号電荷Q−が
堆積して行くことになる。従って各放出α線毎の信号を
得ること、及び後続する電子回路による信号処理を容易
にするために図1.1)の階段状堆積電荷を、各段毎に
図1.H)の様なパルス信号に変換しなければならない
Furthermore, since the grid actually has a delicate structure, it is easily affected by mechanical influences such as microkonic devices (false signals are generated, resulting in large errors in the measurement of weak α radioactivity. Also, depending on the measurement conditions In this case, it is extremely inconvenient to perform sample exchange, etc., as it requires a process such as creating a vacuum inside the ionization chamber and then replacing it with ionized gas.For the above reasons, the grid ionization chamber It cannot be used to directly measure the amount of linear ionization.On the other hand, ordinary ionization chambers emit α
Integral type operation is possible in which the total ionized charge amount Qa determined by the kinetic energy of the line is induced at the output end of the ionization chamber as a signal, and the ability to directly quantify the total ionized charge compared to a grid ionization chamber. has. Here, FIG. 1(1) shows the time course of the generated Qa corresponding to each emitted α ray. In the figure, all the ionized charges corresponding to one alpha ray form one staircase and are layered, and signal charges Q- are deposited as the alpha ray is emitted. Therefore, in order to obtain a signal for each emitted α ray and to facilitate signal processing by the subsequent electronic circuit, the stepwise deposited charge shown in Fig. 1.1) is divided into stages in Fig. 1.1). must be converted into a pulse signal like H).

次に階段状堆積電荷をパルス状信号に変換する従来技術
について図21、図3.によって説明する0 図2.の(I’C,)は通常型の電離箱であって、内部
にα線源〔Sa〕が置かれる。電荷増幅器(CA”lに
はその出力端&ζC−Rからなる微分回路が接続されて
いる。[CA 〕内の(Cs ’)は電荷増幅器におけ
る帰還コンデンサーで、電離箱に誘起した電離電荷が充
電される。今、線源(S−)よりA、、Bαなる方向に
エネルギーの等しいα線が放出されたとき、それらによ
って誘起された電荷信号Q−は図3.の如(Csの充電
電圧として、時間に対してそれぞれA、Bなる立上りを
呈する。A、Bはそれぞれ同一エネルギーのα線によっ
て同量の電離量が与えられたものであるから(11なる
同一の電荷レベルに到達する。
Next, regarding the conventional technique of converting step-like deposited charges into pulse-like signals, see FIGS. 21 and 3. Described by 0 Figure 2. (I'C,) is a normal type ionization chamber, and an α-ray source [Sa] is placed inside. The charge amplifier (CA"l) is connected to a differentiation circuit consisting of its output terminal & Now, when α rays with equal energy are emitted from the source (S-) in the directions A, Bα, the charge signal Q- induced by them is as shown in Figure 3 (the charging voltage of Cs As a result, A and B rise with respect to time, respectively. Since A and B are each given the same amount of ionization by α rays of the same energy (they reach the same charge level of 11).

このレベルはα線による全電離電荷量(Q−、/ 1.
0 )に等しい。ここでA、Bの階段状波形の時間起点
は比較のため、同時刻に合わせである0t=0の点は1
α線の放出時刻である。即ち、エネルギーの等しいα線
であっても電離箱の電極に対する放出角度によってC8
に於ける充電電圧の立上りが左右されることになる。、 通常の積分型動作では立上りが左右されることになる。
This level is the total amount of ionized charge due to α rays (Q-, / 1.
0 ). Here, the time starting points of the stepped waveforms of A and B are set at the same time for comparison, and the point of 0t=0 is 1
This is the emission time of alpha rays. In other words, even if α rays have the same energy, C8
This will depend on the rise of the charging voltage at , In normal integral type operation, the rise will be affected.

