JPS5817613B2 - X-ray tomography device - Google Patents

X-ray tomography device

Info

Publication number
JPS5817613B2
JPS5817613B2 JP52050493A JP5049377A JPS5817613B2 JP S5817613 B2 JPS5817613 B2 JP S5817613B2 JP 52050493 A JP52050493 A JP 52050493A JP 5049377 A JP5049377 A JP 5049377A JP S5817613 B2 JPS5817613 B2 JP S5817613B2
Authority
JP
Japan
Prior art keywords
ray
rays
filter
filters
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52050493A
Other languages
Japanese (ja)
Other versions
JPS53135590A (en
Inventor
克彦 三好
博 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP52050493A priority Critical patent/JPS5817613B2/en
Publication of JPS53135590A publication Critical patent/JPS53135590A/en
Publication of JPS5817613B2 publication Critical patent/JPS5817613B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • X-Ray Techniques (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Description

【発明の詳細な説明】 本発明はコンピュータを利用して画像を再構成するX線
断層装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an X-ray tomography apparatus that reconstructs images using a computer.

X線断層装置の一つにコンピュータ・トモグラフィ(C
omputerized Tomography
:以下CTスキャナと略称する)と呼ばれる装置がある
One of the X-ray tomography devices is computer tomography (C
computerized tomography
There is a device called a CT scanner (hereinafter abbreviated as CT scanner).

このCTスキャナは、例えばX線管とX線検出装置を対
峙させながら例えばペンシルビーム状のX線を曝射し、
このペンシルビームX線を振らせて被検体の断層面に照
射して、これをX線検出装置で捕え、これを−回行なう
毎に断層面に対してX線管とX線検出装置とを微小角回
転させ再びこれを行ない、以後順次角度を変えながら被
検体の断層面の種々の方向から見たX線吸収データを収
集する。
This CT scanner emits, for example, pencil beam-shaped X-rays while an X-ray tube and an X-ray detection device are facing each other,
This pencil beam X-ray is swung and irradiated onto the tomographic plane of the subject, and is captured by the X-ray detection device.Every time this is repeated, the X-ray tube and the X-ray detection device are moved to the tomographic plane. This is repeated by rotating it by a small angle, and thereafter X-ray absorption data from various directions of the tomographic plane of the subject are collected while changing the angle sequentially.

そして、通常360°の角度範囲のデータを収集した後
、このデータをコンピュータで解析し、断層面の個々の
位置のX線吸収率を算出して、その吸収率に応じた階調
度で断層面を再構成するようにしたもので、断層面各部
分の組成をX線吸収率に関して2000段階にも及ぶ階
調度で分析することができるので、軟質組織から硬質組
織に至るまで明確な断層像が得られる。
After collecting data in an angular range of 360°, this data is analyzed by a computer, the X-ray absorption rate at each position on the tomographic plane is calculated, and the tomographic plane is graded according to the absorption rate. The composition of each part of the tomographic plane can be analyzed in terms of X-ray absorption in as many as 2,000 gradations, so a clear tomographic image can be obtained from soft tissue to hard tissue. can get.

、 ところで、従来この種の装置ではX線管に印加する
高電圧が半固定であり、通常の診断用X線装置の如く診
断部位に応じて管電圧を変えるようなことはしない。
By the way, conventionally, in this type of apparatus, the high voltage applied to the X-ray tube is semi-fixed, and the tube voltage is not changed depending on the diagnosis site as in ordinary diagnostic X-ray apparatuses.

その理由は各部位のX線吸収係数を所定のX線エネルギ
ーに対する平均値で算出し、νこれを水等の基準とする
物質のX線吸収係数の平均値と比較対比しているためで
、X線管の管電圧を変えると平均のとり方が変わる(X
線エネルギー分布が変わる)ため、診断部位に対応した
管電圧とすることができないからである。
The reason for this is that the X-ray absorption coefficient of each part is calculated as an average value for a predetermined X-ray energy, and this is compared and contrasted with the average value of the X-ray absorption coefficient of a reference substance such as water. Changing the tube voltage of the X-ray tube changes the way the average is taken (X
This is because the tube voltage cannot be adjusted to correspond to the diagnosis site because the linear energy distribution changes).