これらの波形を前記のように図1.11)の様なパルス
列に変換するために図2.の(C−R)によって微分す
る。今、この(C,R)の時定数をTarとするとその
放電曲線は図3.の曲線Tcrの様になる。図3.のA
、Bが全電離電荷量を示すレベル[:Qfl/1.0]
に達した時間点をa)。
In order to convert these waveforms into a pulse train as shown in Figure 1.11) as described above, Figure 2. Differentiate by (CR) of Now, if the time constant of (C, R) is Tar, the discharge curve is shown in Figure 3. It becomes like the curve Tcr. Figure 3. A of
, the level where B indicates the total ionized charge amount [:Qfl/1.0]
a).

b)とすると、〔C−R”lの微分によるTcrの効果
によって、a)、b)点は、/) 、  b′)点&て
移動するO ”)+  ”)点はそれぞれ充電電圧e、
b), then [Due to the effect of Tcr due to differentiation of C-R"l, points a) and b) become /), b') point &O")+") point respectively charge voltage e ,
.

emに相当し、結局同一エネルギーのα線の与える出力
信号がα線の放出角度によって異なることとなり、又、
CQa / 1.0 ]のレベルからもかけ離れた値と
なるOこのことは、通常の微分方式によるα線電離量の
ノくルス信号変換方法で番よ、入射α線のエネルギーに
対する出力信号の比例性が保証できず、更にα線による
全電離電荷量すなわちエネルギー値を直接的に出力信号
から知ることが不可能であることを示している0又図3
.のa’)、b’)レベルに示される様に(Q−/1.
03レベルに対する電離電荷捕捉損失が起こることは、
信号対雑音比をも悪化させ微弱放射能の検出精度が著る
しく低下する。この捕捉損失は微分時定数を大としても
、基本的に存在するものであり、かえって各α線の弁別
能力を低下させることになる。
em, and the output signal given by α rays of the same energy will differ depending on the emission angle of α rays, and
CQa / 1.0 ] This is a value that is far from the level of CQa / 1.0]. This can be solved by using the normal differential method to convert the α-ray ionization amount into a Norms signal, and the output signal is proportional to the energy of the incident α-ray. Figure 3 shows that the total ionization charge amount due to alpha rays, that is, the energy value, cannot be directly known from the output signal.
.. As shown in the a') and b') levels of (Q-/1.
The occurrence of ionized charge trapping loss for the 03 level is
It also deteriorates the signal-to-noise ratio and significantly lowers the detection accuracy of weak radioactivity. This capture loss basically exists even if the differential time constant is large, and it actually reduces the discrimination ability of each α ray.

本発明は以上に鑑みて成されたものであって、上記の様
な不具合不便の無い積分電離電荷信号が得られる、電荷
型増幅器を提供するものである0 此の発明の実施例を図4.5.6によって説明する。 
The present invention has been made in view of the above, and provides a charge type amplifier that can obtain an integrated ionized charge signal without the above-mentioned problems and inconveniences. An embodiment of this invention is shown in FIG. This is explained by .5.6.
.

第4図は本発明による電荷型増幅器を電離箱の概略図と
共に示したものである。図4. (1)はα線測定用電
離箱であって、各+)t  ’)は対向する電極を示す
。m)はα線源であって、At1゜Baはそすれぞれエ
ネルギーの等しい放出α線の飛程に沿ったスプール(軌
跡)である。A、は電極に平行、Baは垂直でθ=90
°の場合を示しである。
FIG. 4 shows a charge amplifier according to the present invention together with a schematic diagram of an ionization chamber. Figure 4. (1) is an ionization chamber for α-ray measurement, and each +)t') indicates an opposing electrode. m) is an α-ray source, and At1°Ba is a spool (trajectory) along the range of emitted α-rays each having the same energy. A is parallel to the electrode, Ba is perpendicular, and θ=90
The case of ° is shown.

〔幻は増幅器、〔3〕は充電用帰還コンデンサ(C8’
l。
[The illusion is the amplifier, [3] is the charging feedback capacitor (C8'
l.

〔4〕はリレースイッチ、〔5〕は〔4〕のスイッチを
駆動する電磁コイル、(6)は〔4〕を開閉するために
〔5〕へ与える双極性の電流パルスを示したもので、■
は増幅器の出力端である。今、0のスイッチが開のとき
、An、 Baの電離電荷によるe〕における充電電圧
の時間経過は図5.のA、Hに示す様に立上る。次に0
〕のスイッチが閉のとき、■の充電電圧は放電されて零
電位となる。このスイッチの開閉は図4の0に示す様な
双極性の電流パルスによって駆動され、従4りてスイッ
チの駆動時間は極めて正確に規定できる。
[4] is a relay switch, [5] is an electromagnetic coil that drives the switch in [4], and (6) is a bipolar current pulse given to [5] to open and close [4]. ■
is the output terminal of the amplifier. Now, when the switch 0 is open, the time course of the charging voltage at e due to the ionized charges of An and Ba is shown in Figure 5. It rises as shown in A and H of. then 0
] When the switch 2 is closed, the charging voltage 2 is discharged to zero potential. The opening and closing of this switch is driven by bipolar current pulses as shown at 0 in FIG. 4, and therefore the driving time of the switch can be defined very accurately.

図5は〔3〕の充電電圧の時間経過を示すもので、(t
s 1時間は図4の0が開で入力電離電荷が図4の〔3
〕へ充電される時間であり、(tU )は図4の0が閉
で図4の■の充電電圧が放電される時間であって、t8
に比較して充分小さい。今回5で異なった立上り時間を
持った充電勾配A、  Bは等シいエネルギーの放出α
線によるものであると仮定しているから、α線による全
電離電荷量を示すレベル(Qa/1.o IA、Bに到
達して、充電電圧e、を与える。同様に例えばA、Bと
異なるエネルギーC,D (C,Dのエネルギーは等し
い)を持つα線の与える全電離電荷量〔Qr、/10 
] C,Dは充電電圧e、を与える。即ち、先ず各α線
に対応する平均の充電電圧の立土砂時間に比較して長い
時間をtsとして撰択することによってエネルギーが等
しければ放出角度が変っても等しい出力信号を取出すこ
とが出来、α線による全電離電荷を全く損失なしに信号
とすることが可能となる。
Figure 5 shows the time course of the charging voltage in [3].
s 1 hour, 0 in Figure 4 is open and the input ionization charge is [3 in Figure 4].
], (tU) is the time when 0 in FIG. 4 is closed and the charging voltage shown in ■ in FIG. 4 is discharged, and t8
is sufficiently small compared to . In this case, charging gradients A and B with different rise times are equal energy releases α
Since it is assumed that the total ionized charge due to α rays reaches the level (Qa/1.o IA, B, the charging voltage e is given.Similarly, for example, when A, B and Total ionization charge amount [Qr, /10
] C and D give charging voltage e. That is, by first selecting a long time as ts compared to the sedimentation time of the average charging voltage corresponding to each alpha ray, it is possible to obtain the same output signal even if the emission angle changes as long as the energy is the same. It becomes possible to convert the total ionized charge caused by α rays into a signal without any loss.

ここでtBは、微弱α放射能の放出率と照合しα線電離
の平均入射時間間隙よりも長く取って、総計的にts時
間内にひとつの放出α線の電離現象が終る様に設定する
ことが出来る。tSの時間設定はこの様に状況によって
自由に且つ正確に決定でき、しかも完全に入射α線の全
電離電荷をパルス、状の出力信号として取出す機能を有
するものである。
Here, tB is set to be longer than the average incident time interval of α-ray ionization by checking the emission rate of weak α-radiation, and set so that the ionization phenomenon of one emitted α-ray ends within the total time ts. I can do it. In this way, the time setting of tS can be determined freely and accurately depending on the situation, and moreover, it has the function of completely extracting the entire ionized charge of the incident α-ray as a pulse-like output signal.