デ 従って、体厚が薄く、シかもX線吸収の小さい部位
等では必要以上の被曝を受けることとなり、またX線エ
ネルギー分布が適切でないため良質のデータが得にくく
なり、データ解析に支障を来たして最適な画像の再構成
ができない心配がある。
Therefore, parts of the body that are thin and have low X-ray absorption will be exposed to more radiation than necessary, and the X-ray energy distribution will not be appropriate, making it difficult to obtain high-quality data, which will hinder data analysis. There is a concern that optimal image reconstruction may not be possible.

本発明は上記事情に鑑みて成されたもので、X線吸収率
のそれぞれ異なる複数種のX線フィルタを用い、部位に
応じてこれらX線フィルタを選択して使用することによ
り、管電圧を変えずに適宜なるエネルギー分布のX線を
放射させることができるようにして良質の再構成画像が
得られるようにすると共にX線フィルタを除くことによ
り標準X線強度の再構成像も得られ、他の部位の再構成
像との比較も可能としたX線断層装置を提供することを
目的とする。
The present invention has been made in view of the above circumstances, and uses multiple types of X-ray filters with different X-ray absorption rates, and by selecting and using these X-ray filters according to the site, the tube voltage can be reduced. By making it possible to emit X-rays with an appropriate energy distribution without changing the energy distribution, a high-quality reconstructed image can be obtained, and by removing the X-ray filter, a reconstructed image with standard X-ray intensity can also be obtained, It is an object of the present invention to provide an X-ray tomography apparatus that allows comparison with reconstructed images of other parts.

以下、本発明の一実施例について図面を参照し聾 なから説明する。Hereinafter, one embodiment of the present invention will be explained with reference to the drawings. Let me explain from the start.

第1図は本発明装置の櫃略的な構成を示すブロック図で
あり、図中1はX線管2に与える高電圧を発生するX線
高電圧装置、3a。
FIG. 1 is a block diagram showing a schematic configuration of the apparatus of the present invention, in which reference numeral 1 denotes an X-ray high voltage device 3a that generates a high voltage to be applied to the X-ray tube 2.

3bはそれぞれ異なる厚みとしそれぞれ所定のX線吸収
率を持たせたX線フィルタ、4はこのX線フィルタ3a
、3bのうち所望のフィルタをX線管2の放射するX
線束中に移動させるフィルタ駆。
Reference numeral 3b indicates an X-ray filter having a different thickness and a predetermined X-ray absorption rate, and 4 indicates this X-ray filter 3a.
, 3b, the desired filter is selected from the X-rays emitted by the X-ray tube 2.
A filter driver that moves into the beam bundle.

動装置、5は被検体、6はこの被検体5を介して前記X
線管2に対峙して設けられ被検体5を透過した前記X線
管2からのX線を検出するX線検出器、7はこのX線検
出器6の検出出力を増幅する増幅器、8はこの増幅器7
にて増幅された検出用。
5 is a subject; 6 is a moving device through which the subject 5 is
An X-ray detector is provided facing the ray tube 2 and detects the X-rays from the X-ray tube 2 that have passed through the subject 5; 7 is an amplifier that amplifies the detection output of the X-ray detector 6; 8 is an amplifier; This amplifier 7
For amplified detection.

力を演算処理し画像の再構成を行なう画像再構成装置、
9はこの画像再構成装置8の出力を表示する表示器であ
る。
An image reconstruction device that reconstructs images by calculating forces;
A display 9 displays the output of the image reconstruction device 8.

次に上記構成の本装置の動作について説明する。Next, the operation of this apparatus having the above configuration will be explained.

まず、X線高電圧装置1より標準X線強度のX線。First, X-rays of standard X-ray intensity are emitted from the X-ray high-voltage device 1.

を放射する電圧値の高電圧を発生させ、X線管2に与え
る。
A high voltage with a voltage value that radiates is generated and applied to the X-ray tube 2.

するとX線管2は標準X線強度のX線が放射され、被検
体5に照射される。
Then, the X-ray tube 2 emits X-rays of standard X-ray intensity, and the subject 5 is irradiated with the X-rays.

被検体5を透過したX線はX線検出器6に入射し、ここ
でそのX線強度に応じた信号に変換された後、増幅器7
に送られ増幅される。
The X-rays that have passed through the object 5 enter the X-ray detector 6, where they are converted into a signal according to the X-ray intensity, and then sent to the amplifier 7.
is sent to and amplified.

そして、この増幅器7にて増幅された後、画像再構成装
置8に送られる。
After being amplified by the amplifier 7, the signal is sent to the image reconstruction device 8.