上記の様な方法により、先に述べた通常の微分機能、例
えば図2,3の〔C−R〕による微分回路によって得ら
れるα電離電荷のパルス列への変換機能とは全く異なる
効果を得ることができる0即ち、図3に見られる様にα
線によって生じた電離電荷量の一部のみを比例信号とし
て取出す従来の出力パルス変換法に対して、本発明では
図5に示す如く全電離電荷量〔Qr/1.o〕値を出力
信号として取出すことが可能である0更に従来の微分法
では入射α線の弁別能力を高めようとして、微分時定数
を小さくすると、電離量の捕捉損失が増大するばかりで
なく、出力信号が小さくなるために信号対雑音比が低下
するが、本発明の方法によれば信号対雑音比はむしろ改
善される効果をも有するものである0次に本発明を実施
したときに得られる効果について説明する。
By the method described above, it is possible to obtain an effect that is completely different from the normal differentiation function described earlier, for example, the function of converting α-ionized charges into a pulse train obtained by the differentiation circuit according to [C-R] in FIGS. 2 and 3. 0, that is, α as seen in Figure 3.
In contrast to the conventional output pulse conversion method in which only a portion of the ionized charge generated by the line is extracted as a proportional signal, the present invention converts the total ionized charge [Qr/1. o] value can be extracted as an output signal. Furthermore, in the conventional differential method, when the differential time constant is decreased in an attempt to improve the discrimination ability of incident α-rays, not only does the loss of capturing the amount of ionization increase. Although the signal-to-noise ratio decreases because the output signal becomes smaller, the method of the present invention has the effect of improving the signal-to-noise ratio. This section explains the effects that can be achieved.

測定を阻害する雑音成分の電荷量をQNとすると、QN
の実際は QN=Qγ+QT・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・1)で
ある。ここでQTは、γ背影放射線によって生ずる電離
電荷量であり、QTは電離箱及び電荷増幅器の構造材に
ある信号系絶縁物の熱応力変化で生ずる雑音・電荷であ
る。γ線による電離は電離箱内の広い領域に亘って分布
し、電離電荷の捕捉時間が一定していないので、α線4
Iζよる電荷誘起現象に対しては、殆んど直流成分と等
価な信号とみなせるために、Qrと同等な消去電荷を与
えて補償することが可能である。一方QTは環境温度の
時間微分に近い形で発生するために補償方法は無く、基
本的な雑音成分となる。
If QN is the amount of charge of the noise component that interferes with measurement, then QN
Actually, QN=Qγ+QT・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・1). Here, QT is the amount of ionized charge caused by γ back radiation, and QT is the noise/charge caused by thermal stress changes in the signal system insulators in the structural materials of the ionization chamber and charge amplifier. Ionization caused by gamma rays is distributed over a wide area within the ionization chamber, and the capture time of ionized charges is not constant, so alpha rays 4
The charge-induced phenomenon caused by Iζ can be compensated for by giving an erase charge equivalent to Qr, since it can be regarded as a signal almost equivalent to a DC component. On the other hand, since QT occurs in a form close to the time differential of the environmental temperature, there is no compensation method, and it becomes a basic noise component.

図6に環境温度Tの変化に対して発生する雑音電荷QT
発生の概略状況を示す。
Figure 6 shows the noise charge QT generated due to changes in the environmental temperature T.
This shows the general situation of the outbreak.

・今、電離箱内で発生したα線による電離電荷Qaは放
出α線ノエネルギー0.3MeV 〜I OMeVの範
囲に対して1.4X10  C/α−4,8X10−1
4C/αである。一方QTは本発明による実施例ではθ
〜5X10−15C/Sが実測されている。この状況で
本発明にζる方法を適用すると、■αをα線によって得
られる出力電離電流としたとき、 となってα線による全電離電荷を取出すことができる。
・Now, the ionization charge Qa due to the α rays generated in the ionization chamber is 1.4X10 C/α-4,8X10-1 for the energy range of 0.3 MeV to I OMeV of the emitted α rays.
4C/α. On the other hand, QT is θ in the embodiment according to the present invention.
~5X10-15C/S has been measured. If the ζ method of the present invention is applied in this situation, ■ where α is the output ionization current obtained by the α rays, the total ionization charge due to the α rays can be extracted as follows.