X線は前述した如く被検体5の断層面を移動して同一方
向から見た断層面透過データを得ると次に断層面に対し
て所定角度移動させ再びこれを行ない、以後、順次角度
基えながらあらゆる方向からの断層面透過X線データを
収集し、これを画像再構成装置8にて演算解析して断層
面各位置に対応するX線吸収率を算出し、画像の再構成
が行われる。
As mentioned above, the X-ray moves across the tomographic plane of the subject 5 to obtain tomographic transmission data seen from the same direction, and then moves at a predetermined angle with respect to the tomographic plane and repeats this process again. The X-ray data transmitted through the tomographic plane from all directions is collected, and the image reconstruction device 8 performs arithmetic analysis to calculate the X-ray absorption rate corresponding to each position on the tomographic plane, and reconstructs the image. .

この再構成された画像は表示器9に送られ、ここで像と
して表示される。
This reconstructed image is sent to the display 9, where it is displayed as an image.

以上は標準X線強度のX線を用いた場合であるが、この
標準X線強度のX線ではエネルギー分布が適切でない場
合には、その断層面に最適なX線エネルギー分布を得る
ためのX線フィル 、例えば3aを選択し、フィルタ駆
動装置4に選択指令を与える。
The above is a case where X-rays with standard X-ray intensity are used, but if the energy distribution is not appropriate with X-rays with this standard X-ray intensity, the A line filter, for example 3a, is selected and a selection command is given to the filter driving device 4.

するとこのフィルタ、駆動装置4は作動してX線管の放
射するX線束中にX線フィルタ3aを移動させる。
The filter drive device 4 then operates to move the X-ray filter 3a into the X-ray flux emitted by the X-ray tube.

するとX線管2から放射されたX線束はこのX線フィル
タ3aを通って、エネルギー分布が変化し断層面に最適
なエネルギー分布となって被検体5に照射されるから、
微妙な差違の認識が行ない得る良質の透過X線データ(
X線吸収データ)が検出できる。
Then, the X-ray flux emitted from the X-ray tube 2 passes through the X-ray filter 3a, changes its energy distribution, becomes optimal for the tomographic plane, and is irradiated onto the subject 5.
High-quality transmitted X-ray data that allows recognition of subtle differences (
X-ray absorption data) can be detected.

従って、診断対象とする部位に応じて最適なX線エネル
ギー分布となるようなX線フィルタを選択してこれを通
したX線束を用い断層面の種々の方向に対するX線吸収
データを得ることにより、明確な断層面再構成画像を得
ることができる。
Therefore, by selecting an X-ray filter that provides the optimal X-ray energy distribution according to the region to be diagnosed, and using the X-ray flux that passes through the filter, we can obtain X-ray absorption data for various directions on the tomographic plane. , a clear tomographic reconstruction image can be obtained.

本装置はX線フィルタをX線束から外せば標準X線強度
のX線による再構成画像を得ることができるから、異な
る部位の断層面を比較したい場合にはこの標準X線強度
のX線を用いれは対比を容易に行なうことができる。
This device can obtain reconstructed images using X-rays with standard X-ray intensity by removing the X-ray filter from the X-ray flux, so when you want to compare tomographic planes of different parts, use X-rays with this standard X-ray intensity. The usage allows for easy comparison.

第2図は厚みの異なる2種類のアルミニウムフィルタを
用いたときのX線エネルギーと出力X線強度の関係を示
す特性図であり、X線管から放射されるX線をA1厚み
の薄いX線フィルタを用いた場合のX線をB1厚みのや
や厚いX線フィルタを用いた場合のX線をCで示す。
Figure 2 is a characteristic diagram showing the relationship between X-ray energy and output X-ray intensity when two types of aluminum filters with different thicknesses are used. X-rays when a filter is used are shown as B. X-rays when a slightly thicker X-ray filter with a thickness of 1 is used are shown as C.

フィルタとしてはアルミニウムの他にX線管2の陽極材
料と同材料もしくは、その材料の原子番号近傍の材料に
よるフィルタを用いても良い。
As the filter, in addition to aluminum, a filter made of the same material as the anode material of the X-ray tube 2 or a material having an atomic number close to that material may be used.

この場合は第2図にDで示す如き分布となり、陽極材料
に対する特性X線を主とするスペクトルが得られる。
In this case, the distribution becomes as shown by D in FIG. 2, and a spectrum consisting mainly of characteristic X-rays for the anode material is obtained.

また、他の例としてバランスフィルタと呼ばれる原子番
号の近いE、F2組のフィルタを組み合わせて用い、第
3図に示す如くその2組のバランスフィルタE、 Fの
X線吸収端のずれを利用して両者の差の部分のGなる透
過X線を利用することにより、所望とする強さのX線を
得ることができる。
Another example is to use a combination of two sets of filters called balance filters, E and F, which have similar atomic numbers, and utilize the shift in the X-ray absorption edges of the two sets of balance filters E and F, as shown in Figure 3. By using the transmitted X-ray of the difference between the two, X-rays of desired intensity can be obtained.

ここでバランスフィルタについて説明しておく。Here, I will explain the balance filter.

バランスフィルタは、原子番号の近いE、F2組のフィ
ルタを用いて構成したものでフィルタE1Fの各々の厚
みを選んで、X線吸収端部以外のX線吸収係数が一致す
るようにしておく、E1Fフィルタを透過したX線スペ
クトルの相違は、各々のフィルタの吸収端附近にのみお
こる。
The balance filter is constructed using two sets of filters E and F with similar atomic numbers, and the thickness of each filter E1F is selected so that the X-ray absorption coefficients other than the X-ray absorption edge are the same. Differences in the X-ray spectra transmitted through the E1F filters occur only near the absorption edges of each filter.

すなわち第3図において、フィルタE透過後のスペクト
ルハ、エネルギー範囲Gにおいてのみ、Fの透過スペク
トルより太きい。
That is, in FIG. 3, the spectrum C after passing through filter E is thicker than the transmission spectrum of F only in the energy range G.

これが第3図の一点鎖線で示されている。This is shown by the dash-dotted line in FIG.

フィルタE、F透過後の各々の透過信号の差をとるとエ
ネルギー範囲Gのみの被検体の情報が得られる。
By taking the difference between the transmitted signals after passing through the filters E and F, information on the object only in the energy range G can be obtained.

これは、はぼ単一エネルギーのX線に相当するため、X
線のビームハードニング等の効果がキャンセルされ、良
好な画像が得られる。
This corresponds to X-rays with almost single energy, so
Effects such as line beam hardening are canceled and a good image can be obtained.

このようにCT装置において、X線吸収率のそれぞれ異
なる複数種のX線フィルタを用い診断部位に応じてこれ
らX線フィルタを任意に選択使用することにより標準的
なエネルギー分布のX線を放射するX線管からのX線を
所望とするエネルギー分布のX線に変換することができ
るようにしたので、X線管の管電圧を変えることなく所
望とするX線エネルギー分布のX線が得られるから、体
厚の薄い又は吸収の異なる部位であっても適正な強さの
X線とすることができるので良質の再構成画像を得るこ
とができ、また、X線管は常に一定の強さのX線を放射
するので、フィルタを除いて標準のX線にて撮影を行な
えば異なる部位の比較もできる等、優れた特徴を有する
X線断層装置を提供することができる。
In this way, CT equipment uses multiple types of X-ray filters with different X-ray absorption rates, and by arbitrarily selecting and using these X-ray filters depending on the diagnosis area, X-rays with a standard energy distribution are emitted. Since the X-rays from the X-ray tube can be converted into X-rays with the desired energy distribution, X-rays with the desired X-ray energy distribution can be obtained without changing the tube voltage of the X-ray tube. Because of this, it is possible to obtain high-quality reconstructed images because X-rays of appropriate intensity can be applied even to areas with thin body thickness or different absorption levels. Therefore, it is possible to provide an X-ray tomography apparatus with excellent features such as being able to compare different parts by removing the filter and performing imaging with standard X-rays.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す概略的なブロック図、
第2図、第3図は各種フィルタを透過させた場合におけ
るX線強度を示す特性図である。 2・・・・・・X線管、3a、3b・・・・・・X線フ
ィルタ、5・・・・・・被検体、6・・・・・・X線検
出器。
FIG. 1 is a schematic block diagram showing an embodiment of the present invention;
FIGS. 2 and 3 are characteristic diagrams showing the intensity of X-rays transmitted through various filters. 2...X-ray tube, 3a, 3b...X-ray filter, 5...subject, 6...X-ray detector.