一方QTは QT : IT @ts・・・・・・叩・曲・而・曲・
・・・川3)であるから、信号電荷量QIxと雑音電荷
量QTとの比、信号対雑音比S/Nは2)、3)式より
となる。4)式に上記のQa、 QTの実際値を適用す
ると、 tBが1(5)のときSハ=1.4X10−1515X
10−15=0.32t、3が001(8)のときジ’
N=1.4X10 ”15刈0−15 Xo、01 =
32となりて、tBを短縮することによって、入射α線
エネルギーと出力信号との直線性を失なうことなく、測
定感度を向上するこ、とが出来る。
On the other hand, QT is QT: IT @ts... Hit・Song・But・Song・
. . 3) Therefore, the ratio between the signal charge amount QIx and the noise charge amount QT, the signal-to-noise ratio S/N, is given by equations 2) and 3). 4) Applying the above actual values of Qa and QT to the formula, when tB is 1(5), S = 1.4X10-1515X
10-15=0.32t, when 3 is 001 (8),
N = 1.4
By shortening tB, the measurement sensitivity can be improved without losing the linearity between the incident α-ray energy and the output signal.

以上の様に本発明による電荷増幅器を用いてα線の電離
電荷を測定するときには、従来のC,R式微分回路で代
表されるパルス列変換機能に対して、次の様な大きい作
用効果が得られる。
As described above, when measuring the ionized charge of alpha rays using the charge amplifier according to the present invention, the following significant effects can be obtained with respect to the pulse train conversion function represented by the conventional C, R type differential circuit. It will be done.

1、α線による全電離電荷を損うことが無く、出力信号
とすることが出来る。
1. The total ionized charge due to α rays is not lost and can be used as an output signal.

2何等他の校正手段を要さずに、出力信号がら測定α線
のエネルギーを知ることが出来る。
2. The energy of the measured α-ray can be determined from the output signal without requiring any other calibration means.

以上の効果は従来法によっては得ることが出来なかった
ものである。
The above effects could not be obtained by conventional methods.

本発明による方法によって従来法では不可能であった電
離箱による測定、例えば高密度半導体集積回路の機能を
阻害するパンケージ(外囲器)から放出される0、1〜
0.01α/d程度の微弱α放射能の定量と、エネルギ
ー分布の測定などが充分な信頼性の下で初めて可能とな
った。
The method of the present invention enables measurements using an ionization chamber, which was impossible with conventional methods, such as the 0, 1 to
For the first time, it has become possible to quantify weak alpha radioactivity of about 0.01 alpha/d and measure energy distribution with sufficient reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図の1)は入射α線による電離電荷の発生充電電圧
の時間、関、係、11)は1)をパルス状信号に変換し
た場合を示す説明図 第2図はα線による電離電荷をC−11,微分回路によ
ってパルス状信号に変換する、従来法による電荷増幅器
の説明図 第3図はC−R微分回路を使用した従来法のパルス信号
変換法で、電離電荷の捕捉損失があり又、充電電圧に対
してエネルギー直線性が失なわれることを示す説明図 第4図は本発明による、α線電離電荷の、パルス状信号
への変換方法を示す説明図 第5図は本発明の方法による電離電荷の損失が無く、パ
ルス状信号とすることが出来る電離電荷信号の処理法を
示す説明図 第6図は電離箱及び電荷増幅器の熱応力雑音発生状況を
示す説明図である。 特許出願人 佐々木    確 ((,53 図1       国3
1) in Figure 1 is an explanatory diagram showing the generation of ionized charges due to incident α rays, the relationship between charging voltage, and 11) is an explanatory diagram showing the case where 1) is converted into a pulsed signal. Figure 2 is an ionized charge due to α rays. An explanatory diagram of a conventional charge amplifier that converts C-11 into a pulsed signal using a differentiating circuit. Figure 3 shows a conventional pulse signal conversion method using a C-R differentiating circuit, which reduces the capture loss of ionized charges. 4 is an explanatory diagram showing that the energy linearity is lost with respect to the charging voltage. FIG. An explanatory diagram showing a method of processing an ionized charge signal that can be made into a pulse-like signal without loss of ionized charge according to the method of the invention. FIG. 6 is an explanatory diagram showing the occurrence of thermal stress noise in an ionization chamber and a charge amplifier. . Patent applicant Satoshi Sasaki ((,53 Figure 1 Country 3

Claims (1)