Claims (1)

【特許請求の範囲】[Claims] 1 X線源とX線検出器とを対峙させて配置すると共に
被検体の断層面に沿って前記X線源及びX線検出器とを
移動させ前記被検体断層面の各方向からのX線吸収デー
タを収集し解析して前記断層面像の再構成を行なうもの
において、複数種のX線バランスフィルタを備え、これ
らX線バランスフィルタを任意に1対選択して使用する
ことにより、X線フィルタ間のX線吸収差により、X線
源からのX線を被検体厚や部位に応じたエネルギー分布
とすることができるようにしたことを特徴とするX線断
層装置。
1. An X-ray source and an X-ray detector are placed facing each other, and the X-ray source and X-ray detector are moved along the tomographic plane of the subject to receive X-rays from each direction of the tomographic plane of the subject. In an apparatus that collects and analyzes absorption data to reconstruct the tomographic image, it is equipped with multiple types of X-ray balance filters, and by arbitrarily selecting and using one pair of these X-ray balance filters, An X-ray tomography apparatus characterized in that the energy distribution of X-rays from an X-ray source can be adjusted according to the thickness and region of a subject due to X-ray absorption differences between filters.
JP52050493A 1977-04-30 1977-04-30 X-ray tomography device Expired JPS5817613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52050493A JPS5817613B2 (en) 1977-04-30 1977-04-30 X-ray tomography device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52050493A JPS5817613B2 (en) 1977-04-30 1977-04-30 X-ray tomography device

Publications (2)

Publication Number Publication Date
JPS53135590A JPS53135590A (en) 1978-11-27
JPS5817613B2 true JPS5817613B2 (en) 1983-04-08

Family

ID=12860445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52050493A Expired JPS5817613B2 (en) 1977-04-30 1977-04-30 X-ray tomography device

Country Status (1)

Country Link
JP (1) JPS5817613B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0447887B2 (en) * 1984-06-25 1992-08-05 Canon Denshi Kk

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4361901A (en) * 1980-11-18 1982-11-30 General Electric Company Multiple voltage x-ray switching system
US4528685A (en) * 1983-05-16 1985-07-09 General Electric Company X-ray beam filter device
JPS6426132A (en) * 1988-05-07 1989-01-27 Raido Kk X X-ray body inspecting device
GB201308851D0 (en) * 2013-05-16 2013-07-03 Ibex Innovations Ltd Multi-spectral x-ray detection apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5028894A (en) * 1973-06-01 1975-03-24
JPS5060191A (en) * 1973-09-19 1975-05-23

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5028894A (en) * 1973-06-01 1975-03-24
JPS5060191A (en) * 1973-09-19 1975-05-23

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0447887B2 (en) * 1984-06-25 1992-08-05 Canon Denshi Kk

Also Published As

Publication number Publication date
JPS53135590A (en) 1978-11-27

Similar Documents

Publication Publication Date Title
US4686695A (en) Scanned x-ray selective imaging system
JP6007386B2 (en) Data processing device for radiation imaging
US3927318A (en) Cross-sectional fluorescent imaging system
DE69129008T2 (en) X-RAY RAY THERAPY SIMULATOR
DE69124781T2 (en) METHOD TO IMPROVE THE DYNAMIC AREA OF AN IMAGE SYSTEM
JP3449561B2 (en) X-ray CT system
US8160206B2 (en) Dual-energy imaging at reduced sample rates
US8054940B2 (en) Image capturing system for medical use, image processing apparatus, and image processing method
US7885373B2 (en) System and method for quantitative imaging of chemical composition to decompose multiple materials
JPH05302979A (en) Simultaneous transmission/emission type focus tomography
CN101175440A (en) Radiograph and image processing program
JP2002345808A (en) Method and system for process of scouting ct images
JP3459745B2 (en) Image processing apparatus, radiation imaging apparatus, and image processing method
US9943279B2 (en) Methods and systems for task-based data generation and weighting for CT spectral imaging
DE102006023843A1 (en) X-ray CT image reconstruction method and X-ray CT system
DE102005053993A1 (en) Diagnostic device and diagnostic method for combined and / or combinable radiographic and nuclear medicine examinations
Baily Video techniques for x‐ray imaging and data extraction from roentgenographic and fluoroscopic presentations
JPH1033520A (en) Cone beam x-ray tomography system
IL122307A (en) Methods and apparatus for detecting partial volume image artifacts
JP2004347328A (en) Radiographic apparatus
US20050100125A1 (en) Method and apparatus for the spatially-resolved determination of the element concentrations in objects to be examined
JP3270153B2 (en) Computer tomograph
US7477771B2 (en) Method and system for extracting information about the cardiac cycle from CT projection data
US20080075379A1 (en) Image processing device and image processing method
JPS5817613B2 (en) X-ray tomography device