【特許請求の範囲】[Claims] 電荷増幅器の帰還コンデンサに並列接続された双極性電
流パルス駆動型スイッチから成り、入力電離電荷総量の
測定時間が規定できる機能を持つことを特徴とする、電
離箱に接続された高精度電荷量積分型α線測定回路。
A high-precision charge integrator connected to an ionization chamber, consisting of a bipolar current pulse-driven switch connected in parallel to the feedback capacitor of the charge amplifier, and capable of defining the measurement time of the total input ionization charge. Type alpha ray measurement circuit.
JP11448881A 1981-07-23 1981-07-23 Switch driving type high-accuracy integration electric charge amplifier Granted JPS5817713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11448881A JPS5817713A (en) 1981-07-23 1981-07-23 Switch driving type high-accuracy integration electric charge amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11448881A JPS5817713A (en) 1981-07-23 1981-07-23 Switch driving type high-accuracy integration electric charge amplifier

Publications (2)

Publication Number Publication Date
JPS5817713A true JPS5817713A (en) 1983-02-02
JPH0359605B2 JPH0359605B2 (en) 1991-09-11

Family

ID=14639002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11448881A Granted JPS5817713A (en) 1981-07-23 1981-07-23 Switch driving type high-accuracy integration electric charge amplifier

Country Status (1)

Country Link
JP (1) JPS5817713A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5847385U (en) * 1981-09-21 1983-03-30 株式会社 宝製作所 Device to prevent insufficient number of spot welds in spot welding machine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5571305A (en) * 1978-11-08 1980-05-29 Sundstrand Data Control Charge amplifier circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5571305A (en) * 1978-11-08 1980-05-29 Sundstrand Data Control Charge amplifier circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5847385U (en) * 1981-09-21 1983-03-30 株式会社 宝製作所 Device to prevent insufficient number of spot welds in spot welding machine

Also Published As

Publication number Publication date
JPH0359605B2 (en) 1991-09-11

Similar Documents

Publication Publication Date Title
JP5022902B2 (en) Apparatus and method for separating individual signals in detector output data
Wender et al. A fission ionization detector for neutron flux measurements at a spallation source
US7642518B1 (en) Stabilization of a scintillation detector
Johnston et al. Proton-proton scattering at 40 MeV
EP1586918A2 (en) Method and apparatus for detecting high-energy radiation using a pulse mode ion chamber
Fan Beta-spectra and internal conversion coefficients for Co 60, Nb 95, Au 198, and Hf 181
Oakley et al. Photoproduction of Neutral Pions in Hydrogen: Magnetic Analysis of Recoil Protons
Streib et al. The transmutation of fluorine by protons
Wilson et al. Level Structure of Cr 52
Cameron et al. Studies of the Energy Dependence of p-O 16 Interactions between 20 and 50 MeV. I. Measurements of the Differential Cross Sections of Protons Elastically Scattered by O 16 at 23.4, 24.5, 27.3, 30.1, 34.1, 36.8, 39.7, 43.1, and 46.1 MeV
Ford Jr et al. A position sensitive proportional detector for a magnetic spectrograph
Bertolaccini et al. Statistical behaviour of the scintillation counter: Experimental results
JPS5817713A (en) Switch driving type high-accuracy integration electric charge amplifier
CN115166813A (en) Energy spectrum correction method applied to semiconductor gamma detector
Roberts Investigation of the Deuteron-deuteron Reaction
Lowe et al. Lifetimes of the First Excited States of C 15 and B 10
Milton et al. Response of NaI (Tl), KI (Tl), and Stilbene to Fission Fragments
Stelson et al. Cross Section for Excitation of Pb 2 0 7 m by Inelastic Scattering of Neutrons
Yoshiki p′− γ Angular Correlation in the Inelastic Scattering of 16.6-Mev Protons by Mg 24
Duke et al. Total Internal-Conversion Coefficients for Low-Energy E 2 Transitions in Ra 224, Th 228, U 234, U 236, and Pu 240
Ranucci et al. A sampling board optimized for pulse shape discrimination in liquid scintillator applications
JP2647102B2 (en) Particle beam measurement device
Maunsell Measurement of Absorption Coefficients for Photoionizing Radiations in Low-Pressure Gases with a Space Charge Detector
Baschiera et al. Integral and differential absolute intensity measurements of cosmic-ray muons below 1 GeV
Dubbert et al. Resolution and efficiency of Monitored Drift-Tube chambers with final read-out electronics at high background rates